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ABSTRACT

Ensemble prediction systems typically show positive spread-error correlation, but they are subject to
forecast bias and dispersion errors, and are therefore uncalibrated. This work proposes the use of ensemble
model output statistics (EMOS), an easy-to-implement postprocessing technique that addresses both fore-
cast bias and underdispersion and takes into account the spread-skill relationship. The technique is based
on multiple linear regression and is akin to the superensemble approach that has traditionally been used for
deterministic-style forecasts. The EMOS technique yields probabilistic forecasts that take the form of
Gaussian predictive probability density functions (PDFs) for continuous weather variables and can be
applied to gridded model output. The EMOS predictive mean is a bias-corrected weighted average of the
ensemble member forecasts, with coefficients that can be interpreted in terms of the relative contributions
of the member models to the ensemble, and provides a highly competitive deterministic-style forecast. The
EMOS predictive variance is a linear function of the ensemble variance. For fitting the EMOS coefficients,
the method of minimum continuous ranked probability score (CRPS) estimation is introduced. This tech-
nique finds the coefficient values that optimize the CRPS for the training data. The EMOS technique was
applied to 48-h forecasts of sea level pressure and surface temperature over the North American Pacific
Northwest in spring 2000, using the University of Washington mesoscale ensemble. When compared to the
bias-corrected ensemble, deterministic-style EMOS forecasts of sea level pressure had root-mean-square
error 9% less and mean absolute error 7% less. The EMOS predictive PDFs were sharp, and much better
calibrated than the raw ensemble or the bias-corrected ensemble.

1. Introduction

During the past decade, the use of forecast en-
sembles for assessing the uncertainty of numerical
weather predictions has become routine. Three opera-
tional methods for the generation of synoptic-scale en-
sembles have been developed: the breeding growing
modes method used by the National Centers for Envi-
ronmental Prediction (NCEP; Toth and Kalnay 1997),
the singular vector method used by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF;
Molteni et al. 1996), and the perturbed observations
method used by the Canadian Meteorological Centre
(CMC; Houtekamer et al. 1996). More recently, meso-
scale short-range ensembles have been developed, such
as the University of Washington ensemble system over
the North American Pacific Northwest (Grimit and
Mass 2002; Eckel 2003). The ability of ensemble sys-
tems to improve deterministic-style forecasts and to

predict forecast skill has been convincingly established.
Statistically significant spread-error correlations sug-
gest that ensemble variance and related measures of
ensemble spread are skillful indicators of the accuracy
of the ensemble mean forecast (Eckel and Walters
1998; Stensrud and Yussouf 2003; Scherrer et al. 2004).

Case studies in probabilistic weather forecasting have
typically focused on the prediction of categorical
events. Ensembles also allow for probabilistic forecasts
of continuous weather variables, such as air pressure
and temperature, which are ideally expressed in terms
of predictive cumulative distribution functions (CDFs)
or predictive probability density functions (PDFs).
However, ensemble systems are finite and typically in-
clude of 5 to 50 member models. Hence, raw ensemble
output does not provide predictive PDFs, and some
form of postprocessing is required (Hamill and Colucci
1998; Richardson 2001). Various challenges in the sta-
tistical postprocessing of ensemble output have been
described. Systematic biases are substantial in current
modeling systems (Atger 2003; Mass 2003) and might
disguise probabilistic forecast skill. Furthermore, fore-
cast ensembles are typically underdispersive (Hamill
and Colucci 1997; Eckel and Walters 1998).
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In this paper, we propose the use of ensemble model
output statistics (EMOS), an easy to implement statis-
tical postprocessing technique that addresses the afore-
mentioned issues. Our method is a variant of multiple
linear regression or model output statistics (MOS) tech-
niques that have traditionally been used for determin-
istic-style and probability of precipitation forecasts
(Glahn and Lowry 1972; Wilks 1995). Specifically, sup-
pose that X1, . . . , Xm denotes an ensemble of individu-
ally distinguishable forecasts for a univariate weather
quantity Y. A multiple linear regression equation for Y
in terms of the ensemble member forecasts can be writ-
ten as

Y � a � b1X1 � · · · � bmXm � �, �1�

where a and b1, . . . , bm are regression coefficients, and
where � is an error term that averages to zero. Regres-
sion approaches of this type have been shown to im-
prove the deterministic-style forecast accuracy of syn-
optic weather and seasonal climate ensembles (Krish-
namurti et al. 1999, 2000; Kharin and Zwiers 2002), and
the associated forecast systems have been referred to as
superensembles.

The use of regression techniques for probabilistic
forecasting has not received much attention in the lit-
erature, with the exception of forecasts of binary events
(Glahn and Lowry 1972; Stefanova and Krishnamurti
2002). In this work, we obtain full predictive PDFs and
CDFs from ensemble forecasts of a continuous weather
variable. Standard regression theory suggests a straight-
forward way of constructing predictive PDFs and CDFs
from a regression equation, by taking them to be
Gaussian with predictive mean equal to the regression
estimate, and predictive variance equal to the mean
squared prediction error for the training data. This ap-
proach corrects for model biases and takes account of
dispersion errors. However, the resulting assessment of
uncertainty is static, in that the predictive variance is
independent of the ensemble spread, thereby negating
the spread-skill relationship (Whitaker and Loughe
1998). Hence, we model the variance of the error term
in Eq. (1) as a linear function of the ensemble spread,
that is,

Var��� � c � dS2, �2�

where S2 is the ensemble variance, and where c and d
are nonnegative coefficients. Combining (1) and (2)
yields the Gaussian predictive distribution

N �a � b1X1 � · · · � bmXm, c � dS2�

whose mean derives from the regression equation and
forms a bias-corrected weighted average of the en-
semble member forecasts, and whose variance depends
linearly on the ensemble variance. We refer to the re-
sulting predictive PDFs and CDFs as ensemble model
output statistics or EMOS forecasts. Negative regres-
sion weights can, and frequently do, occur in this type

of formulation, as in Tables 2, 4, 5, and 6 of Van den
Dool and Rukhovets (1994). This effect is typically
caused by collinearities of the ensemble member fore-
casts, and the negative weights seem hard to interpret.
They imply, all else being equal, that sea level pressure,
say, is predicted to be lower when the forecast with the
negative weight is higher. To address this issue, we pro-
pose an alternative implementation of the EMOS tech-
nique, which constrains the coefficients b1, . . . , bm to be
nonnegative. We call this variant of the EMOS tech-
nique EMOS�. In our experiments, EMOS and
EMOS� gave equally skillful probabilistic forecasts,
but the EMOS� coefficients were easier to interpret.

We applied the EMOS and EMOS� techniques to
the University of Washington mesoscale short-range
ensemble described by Grimit and Mass (2002). This is
a multianalysis, single-model [fifth-generation Pennsyl-
vania State University–National Center for Atmo-
spheric Research Mesoscale Model (MM5)] ensemble
driven by initial conditions and lateral boundary con-
ditions obtained from major operational weather cen-
ters worldwide. Table 1 provides an overview of the
phase I University of Washington ensemble system.
Figure 1 illustrates the spread-skill relationship for sea
level pressure forecasts, using the same period, Janu-
ary–June 2000, on which the study of Grimit and Mass
(2002) was based. The ensemble spread provides useful
information about the error of the ensemble mean fore-
cast. Figure 2 gives an example of a 48-h EMOS fore-
cast of sea level pressure. This forecast was initialized at
0000 UTC on 25 May 2000 and was valid at Hope Air-
port, British Columbia, Canada. Both the EMOS pre-
dictive PDF and the EMOS predictive CDF are shown.
The construction of prediction intervals from the pre-
dictive CDF, say F, is straightforward. For instance, the
162⁄3rd and 831⁄3rd percentile of F form the lower and
upper endpoints of the 662⁄3% central prediction inter-
val, respectively. In the Hope Airport example, and
using the millibar as unit, this interval was [1007.3,
1011.9]. The ensemble range of the University of Wash-
ington ensemble was [1003.7, 1016.8]. For a five-
member ensemble, this is also a nominal 662⁄3% predic-
tion interval, but it is much wider. Perhaps surprisingly,

TABLE 1. Phase I of the University of Washington mesoscale
short-range ensemble, Jan–Jun 2000. Initial conditions (ICs) and
lateral boundary conditions (LBCs) were obtained from the
AVN, the NGM data assimilation system, and the Eta data as-
similation system, all run by NCEP; the GEM analysis run by the
CMC; and the NOGAPS analysis run by Fleet Numerical Meteo-
rology and Oceanography Center (FNMOC). See Grimit and
Mass (2002) for details.

No. Ensemble member IC/LBC source

1 AVN-MM5 NCEP
2 GEM-MM5 CMC
3 ETA-MM5 NCEP
4 NGM-MM5 NCEP
5 NOGAPS-MM5 FNMOC

MAY 2005 G N E I T I N G E T A L . 1099



this situation—EMOS prediction intervals that were
shorter than their ensemble counterparts—was not un-
common. In our case study this occurred in about 28%
of the sea level pressure forecasts.

The paper is organized as follows. In section 2 we
describe the EMOS and EMOS� techniques in detail,
and we explain how we go about verifying probabilistic
forecasts. In assessing forecast PDFs, we are guided by
the principle that probabilistic forecasts strive to maxi-
mize sharpness subject to calibration (Gneiting et al.
2003). We apply diagnostic tools, such as the verifica-
tion rank histogram and the probability integral trans-
form (PIT) histogram, as well as scoring rules, among
them the continuous ranked probability score (CRPS)
and the ignorance score. For estimating the EMOS and
EMOS� coefficients, we introduce the novel approach

of minimum CRPS estimation, which forms a particular
case of minimum contrast estimation. Specifically, we
find the coefficient values that minimize the continuous
ranked probability score for the training data. In our
experiments, this method gave better results than clas-
sical maximum likelihood estimation, which is nonro-
bust and tends to favor overdispersive forecast PDFs.

Section 3 provides a case study of EMOS and
EMOS� forecasts for sea level pressure and surface
temperature in spring 2000 over the Pacific Northwest,
using the University of Washington ensemble. We ex-
plain how we find a suitable training period, and we
describe and verify the EMOS and EMOS� forecasts.
The EMOS and EMOS� forecast PDFs were much
better calibrated than the raw ensemble or the bias-
corrected ensemble, and the mean absolute error

FIG. 1. Spread-skill relationship for ensemble mean forecasts of sea level pressure over
the Pacific Northwest, Jan–Jun 2000. For each decile of the ensemble variance, the box plot
shows the 10th, 25th, 50th, 75th, and 90th percentiles of the squared forecast error. The
correlation between the ensemble variance and the squared forecast error was 0.33 for
individual forecasts and 0.52 for daily averages aggregated across the Pacific Northwest.

FIG. 2. EMOS 48-h forecast of sea level pressure at Hope Airport, British Columbia, initialized at 0000
UTC on 25 May 2000: (a) predictive PDF and (b) predictive CDF. Also shown are the five ensemble
member forecasts (solid vertical lines) and the verifying observation (broken vertical line). The ensemble
member forecasts are, from lowest to highest, the NOGAPS-MM5, AVN-MM5, GEM-MM5, ETA-
MM5, and NGM-MM5 forecasts.
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(MAE), root-mean-square error (RMSE), continuous
ranked probability score (CRPS), and ignorance score
(IGN) for the EMOS and EMOS� forecasts were con-
sistently, and substantially, better than the correspond-
ing quantities for the raw ensemble or the bias-
corrected ensemble. The paper closes with a discussion
in section 4.

2. Methods

We now explain our approach to verifying probabi-
listic forecasts and describe the EMOS technique in
detail. For estimating the EMOS coefficients we use the
novel approach of minimum CRPS estimation, which
forms a special case of minimum contrast estimation
(MCE). This method is best explained in terms of veri-
fication measures, so we describe these first.

a. Assessing sharpness and calibration

The goal of probabilistic forecasting is to maximize
the sharpness of the forecast PDFs subject to calibra-
tion (Gneiting et al. 2003). Calibration refers to the
statistical consistency between the forecast PDFs and
the verifications and is a joint property of the predic-
tions and the verifications. Briefly, a forecast technique
is calibrated if meteorological events declared to have
probability p occur a proportion p of the time on aver-
age. Sharpness refers to the spread of the forecast PDFs
and is a property of the predictions only. A forecast
technique is sharp if prediction intervals are shorter on
average than prediction intervals derived from naive
methods, such as climatology or persistence. The more
concentrated the forecast PDF, the sharper the fore-
cast, and the sharper the better, subject to calibra-
tion.

The principal tool for assessing the calibration of en-
semble forecasts is the verification rank histogram or
Talagrand diagram (Anderson 1996; Hamill and
Colucci 1997; Talagrand et al. 1997; Hamill 2001). To
obtain a verification rank histogram, find the rank of
the verifying observation when pooled within the or-
dered ensemble values and plot the histogram of the
ranks. Anderson (1996) and Saetra et al. (2004) sug-
gested that when observations are used to assess an
ensemble system, normally distributed noise based on
the observation error could be added to the ensemble
member models before the rank histogram is com-
puted. In our experiments with the University of Wash-
ington system, the rank histograms computed from the
ensembles with and without noise looked almost iden-
tical, and we retained the former.

The analogous tool for PDF forecasts is the PIT his-
togram. If F denotes the predictive CDF, the probabil-
ity integral transform is simply the value F(x) at the
verification x, a number between 0 and 1. For the Hope
Airport forecast in Fig. 2b, for instance, the PIT value
was 0.28. Rosenblatt (1952) studied the probability in-

tegral transform, and Dawid (1984) proposed its use in
the assessment of probabilistic forecasts. The PIT his-
togram—that is, the histogram of the PIT values—is a
commonly used tool in the econometric literature on
probabilistic forecasting (see, e.g., Weigend and Shi
2000). Its interpretation is the same as that of the veri-
fication rank histogram: calibrated probabilistic fore-
casts yield PIT histograms that are close to uniform,
while underdispersive forecasts result in U-shaped PIT
histograms.

How can ensembles and PDF forecasts be fairly com-
pared? An ensemble provides a finite, typically small,
number of values only, while PDF forecasts give con-
tinuous statements of uncertainty, so this seems diffi-
cult. There are two natural approaches to a fair com-
parison, using either the verification rank histogram or
the PIT histogram. To obtain an m-member ensemble
from a PDF forecast, take the CDF quantiles at levels
i/(m � 1), for i � 1, . . . , m. The verification rank his-
togram can then be formed in the usual way. To obtain
a PIT histogram from an ensemble, fit a PDF to each
ensemble forecast, as proposed by Déqué et al. (1994),
Wilson et al. (1999), and Grimit and Mass (2004). The
standard ensemble smoothing approach of Grimit and
Mass (2004) fits a normal distribution with mean equal
to the ensemble mean and variance equal to the en-
semble variance. The PIT value is then computed on
the basis of the fitted Gaussian CDF. Wilks (2002) pro-
posed to smooth forecast ensembles by fitting mixtures
of Gaussian distributions, an approach that allows for
multimodal forecast PDFs. Multimodality may indeed
be an issue for larger ensembles. For smaller en-
sembles, such as the University of Washington en-
semble, standard ensemble smoothing using a single
normal PDF suffices.

In addition to showing verification rank histograms
and PIT histograms, we report the coverage of the
662⁄3% central prediction interval; we chose this interval
because the range of a five-member ensemble provides
such. Finally, to assess sharpness, we consider the av-
erage width of the 662⁄3% prediction intervals. For a
five-member ensemble, this is just the average en-
semble range.

For Gaussian predictive PDFs, the average width of
the 100 � (1 � �)% central prediction intervals is

2z1���2S , �3�

where z1��	2 denotes the 1 � �/2 quantile of the normal
distribution with mean 0 and variance 1, and where S
stands for the average standard deviation of the predic-
tive PDFs. For instance, Table 2 shows that the average
width of the central 662⁄3% prediction intervals for
MCE–EMOS forecasts of sea level pressure is 4.71.
From (3) with � � 1⁄3 we find that S � 2.44. Using again
(3), the average width of the 50% and 90% central
prediction intervals is 3.29 and 8.01, respectively.
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b. Scoring rules

Scoring rules for the verification of deterministic-
style forecasts are well known and have been widely
used in forecast assessment. If 
i denotes a determin-
istic-style forecast and yi is the verification, the MAE is
defined as

MAE �
1
n �

i�1

n

|yi � �i |,

where the sum is taken over the test data. A related
error measure is the mean-square error (MSE), de-
fined by

MSE �
1
n �

i�1

n

�yi � �i�
2.

The RMSE is the square root of the MSE and has the
advantage of being recorded in the same unit as the
verifications.

We also consider two scoring rules for the assessment
of predictive PDFs: the continuous ranked probability
score (Unger 1985; Hersbach 2000; Gneiting and Raf-
tery 2004) and the ignorance score (Good 1952; Roul-
ston and Smith 2002). These scoring rules are attractive
in that they address calibration as well as sharpness.

The CRPS is the integral of the Brier scores at all
possible threshold values t for the continuous pre-
dictand (Hersbach 2000; Toth et al. 2003, section 7.5.2).
Specifically, if F is the predictive CDF and y is the
verifying observation, the continuous ranked probabil-
ity score is defined as

crps�F, y� � �
��

�

�F �t� � H�t � y�2 dt, �4�

where H(t – y) denotes the Heaviside function and
takes the value 0 when t � y and the value 1 otherwise.
Applications of the continuous ranked probability
score have been hampered by a lack of closed-form
expressions for the associated integral. However, when
F is the CDF of a normal distribution with mean 
 and
variance �2, repeated partial integration in (4) shows
that

crps�N��, �2�, y � ��y � �

� �2��y � �

� � � 1�
� 2��y � �

� � �
1

�	
�, �5�

where ��y � �

� � and ��y � �

� � denote the PDF and

the CDF, respectively, of the normal distribution with
mean 0 and variance 1 evaluated at the normalized pre-
diction error, (y � 
)/�. We note from (4) that the
average score,

CRPS �
1
n �

i�1

n

crps�Fi, yi�, �6�

reduces to the MAE if each Fi is a deterministic-style
forecast. For this and other reasons, the CRPS can be
interpreted as a generalized version of the MAE
(Gneiting and Raftery 2004).

The ignorance score is the negative of the logarithm
of the predictive density f at the verifying value y, that
is, for a single PDF forecast,

ign�f, y� � �log f�y�. �7�

In the case of a normal predictive PDF with mean 

and variance �2, we have

ign�N��, �2�, y �
1
2

ln�2	�2� �
�y � ��2

2�2 �8�

and the average ignorance is

IGN �
1
n �

i�1

n

ign�Fi, yi�

�
1
n �

i�1

n �1
2

ln�2	�i
2� �

�yi � �i�
2

2�i
2 �. �9�

When interpreting improvements in the IGN score, it is
absolute rather than relative changes that are relevant
(Roulston and Smith 2002).

TABLE 2. Comparison of EMOS predictive PDFs obtained by maximum likelihood estimation (MLE-EMOS) and minimum CRPS
estimation (MCE-EMOS). The results are for the test data, region, and 40-day sliding training period described in section 3.

Score Score 662⁄3% prediction interval

MAE RMSE CRPS IGN Coverage Average width

Sea level pressure
MLE-EMOS 1.969 2.489 1.394 2.327 68.09 4.921
MCE-EMOS 1.966 2.484 1.393 2.326 65.91 4.712

Surface temperature
MLE-EMOS 2.241 2.917 1.615 2.490 72.71 5.920
MCE-EMOS 2.231 2.907 1.606 2.487 68.58 5.427
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Both CRPS and IGN are negatively oriented scores,
in that a smaller value is better, and both scores are
proper, meaning that they reward honest assessments.
However, a key difference between the ignorance score
and the continuous ranked probability score is that (5)
grows linearly in the normalized prediction error, z �
(y � 
)/�, while (8) grows quadratically in z. Hence,
the ignorance score assigns harsh penalties to particu-
larly poor probabilistic forecasts, and can be exceed-
ingly sensitive to outliers and extreme events (Weigend
and Shi 2000; Gneiting and Raftery 2004). (This will
become apparent in Tables 5 and 7 below.) We report
both scores, but in view of the lack of robustness of the
ignorance score, we prefer the continuous ranked prob-
ability score. A more detailed discussion of scoring
rules is given in Gneiting and Raftery (2004).

c. Ensemble model output statistics and minimum
CRPS estimation

We now describe the standard version of the EMOS
method. Suppose that X1, . . . , Xm denotes an ensemble
of forecasts for a univariate weather quantity Y, and
that S2 is the ensemble variance. The EMOS predictive
PDF is that of the normal distribution

N�a � b1X1 � · · · � bmXm, c � dS2�. �10�

The EMOS predictive mean, a � b1X1 � · · · � bmXm,
is a bias-corrected weighted average of the ensemble
member forecasts; it provides a deterministic-style fore-
cast. The EMOS predictive variance, c � dS2, is a linear
function of the ensemble variance. The regression co-
efficients b1, . . . , bm in (10) reflect the overall perfor-
mance of the ensemble member models over the train-
ing period, relative to the other members. They tend to
be ordered in the inverse order of the forecast RMSEs,
but this is not a direct relationship; they also reflect the
correlations between the ensemble member forecasts.
The variance coefficients c and d can be interpreted in
terms of the ensemble spread and the performance of
the ensemble mean forecast. All else being equal, larger
values of the coefficient d suggest a more pronounced
spread-error relationship. If spread and error are inde-
pendent of each other, the coefficient d will be esti-
mated as negligibly small. Hence, EMOS is robust, in
the sense that it adapts to the presence as well as to the
absence of significant spread-error correlation.

A classical technique for estimating the coefficients
a, b1, . . . , bm, c, and d from training data is maximum
likelihood (Wilks 1995, section 4.7). The likelihood
function is defined as the probability of the training
data given the coefficients, viewed as a function of the
coefficients. In practice, it is more convenient to maxi-
mize the logarithm of the likelihood function, for rea-
sons of both algebraic simplicity and numerical stabil-
ity. The log-likelihood function for the statistical model
(10) is

��a; b1, . . . , bm; c; d�

� �
1
2 �k log�2	�

� �
i�1

k
�Yi � �a � b1Xi1 � · · · � bmXim�2

c � dSi
2

� �
i�1

k

log�c � dSi
2�� , �11�

where the sum is taken over the training data. Here Xi1,
. . . , Xim denote the ith ensemble forecast in the train-
ing set, S2

i denotes its variance, and Yi denotes the ith
verification. Strictly speaking, (11) is the log-likelihood
function under the assumption of independence. Note
that the log-likelihood (11) is essentially the negative of
the ignorance score (9) but is applied to the training
data rather than the test data. Hence, maximum likeli-
hood estimation is equivalent to minimizing the igno-
rance score for the training data.

This observation suggests a general estimation strat-
egy: pick a scoring rule that is relevant to the problem
at hand, express the score for the training data as a
function of the coefficients, and optimize that function
with respect to the coefficient values. We take scoring
rules to be negatively oriented, so a smaller value is
better, and we minimize the training score. For posi-
tively oriented scoring rules, we would maximize the
training score. Such an approach is formally equivalent
to MCE, a technique that has been studied in the theo-
retical statistics literature (Pfanzagl 1969; Birgé and
Massart 1993). The minimum score approach can also
be interpreted within the framework of robust M esti-
mation (Huber 1964; Huber 1981, section 3.2) and
forms a special case thereof, in that the function to be
optimized derives from a strictly proper scoring rule
(Gneiting and Raftery 2004). A more detailed method-
ological and theoretical discussion is beyond the scope
of this paper.

However, we compared EMOS PDF forecasts esti-
mated by MCE with the continuous ranked probability
score, as described below, to EMOS PDF forecasts es-
timated by maximum likelihood. The MCE-EMOS ap-
proach clearly performed better: the predictive PDFs
were sharper, and they were better calibrated. This
comparison is summarized in Table 2. As a rule of
thumb, it seems that predictive PDFs estimated by
maximum likelihood tend to be overdispersive, result-
ing in unnecessarily wide prediction intervals that have
higher than nominal coverage, and in inverted U-
shaped PIT histograms. This latter shape is also seen in
Figs. 4 and 5 of Weigend and Shi (2000), who estimate
predictive densities by the maximum likelihood method
in the form of the expectation maximization (EM) al-
gorithm.

We argued in section 2b that the CRPS is a more
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robust and therefore more appropriate scoring rule
than the ignorance score. This suggests the use of the
continuous ranked probability score in minimum con-
trast estimation; we call this minimum CRPS estima-
tion. The minimum CRPS estimator finds the coeffi-
cients a, b1, . . . , bm, c, and d in the statistical model (10)
that minimize the CRPS value for the training data.
Using (5) and (6), we express the training CRPS as an
analytic function of the coefficients, namely


�a; b1, . . . , bm; c; d� �
1
k �

i�1

k

�c � dSi
2�1�2�Zi�2� �Zi� � 1

� 2��Zi� �
1

�	
�, �12�

where

Zi �
Yi � �a � b1Xi1 � · · · � bmXim�

�c � dSi
2�1�2

is a standardized forecast error, and where � and �
denote the PDF and the CDF, respectively, of a normal
distribution with mean 0 and variance 1. We find the
coefficient values that minimize (12) numerically, using
the Broyden–Fletcher–Goldfarb–Shanno algorithm
(Press et al. 1992, section 10.7) as implemented in the R
language and environment (www.cran.r-project.org).
The variance coefficients c and d are constrained to be
nonnegative, which is not an issue for the parameter c.
To enforce the nonnegativity of the variance coefficient
d, we set d � �2 and optimize over �. The optimization
algorithm requires initial values, and starting values
based on past experience usually give good solutions.
However, convergence to a global maximum cannot be
guaranteed, and the solution reached can be sensitive
to the initial values.

The upper row in Table 3 shows the estimated
EMOS coefficients for predictions on 25 May 2000, the
day on which the Hope Airport forecast in Fig. 2 was
issued. The training set included the forecasts and ob-
servations from the most recent 40 days that were avail-
able on 25 May 2000. The EMOS weights, bk, reflect
the overall performance of the ensemble member mod-
els over the training period, relative to the other mem-
bers. They tend to be ordered in the inverse order of
the forecast RMSEs, but this is not a direct relationship;
they also reflect the correlations between the ensemble
member forecasts, and bias effects are taken account of,
too. In this example, the Aviation (AVN)-MM5, Glob-

al Environmental Multiscale Model (GEM)-MM5, and
the U.S. Navy Operational Global Atmospheric Predic-
tion System (NOGAPS)-MM5 forecasts received the
highest EMOS weights and, indeed, the (linearly) bias-
corrected AVN-MM5, GEM-MM5, and NOGAPS-
MM5 forecasts had a smaller training RMSE than the
bias-corrected Eta Model (ETA)-MM5 and Nested-
Grid Model (NGM)-MM5 forecasts. The AVN-MM5,
ETA-MM5, and NGM-MM5 forecasts all used NCEP
initializations, and they were highly collinear. For the
training period, the pairwise correlations within this
group ranged from 0.93 to 0.97. EMOS assigned a sub-
stantial weight to the most skillful of these three col-
linear forecasts, the AVN-MM5 forecast; the ETA-
MM5 and NGM-MM5 forecasts received negative and
negligible weights, respectively. The correlation coeffi-
cients between NCEP- and non-NCEP-initialized mem-
ber model forecasts were also high, but they reached at
most 0.92. The estimated variance coefficient d turned
out to be negligibly small, thereby suggesting a weak
spread-skill relationship during the training period. In-
deed, the correlation between the ensemble variance
and the squared error of the ensemble mean forecast
was only 0.11 for this particular 40-day training period,
as compared to 0.33 for the entire period, January–June
2000.

It is straightforward to draw random samples from
the EMOS predictive PDF. An alternative, and likely
preferable, way of forming an m-member ensemble
from the predictive PDF is by taking the CDF quantiles
at level i/(m � 1), for i � 1, . . . , m, respectively. In this
way, ensembles of any size can be obtained, and in this
sense, EMOS can be viewed as a dressing method
(Roulston and Smith 2002). We note that EMOS re-
quires the ensemble member models to have individu-
ally distinguishable characteristics. This is true for the
University of Washington ensemble, a multianalysis,
mesoscale, short-range ensemble, and also for poor per-
son’s and multimodel ensembles. In other types of en-
sembles, the member models might be exchangeable. In
this type of situation, the linear regression Eq. (1) can
be based on the ensemble mean forecast only, which
constrains the regression coefficients b1 � · · · � bm to
be equal. In this implementation, EMOS can be applied
to essentially all ensemble systems, including perturbed
observations, bred, or singular vector ensembles. Jew-
son et al. (2004) applied such an approach to the syn-
optic ECMWF ensemble, using maximum likelihood
estimation. However, they did not report out of sample

TABLE 3. Minimum CRPS estimation of the EMOS� coefficients for the Hope Airport forecast PDF in Fig. 2. The regression
coefficients b1, . . . , b5 correspond to the AVN-MM5, GEM-MM5, ETA-MM5, NGM-MM5, and NOGAPS-MM5 forecasts, respectively.

a b1 b2 b3 b4 b5 c d

EMOS coefficients 135.61 0.38 0.36 �0.16 0.01 0.29 5.74 0.00
1st Iteration 143.23 0.35 0.33 0.00 �0.09 0.28 5.81 0.00
EMOS� coefficients 130.34 0.31 0.31 0.00 0.00 0.25 5.88 0.00
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forecasts, and consequently neither verification scores
nor rank histograms. For the University of Washington
ensemble, the general formulation seems preferable. In
the situation of Table 2, constraining the regression co-
efficients in (10) to be equal, that is, using the ensemble
mean only, results in MAE, RMSE, CRPS, and IGN
scores up to 7% worse, as compared to the full formu-
lation.

d. Enforcing nonnegative regression coefficients:
EMOS�

The regression Eq. (1) allows for negative EMOS
weights b1, . . . , bm, and in many applications of mul-
tiple linear regression negative regression coefficients
are crucial. Consider, for instance, predictions of wind
speed based on time series of past values. Recent
changes in wind speed may have predictive power, and
to take account of the changes, negative regression co-
efficients are required. In the context of ensemble fore-
casts, the negative weights seem much harder to inter-
pret. They imply, all else being equal, that sea level
pressure, say, is predicted to be lower when the forecast
with the negative weight is higher. In our experiments
with the EMOS technique, negative regression coeffi-
cients occurred frequently, and they were caused by
collinearities between the ensemble member model
forecasts. Indeed, it is well known that highly correlated
predictor variables in a regression model lead to coef-
ficient estimates that are unstable under small changes
in the training data. In this sense, the negative EMOS
weights could be viewed as an artifact.

To address this issue, we propose an implementation
of the EMOS technique that constrains the coefficients
b1, . . . , bm in the regression Eq. (1) to be nonnegative.
We call this variant of the EMOS technique EMOS�.
The plus sign stands for the nonnegative EMOS
weights, and the idea relates to Tibshirani’s (1996) least
absolute shrinkage and selection operator (lasso) re-
gression, which imposes a penalty on the absolute size
of the regression coefficients and results in estimates
that tend to be exactly zero for some of the coefficients,
thereby improving forecast accuracy and interpretabil-
ity. In our case, EMOS weights that are exactly zero can
be interpreted in terms of reduced ensembles. To fit the
EMOS� model we proceed stepwise, as follows. We
first find the unconstrained minimum of the CRPS
value (12), that is, we estimate the coefficients of the
standard EMOS model. If all estimated regression co-
efficients are nonnegative, the EMOS� estimates are
the same as the EMOS estimates, and the EMOS�

model is complete. If one or more of the regression
coefficients are negative, we set them to zero and mini-
mize the CRPS value (12) under this constraint. We
also recompute the ensemble variance, using only the
ensemble members that remain in the regression equa-
tion, and subsequently use the recomputed ensemble
spread. This procedure is iterated until all estimated
regression coefficients are nonnegative.

Table 3 illustrates this algorithm for predictions on 25
May 2000, the day on which the Hope Airport forecast
in Fig. 2 was issued. The upper row shows the param-
eter estimates for the standard EMOS model, which
include a negative coefficient for the ETA-MM5 fore-
cast. We set this coefficient to zero and proceed with
the constrained minimization, resulting in a negative
weight for the NGM-MM5 forecast. The final EMOS�

equation uses only one of the three ensemble members
initialized with NCEP models, namely the AVN-MM5
forecast, along with the GEM-MM5 and the NOGAPS-
MM5 forecasts.

In our experiments with the University of Washing-
ton ensemble, which are summarized below, the EMOS
and EMOS� techniques had equal forecast skill. How-
ever, we found the EMOS� parameters to be easier to
interpret, in that the EMOS� forecasts correspond to
reduced ensembles. The member models with vanish-
ing EMOS� coefficients were judged not to be useful
during the training period, relative to all the others, and
therefore were removed from the regression equation.
That said, it is important to distinguish the usefulness
and the skill of an ensemble member model. Consider,
for instance, a three-member ensemble. Model A has a
lower RMSE than model B, and model B has a lower
RMSE than model C; all three models are unbiased. If
A and B are highly collinear and both are independent
of C, then model C may be a more useful but less
skillful ensemble member than model B.

3. Results for the University of Washington
ensemble over the Pacific Northwest

We now give the results of applying the EMOS and
EMOS� techniques to 48-h forecasts of sea level pres-
sure and surface temperature over the northwestern
United States and British Columbia, using phase I of
the University of Washington ensemble described by
Grimit and Mass (2002). The University of Washington
ensemble system is a mesoscale, short-range ensemble
based on MM5 and forms an integral part of the Pacific
Northwest regional environmental prediction effort
(Mass et al. 2003). The ensemble system was in opera-
tion on 102 days between 12 January 2000 and 30 June
2000 using initializations at 0000 UTC; it is described in
Table 1. During this period, there were 16 015 and
56 489 verifying observations of sea level pressure and
surface temperature, respectively. Model forecast data
at the four grid points surrounding each observation
were bilinearly interpolated to the observation site
(Grimit and Mass 2002). When we talk of a 40-day
training period, say, we refer to a sliding training period
that consists of the 40 most recent days prior to the
forecast for which ensemble output and verifying ob-
servations were available. In terms of calendar days,
this period typically corresponds to more than 40 days.
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a. Length of training period

What training period should be used for estimating
the EMOS and EMOS� regression coefficients and
variance parameters? There is a trade-off in selecting
the length of the sliding training period. Shorter train-
ing periods can adapt rapidly to seasonally varying
model biases, changes in the performance of the en-
semble member models, and changes in environmental
conditions. On the other hand, longer training periods
reduce the statistical variability in the estimation of the
EMOS and EMOS� coefficients. We considered sliding
training periods of 19, 20, . . . , 62 days for EMOS fore-
casts of sea level pressure; the results for the EMOS�

forecasts were similar. For comparability, the same test
set was used in assessing all the training periods; that is,
the first 63 days on which the ensemble was operating
were not included in the test period. This results in a
39-day test period, consisting of all the days between 24
April and 30 June 2000 on which the ensemble system
was operational. The unit used for the sea level pres-
sure forecasts is the millibar (mb).

The results of this experiment are summarized in Fig.
3. Figures 3a and 3b show the MAE and RMSE of the
deterministic-style EMOS forecasts, respectively.
These decrease sharply for training periods less than 30
days, stay about constant for training periods between
30 and 45 days, and increase thereafter. Figures 3c and
3d show the CRPS and the IGN. The patterns are simi-
lar to those for the MAE and the RMSE. The empirical
coverage of the EMOS 662⁄3% prediction intervals is
shown in Fig. 3e along with the nominal coverage,
which is represented by the horizontal line. Training
periods under 30 days seem to result in underdispersive
PDFs, but training periods between 30 and 60 days
show close to nominal coverage. Figure 3f shows the
average width of the 662⁄3% prediction intervals. The
average width increases with the length of the training
period, but is about constant for training periods be-
tween 30 and 40 days.

To summarize these results, there appear to be sub-
stantial gains in increasing the training period beyond
30 days. As the training period increases beyond 45
days, the skill of the probabilistic forecasts declines
slowly but steadily, presumably as a result of seasonally
varying model biases. In view of our goal of maximizing
sharpness subject to calibration, we chose a sliding 40-
day training period for the EMOS and EMOS� fore-
casts of sea level pressure. For instance, the predictive
PDFs for forecasts initialized on 30 June 2000 were
trained on the 40 most recent ensemble runs that had
verified by this date. The earliest forecasts in this par-
ticular training set were initialized on 15 April 2000 and
verified on 17 April 2000; the latest were initialized on
28 June 2000 and verified on 30 June 2000. The sliding
40-day training period worked well for temperature
forecasts, too. However, distinct training periods might
work best for distinct variables, forecast horizons, time

periods, and regions. Ideally, we would include training
data from previous years to address seasonal effects.
Further research in this direction is desirable as multi-
year runs of stable mesoscale ensembles become avail-
able. Ensemble reforecasting (Hamill et al. 2004) pro-
vides an attractive yet, in many cases, computationally
prohibitive alternative.

b. Sea level pressure forecasts

We now give the results for EMOS and EMOS�

forecasts of sea level pressure, using a 40-day sliding
training period and the same test set that was used to
compare the different training periods. We also sum-
marize the results for the bias-corrected ensemble
member forecasts and for a climatological forecast. The
bias-corrected ensemble member forecasts used least
squares regression fits, �k � �kXk, of the ensemble
member models, Xk, on the observations, and the re-
gression parameters were estimated on the same 40-day
sliding training period. The deterministic-style climato-
logical forecast was the average sea level pressure
among the verifying observations in the training set,
and the climatological predictive PDF was obtained by
fitting a normal PDF to these observations.

Figure 4 shows the estimates of the EMOS coeffi-
cients for the 39 days in the test period. The estimated
intercept in the multiple linear regression equation is
shown in Fig. 4a. Figures 4b–f show the EMOS weights
for the five ensemble member models, respectively.
The weights for the AVN-MM5, CMC-MM5, and
NOGAPS-MM5 forecasts were consistently positive
and substantial, the weights for the ETA-MM5 forecast
were consistently negative, and the weights for the
NGM-MM5 forecast decreased from positive to nega-
tive. The negative regression coefficients are caused by
collinearities between the ensemble member model
forecasts, as discussed in sections 2c and 2d. Figures 4g
and 4h show the estimated variance coefficients c and d,
respectively. The estimates of the variance parameter c
decreased toward the end of the test period, thereby
indicating improved ensemble skill or improved atmo-
spheric predictability, or both. The estimated values of
d were mostly negligible.

The corresponding estimates of the EMOS� coeffi-
cients are shown in Figs. 5a–h, respectively. The
EMOS� weights for the AVN-MM5, CMC-MM5, and
NOGAPS-MM5 forecasts were consistently substan-
tial, and the weights for the ETA-MM5 and NGM-
MM5 forecasts were consistently zero. Hence, EMOS�

retained only one of the three highly collinear ensemble
member models that were initialized by NCEP analyses
and picked the most skillful of them, namely the AVN-
MM5 forecast. The EMOS� weights for this forecast
were consistently higher than the respective EMOS
weights. The EMOS� estimates of the variance param-
eter c decreased during the test period, and the esti-
mates of the variance coefficient d, shown in Fig. 5h,
were mostly nonzero. The increase toward the end of
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FIG. 3. Comparison of training period lengths for forecasts of sea level pressure over the Pacific Northwest: (a) MAE of EMOS
deterministic-style forecasts; (b) RMSE of EMOS deterministic-style forecasts; (c) continuous ranked probability score; (d) ignorance
score; (e) coverage of 662⁄3% prediction intervals; and (f) average width of 662⁄3% prediction intervals.

MAY 2005 G N E I T I N G E T A L . 1107



F
IG

.4
.C

oe
ff

ic
ie

nt
es

ti
m

at
es

fo
r

E
M

O
S

fo
re

ca
st

s
of

se
a

le
ve

l
pr

es
su

re
ov

er
th

e
P

ac
if

ic
N

or
th

w
es

t,
fo

r
ea

ch
of

th
e

39
da

ys
in

th
e

te
st

pe
ri

od
:(

a)
in

te
rc

ep
t,

(b
)–

(f
)

m
em

be
r

m
od

el
w

ei
gh

ts
,a

nd
(g

)
an

d
(h

)
va

ri
an

ce
te

rm
s

c
an

d
d.

1108 M O N T H L Y W E A T H E R R E V I E W VOLUME 133



F
IG

.5
.C

oe
ff

ic
ie

nt
es

ti
m

at
es

fo
r

E
M

O
S�

fo
re

ca
st

s
of

se
a

le
ve

l
pr

es
su

re
ov

er
th

e
P

ac
if

ic
N

or
th

w
es

t,
fo

r
ea

ch
of

th
e

39
da

ys
in

th
e

te
st

pe
ri

od
:(

a)
in

te
rc

ep
t,

(b
)–

(f
)

m
em

be
r

m
od

el
w

ei
gh

ts
,a

nd
(g

)
an

d
(h

)
va

ri
an

ce
te

rm
s

c
an

d
d.

MAY 2005 G N E I T I N G E T A L . 1109



the test period indicates a strengthening of the spread-
error relationship or an increase in the temporal vari-
ability of the forecast skill, or both. The comparison to
the EMOS estimates of the variance coefficient d,
shown in Fig. 4h, seems interesting; it suggests that the
spread-error relationship can be masked by collineari-
ties between the ensemble member models.

Table 4 provides summary measures of deterministic-
style forecast accuracy. Among the raw ensemble mem-
ber models, the AVN-MM5 forecast performed best.
Bias correction resulted in a reduction of the RSME for
the ensemble member model forecasts between 4% and
17%. The improvement was most pronounced for the
NOGAPS-MM5 forecast. The AVN-MM5, CMC-
MM5, and NOGAPS-MM5 forecasts were more accu-
rate than the ETA-MM5 and NGM-MM5 forecasts.
The ensemble mean forecast performed considerably
better than any of the ensemble member models, but
the bias-corrected AVN-MM5 and NOGAPS-MM5
forecasts were more accurate than the mean of the bias-
corrected ensemble. The deterministic-style EMOS and
EMOS� forecasts performed about equally well and
were much better than any of the other forecasts. They
had RMSEs between 7% and 9% less when compared
to the mean of the raw ensemble and to the mean of the
bias-corrected ensemble, respectively. The results in
terms of the MAE were similar.

Table 5 turns to summary measures of probabilistic
forecast skill. The climatological predictive PDFs
showed the correct coverage, but they were too spread
out to be competitive. The bias-corrected ensemble
showed reduced ensemble spread, but was even more
underdispersive than the raw ensemble. The EMOS
and EMOS� prediction intervals showed accurate cov-
erage. The CRPS and the IGN were computed as de-
scribed in section 2b, using standard ensemble smooth-
ing for the raw and bias-corrected ensemble. The CRPS
can also be computed directly, by using the empirical

ensemble CDF, which takes the values 0, 1⁄5, . . . , 4⁄5, 1,
with jumps at the ensemble member forecasts. This
gave somewhat higher CRPS values of 1.69 and 1.72 for
the raw ensemble and for the bias-corrected ensemble,
respectively. The EMOS and EMOS� predictive PDFs
performed equally well and had by far the best scores
among the forecasts. When compared to the bias-
corrected ensemble, EMOS and EMOS� reduced the
CRPS score by 16%, and the IGN score was 3.68 points
lower. The EMOS and EMOS� prediction intervals
were not much wider than the prediction intervals ob-
tained from the raw ensemble. A more detailed analysis
shows, perhaps surprisingly, that in 28% of the fore-
casts the EMOS 662⁄3% prediction interval was shorter
than the range of the five-member raw ensemble. In
10% of the forecasts, the EMOS 662⁄3% prediction in-
terval was shorter than the range of the bias-corrected
ensemble.

The verification rank histograms for the various en-
sembles are shown in Fig. 6. The EMOS and the
EMOS� ensemble were much better calibrated than
the raw ensemble or the bias-corrected ensemble and
showed rank histograms that were close to being uni-
form but not quite uniform. Indeed, the latter was not
to be expected. Sea level pressure is a synoptic variable
with strong spatial correlation throughout the ensemble
domain, and there were only 39 days in the evaluation
period. The PIT histograms in Fig. 7 accentuate the
underdispersion in the raw ensemble and in the bias-
corrected ensemble.

c. Temperature forecasts

We now summarize the results for forecasts of sur-
face temperature, a case of primary interest to the pub-
lic (Murphy and Winkler 1979). The 2-m temperature
forecasts were obtained as an average of the predicted
lowest sigma level temperature and the predicted
ground temperature. Similar to the sea level pressure
forecasts, we used a sliding 40-day training period, and
we considered the same region and the same test pe-
riod. We omit the results for the climatological forecast,
which was even less competitive than for sea level pres-
sure, given seasonal and topographic effects. The unit
used for the temperature forecasts is degrees kelvin.

TABLE 4. Comparison of deterministic-style forecasts of sea
level pressure over the Pacific Northwest. The climatological,
bias-corrected, EMOS, and EMOS� forecasts were trained on a
sliding 40-day period.

MAE RMSE

Climatological forecast 4.72 5.83
AVN-MM5 2.20 2.90
GEM-MM5 2.35 3.00
ETA-MM5 2.50 3.25
NGM-MM5 2.70 3.40
NOGAPS-MM5 2.50 3.21
AVN-MM5 bias-corrected 2.10 2.68
GEM-MM5 bias-corrected 2.24 2.88
ETA-MM5 bias-corrected 2.37 3.14
NGM-MM5 bias-corrected 2.48 3.23
NOGAPS-MM5 bias-corrected 2.10 2.66
Mean of raw ensemble 2.11 2.73
Mean of bias-corrected ensemble 2.08 2.69
EMOS forecast 1.97 2.48
EMOS� forecast 1.95 2.49

TABLE 5. Comparison of predictive PDFs for sea level pressure
over the Pacific Northwest. The bias-corrected ensemble, the
EMOS, and the EMOS� forecasts were trained on a sliding 40-
day period.

662⁄3% prediction
interval

Score

Coverage
Average

width CRPS IGN

Climatological forecast 67.0 11.83 3.32 3.19
Raw ensemble 53.9 3.93 1.61 4.84
Bias-corrected ensemble 40.7 2.77 1.66 6.01
EMOS forecast 65.9 4.71 1.39 2.33
EMOS� forecast 67.6 4.75 1.39 2.33
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Figure 8 displays the estimates of the EMOS coeffi-
cients for the 39-day test period. Figure 8a shows the
estimates of the intercepts, which were consistently
negative. Figures 8b–f show the estimated EMOS
weights. The weights for the AVN-MM5 forecast
reached a maximum of 0.57 and were consistently the
highest among the five ensemble member models. The
weights for the ETA-MM5 and NOGAPS-MM5 fore-
casts were smaller but still positive and substantial,
those for the NGM-MM5 forecast oscillated about
zero, and those for the GEM-MM5 forecast were ini-
tially negative, before increasing to substantially posi-
tive levels. Figures 8g and 8h show the estimated vari-
ance parameters c and d.

Figures 9a–h turn to the corresponding estimates of

the EMOS� coefficients. These were very similar to the
EMOS estimates, except that the weights for the NGM-
MM5 forecast and, initially, for the GEM-MM5 fore-
cast, were zero. These results can, again, be interpreted
in terms of the relative contributions of the ensemble
member models. The correlation between the ETA-
MM5 and the NGM-MM5 forecasts was the highest
among the forecast pairs. To avoid collinearity,
EMOS� retained only one of them. The AVN-MM5
forecast was the most accurate member model and re-
ceived the highest EMOS and EMOS� weights.

Table 6 confirms that the AVN-MM5 forecast had
the lowest RMSE among the ensemble member fore-
casts, both before and after bias correction. Bias cor-
rection resulted in percentage improvements in the

FIG. 7. PIT histograms for PDF forecasts of sea level pressure over the Pacific Northwest: (a) smoothed ensemble forecast, (b)
smoothed bias-corrected ensemble forecast, (c) EMOS forecast, and (d) EMOS� forecast.

FIG. 6. Verification rank histograms for ensemble forecasts of sea level pressure over the Pacific Northwest: (a) raw ensemble, (b)
bias-corrected ensemble, (c) EMOS ensemble, and (d) EMOS� ensemble.
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RMSE of the ensemble member forecasts between 4%
and 14%, and the NOGAPS-MM5 forecast showed the
highest percentage improvement. The results in terms
of the MAE were similar. The deterministic-style
EMOS and EMOS� forecasts performed equally well,
and they were more accurate than any of the other
forecasts. The percentage improvement over the bias-
corrected ensemble was less pronounced than for fore-
casts of sea level pressure.

We now turn to a discussion of probabilistic fore-
cast skill. Table 7 shows that the bias-corrected en-
semble was slightly better calibrated than the raw en-
semble. However, both the raw ensemble and the bias-
corrected ensemble were strikingly underdispersive,
and this was reflected in the CRPS and IGN scores,
which were computed on the basis of standard en-
semble smoothing. When computed directly from the
ensemble CDF, the CRPS scores for the raw ensemble
and for the bias-corrected ensemble were 2.13 and 1.95,
respectively. The EMOS and EMOS� techniques per-
formed equally well, and they were better than any of
the other forecasts, with a CRPS score that was 15%
lower than for the bias-corrected ensemble, and an
IGN score that was 13 points lower. The verification
rank histograms and PIT histograms are shown in Figs.

10 and 11. The PIT histograms accentuate the under-
dispersion of the ensemble forecasts, and the histo-
grams for the EMOS and EMOS� forecasts are close to
being uniform.

d. Results for reduced ensembles

In our experiments for sea level pressure and surface
temperature forecasts, the EMOS and EMOS� predic-
tive PDFs were equally skillful. This comparison is
summarized in Table 8, and the scores for the two tech-
niques are almost indistinguishable. We interpreted the
vanishing EMOS� coefficients in terms of reduced en-
sembles and argued that ensemble member models
with consistently vanishing EMOS� weights could be
removed from the ensemble, without sacrificing fore-
cast skill.

For forecasts of sea level pressure, Fig. 5 suggests the
use of a three-member ensemble, consisting of the
AVN-MM5, GEM-MM5, and NOGAPS-MM5 fore-
casts. We applied the standard EMOS technique to the
reduced three-member ensemble, and the results are
shown in Table 8. The MAE, RMSE, CRPS, and IGN
scores for the EMOS forecasts, the EMOS� forecasts
and the EMOS forecasts using the reduced ensemble
are almost indistinguishable. Similarly, Fig. 9 suggests
that for forecasts of surface temperature the NGM-
MM5 forecast could be removed from the ensemble.
Table 8 compares the EMOS predictive PDFs based on
the reduced four-member ensemble to the EMOS and
EMOS� forecasts based on the full ensemble, and the
comparison is favorable. Clearly, minimal differences in
scores must not be overinterpreted, and ensemble
members that contribute little to forecasting one vari-
able might be useful for others. That said, the NGM-
MM5 model was removed from the University of
Washington ensemble on 1 August 2000, shortly after
the end of our test period.

4. Discussion

It is well documented in the literature that multiple
regression or superensemble techniques improve the
deterministic-style forecast accuracy of ensembles sys-
tems (Krishnamurti et al. 1999, 2000; Kharin and
Zwiers 2002). Regression-based forecasts correct for
model biases and therefore are more accurate than the
ensemble mean forecast. The novelty of our ensemble
model output statistics (EMOS) approach is threefold.
We apply linear regression techniques to obtain full
predictive PDFs and CDFs, rather than deterministic-
style forecasts, for continuous weather variables. For
estimating the EMOS coefficients, we use the novel
method of minimum CRPS estimation. Finally, the
EMOS� implementation constrains the regression co-
efficients to be nonnegative, thereby allowing for an
interpretation in terms of the relative usefulness of the
ensemble member models, given all the others.

TABLE 6. Comparison of deterministic-style forecasts of surface
temperature over the Pacific Northwest. The climatological, bias-
corrected, EMOS, and EMOS� forecasts were trained on a sliding
40-day period.

MAE RMSE

AVN-MM5 2.45 3.15
GEM-MM5 2.64 3.40
ETA-MM5 2.52 3.23
NGM-MM5 2.56 3.28
NOGAPS-MM5 2.96 3.76
AVN-MM5 bias-corrected 2.31 3.00
GEM-MM5 bias-corrected 2.48 3.24
ETA-MM5 bias-corrected 2.39 3.10
NGM-MM5 bias-corrected 2.42 3.13
NOGAPS-MM5 bias-corrected 2.50 3.25
Mean of raw ensemble 2.49 3.18
Mean of bias-corrected ensemble 2.28 2.95
EMOS forecast 2.23 2.91
EMOS� forecast 2.23 2.91

TABLE 7. Comparison of predictive PDFs for surface tempera-
ture over the Pacific Northwest. The bias-corrected ensemble, the
EMOS, and the EMOS� forecasts were trained on a sliding 40-
day period.

662⁄3% prediction
interval

Score

Coverage
Average

width CRPS IGN

Raw ensemble 28.7 2.55 2.07 21.45
Bias-corrected ensemble 31.1 2.44 1.89 15.50
EMOS forecast 68.6 5.43 1.61 2.49
EMOS� forecast 68.6 5.41 1.61 2.49
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EMOS� identifies ensemble members whose relative
contributions are negligible, typically as a result of col-
linearity, and removes them from the regression equa-
tion. The EMOS and EMOS� predictive PDFs are
Gaussian, and they take account of the spread-skill re-
lationship, in that the predictive variance is a linear
function of the ensemble variance. However, both
methods adapt to the absence of spread-error correla-
tion, by estimating the variance coefficient d as negli-
gibly small. Drawing a random sample from the Gauss-
ian predictive CDF is a straightforward exercise, and
forecast ensembles of any size can be generated. An
alternative, and likely preferable, way of forming an
m-member ensemble from the predictive CDF is by
taking the forecast quantiles at level i/(m � 1) for i � 1,
. . . , m, respectively.

We applied the EMOS and EMOS� techniques to
sea level pressure and surface temperature forecasts
over the North American Pacific Northwest in spring
2000, using the University of Washington mesoscale en-
semble (Grimit and Mass 2002). The EMOS and
EMOS� predictions were equally accurate, and they
had lower RMSE and MAE than any of the member
model forecasts, the bias-corrected member model
forecasts, the ensemble mean forecast, and the en-
semble mean of the bias-corrected member models. We
also assessed the probabilistic forecast skill of the
EMOS and EMOS� predictive PDFs. Both methods
performed equally well and had substantially lower
CRPS and IGN scores than the raw ensemble or bias-
corrected ensemble. The predictive PDFs were much
better calibrated than the raw ensemble or bias-

FIG. 11. PIT histograms for PDF forecasts of surface temperature over the Pacific Northwest: (a) smoothed ensemble forecast, (b)
bias-corrected smoothed ensemble forecast, (c) EMOS forecast, and (d) EMOS� forecast.

FIG. 10. Verification rank histograms for ensemble forecasts of surface temperature over the Pacific Northwest: (a) raw ensemble,
(b) bias-corrected ensemble, (c) EMOS ensemble, and (d) EMOS� ensemble.
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corrected ensemble and they were sharp, in that the
prediction intervals were much shorter on average than
prediction intervals based on climatology. Perhaps sur-
prisingly, the EMOS and EMOS� predictive PDFs for
sea level pressure were frequently sharper than the raw
ensemble forecasts. With small modifications, as ex-
plained in section 2c, our methods apply to all ensemble
systems, including weather and climate, synoptic-scale,
poor person’s, multimodel, multianalysis, perturbed ob-
servations, singular vector, and bred ensembles. EMOS
and EMOS� can be applied to gridded ensemble out-
put, thereby providing probabilistic forecasts on a grid.
The resulting forecast fields can be visualized in the
form of percentile maps, as in Fig. 6 of Raftery et al.
(2005). In our experiments, we used observations to
estimate the EMOS and EMOS� coefficients, but this
could also be done using an analysis.

Bias correction results in more accurate determinis-
tic-style forecasts, and bias correction of the individual
member model forecasts reduces the ensemble spread,
by pulling the individual members toward the verifica-
tion mean (Eckel 2003). Verification rank histograms
typically become more symmetric after bias correction,
as in our Fig. 10, or in Fig. 46 of Eckel (2003). However,
bias correction does not necessarily result in improved
calibration, and the need for statistical postprocessing
remains. We anticipate significant improvements in
probabilistic forecast skill through the use of advanced
bias correction schemes, followed by statistical postpro-
cessing of the bias-corrected member model ensemble.
Further research in this direction is desirable.

We close with a discussion of potential extensions as
well as limitations of the EMOS method. The predic-
tive PDFs produced by the EMOS and EMOS� tech-
niques are Gaussian and therefore unimodal. This is
unlikely to be a great disadvantage for a five-member
ensemble, such as the University of Washington en-
semble that we considered. However, larger ensembles
sometimes suggest multimodal forecast PDFs. The en-
semble smoothing approach of Wilks (2002) and the
Bayesian model averaging approach of Raftery et al.
(2005) address this issue.

We obtained EMOS and EMOS� forecasts of sea

level pressure and surface temperature. These are vari-
ables for which the forecast error distributions are ap-
proximately Gaussian. The forecast error distributions
for other variables, such as precipitation or cloud
cover, are unlikely to be close to normal. Wilks (2002)
proposes ways of transforming forecast ensembles to
Gaussian distributions, and EMOS and EMOS� can be
applied to the transformed ensemble. Another ap-
proach that remains largely unexplored uses the frame-
work of generalized linear models (McCullagh and
Nelder 1989).

Our methods provide predictive PDFs of continuous
weather variables at a given location, but they do not
reproduce the spatial correlation patterns of observed
weather fields. Gel et al. (2004), among others, sug-
gested a way of creating ensembles of entire weather
fields, each of which honors the spatial correlation
structure of verifying fields. However, this approach
uses only one numerical weather prediction model
rather than an ensemble of forecasts. This method
could be combined with EMOS or EMOS� to yield
calibrated ensembles of entire weather fields, by simu-
lating correlated error fields and adding them to the
spatially varying mean of the predictive distributions.
Such an approach could also be viewed as a dressing
method (Roulston and Smith 2003). A more straight-
forward approach to visualizing the forecast fields uses
percentile maps, as suggested above. Percentile maps
do not reproduce the spatial correlation structure of
observed weather fields, nor do they take account of
dynamical features. However, they provide concise
summaries of the predictive PDFs and may facilitate
the interpretation and thereby foster the acceptance
and the use of probabilistic forecasts.
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TABLE 8. Comparison of EMOS forecasts, EMOS� forecasts, and EMOS forecasts based on reduced ensembles, as described in
section 3d. The reduced ensemble for forecasts of sea level pressure excludes ETA-MM5 and NGM-MM5; the reduced temperature
ensemble excludes NGM-MM5 only.

Score Score 662⁄3% prediction interval

MAE RMSE CRPS IGN Coverage Average width

Sea level pressure
EMOS 1.966 2.484 1.393 2.326 65.91 4.712
EMOS� 1.953 2.487 1.389 2.326 67.61 4.747
EMOS (three-member ensemble) 1.952 2.486 1.388 2.327 67.66 4.748

Surface temperature
EMOS 2.231 2.907 1.606 2.487 68.58 5.427
EMOS� 2.230 2.906 1.606 2.488 68.57 5.411
EMOS (four-member ensemble) 2.227 2.904 1.604 2.486 68.82 5.433
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