Assessing predictive distributions: a diagnostic approach

Tilmann Gneiting and Adrian E. Raftery

University of Washington Department of Statistics

joint work with Fadoua Balabdaoui, Yulia Gel and Anton Westveld

supported by **DoD Multidisciplinary Univer**sity Research Initiative (MURI)

presented 31 July 2002 at NCAR Verification Workshop

Outline

University of Washington MURI project

University of Washington MM5 mesoscale short-range ensemble forecasting system

From ensemble forecasts to predictive distributions

Assessing predictive distributions: a diagnostic approach

- assessing calibration
- assessing sharpness
- scores/summary measures

Discussion

University of Washington MURI project

DoD

Multidisciplinary University Research Initiative

goal: to develop ways of assessing and communicating uncertainty in mesoscale numerical weather forecasts

interdisciplinary: collaboration between the Departments of Atmospheric Sciences, Statistics, and Psychology, and the Applied Physics Laboratory

meteorology	data and underlying science
	Cliff Mass

statisticsuncertainty assessmentAdrian RafteryTilmann Gneiting

psychologycommunication of uncertaintyEarl ("Buz") HuntSusan Joslyn

applied phy-visualization systemssicsRobert MiyamotoDavid JonesScott Sandgaithe

common challenge: verification

University of Washington MM5 mesoscale short-range ensemble forecasting system

Eric Grimit and Cliff Mass

www.atmos.washington.edu/~epgrimit/ensemble.cgi

Western North America and NE Pacific Ocean, 36-km domain

Washington, Oregon and S British Columbia, 12-km domain

phase I ensemble consists of **MM5 runs driven by five different global models:** AVN, CMC, ETA, NGM, and NOGAPS

supported by a consortium of local and federal agencies

From ensemble forecasts to predictive distributions

Predictive distributions

univariate, continuous predictand X

for example, windspeed at a certain location

but could be any user-relevant functional of the model output

seek a **probabilistic forecast** in the form of a **predictive distribution function**

$$F(x) = P(X < x) \quad \text{for} \quad x \in \mathbb{R}$$

Natural approach based on an ensemble forecast system

ensemble values x_1, \ldots, x_m (phase I: m = 5)

their order statistics $x_{(1)} < x_{(2)} < \cdots < x_{(m)}$ partition the real line into m + 1 bins

and we obtain a crude predictive distribution through the formula

$$F(x_{(i)}) = \frac{i}{m+1}$$
 for $i = 1, ..., m$

specified at m points only

Richardson (2001) and Palmer (2002): lessens the economic value of an ensemble forecast system

Full predictive distributions through statistical postprocessing

Hamill and Colucci (1998), Eckel and Walters (1998):

- stratification by ensemble spread
- calibration
- linear interpolation and climatological extrapolation of the natural approach

Wilson, Burrows and Lanzinger (1999):

• fit parametric predictive distributions to the ensemble output

Raftery, Balabdouai and Gneiting (200x):

• BMA: Bayesian Model Averaging

Gneiting, Westveld and Raftery (200x):

EMOS: Ensemble Model Output Statistics multiple regression model

$$X = a + b_1 x_1 + \dots + b_m x_m + e$$

where $e \sim \mathcal{N}(0, \sigma^2)$; basically
$$F = \mathcal{N} \left(a + b_1 x_1 + \dots + b_m x_m, \ \sigma^2 \right)$$

CHMOS: Conditionally Heteroscedastic Model Output Statistics

modification in which

$$F = \mathcal{N}\left(a + b_1 x_1 + \dots + b_m x_m, \, (c^2 S^2 + 1) \, \sigma^2\right)$$

respects spread-error relationship

uncertainty decomposition: between-model (IC) and within-model (physics) uncertainty

Example

probabilistic wind speed forecasts based on the UW MM5 ensemble forecast system

phase I data, training and test set

48-hour predictive distribution for wind speed W of La Push, Olympic Peninsula, verified January 16, 2000, 4pm

various approaches of forming predictive distributions

need to compare and assess

a single probabilistic forecast cannot be verified: need to average

Assessing predictive distributions: a diagnostic approach

Requirements

calibration (reliability, statistical consistency): we want events with forecast probability p to verify with relative frequency p

sharpness (refinement): we want to minimize the spread of the predictive distributions

Key points

diagnostic approach as proposed and implemented by Murphy, Brown and Chen (1989) in the deterministic context

calibration diagram and sharpness diagram

summary measures or scores don't suffice

Assessing calibration

predictive distribution F_t for t = 1, 2, ...verified value or observation x_t for t = 1, 2, ...

define the **probability rank**

$$p_t = F_t(x_t)$$
 for $t = 1, 2, ...$

predictive distributions are **probabilistically calibrated** relative to the observations if

$$\frac{1}{T} \# \{ p_t$$

calibration is a joint property of predictive distributions and observations

Hoeting diagram

plot of observed frequency of probability ranks,

$$\frac{1}{T} \# \{ p_t$$

should be a straight line

proposed by Hoeting (1994) and recently used by Moyeed and Papritz (2002)

Calibration diagram

histogram of the probability ranks p_t

should be flat

similar to the verification rank histogram or Talagrand diagram (Anderson 1996, Talagrand, Vautard and Strauss 1996, Hamill and Colucci 1997)

and to the **multicategory reliability diagram** (Hamill 1997)

suggestions:

- violations of calibration easier to detect in histogram form
- choosing 20 bins in the calibration diagram works well

Assessing sharpness

sharpness refers to the spread of the predictive distributions

should be as small as possible

a property of the predictive distributions only

challenge of probabilistic prediction is to maximize sharpness while maintaining calibration

Sharpness plot

key tool to assess sharpness

displays the spread of the predictive distributions: best understood by example

Probabilistic wind speed forecasts in the Pacific Northwest

predictive distribution $F_t(x) = P(X_t < x)$ for t = 1, ..., T

given $p \in (0, 1)$, we define the **predictive quan**tile $q_{p,t}$ by

$$F_t(q_{t,p}) = p$$

given $\alpha \in (0, 1)$, the **length** of the α -level central predictive interval is

$$l_t(\alpha) = q_{t,\frac{1+\alpha}{2}} - q_{t,\frac{1-\alpha}{2}}$$

the sharpness plot displays $l_t(\alpha)$ versus α

Scores/summary measures

predictive distribution $F_t(\cdot)$ with predictive density $f_t(\cdot)$, for t = 1, ..., T

verified value or observation x_t

evaluation in terms of a score or summary measure for $(F_t(\cdot), x_t)$ or $(f_t(\cdot), x_t)$

Traditional scores

spherical, log, and quadratic score

$$SphS(f_t(\cdot), x_t) = f_t(x) / \left(\int_{-\infty}^{\infty} f_t^2(u) \, du \right)^{1/2}$$

$$LogS(f_t(\cdot), x_t) = \log f_t(x)$$

$$QS(f_t(\cdot), x) = 2 f_t(x) - \int_{-\infty}^{\infty} f_t^2(u) \, du$$

continuous ranked probability score $CRPS(F_t(\cdot), x_t) = \int_{-\infty}^{\infty} (F_t(u) - 1\{u > x_t\})^2 du$

I. J. Good class

$$GoodS_{\beta}(f_t(\cdot), x_t) = \frac{1}{\beta - 1} \left(\left(\frac{f_t(x_t)}{\left(\int_{-\infty}^{\infty} f_t^{\beta}(u) \, \mathrm{d}u \right)^{1/\beta}} \right)^{\beta - 1} - 1 \right)$$

 $\beta = 2$ spherical score $\beta \rightarrow 1$ log score

Properties of the scores

strictly proper, i.e., the forecaster maximizes her expected score if she states her true beliefs but **not** combined measures of calibration and sharpness

supplement but not a substitute for calibration and sharpness diagram

key use in probabilistic forecast competitions

Discussion

- statistical postprocessing of ensemble forecasts yields full **predictive distributions**
- verification of predictive distributions is a challenging and largely unexplored endeavor
- **diagnostic approach** is essential: need to assess both **calibration** and **sharpness**
- key tools: calibration diagram and sharpness diagram

Addendum: probabilistic calibration and exceedance calibration

predictive distribution $F_t(\cdot)$ for t = 1, 2, ...verified value or observation x_t for t = 1, 2, ...

predictive distributions are

probabilistically calibrated relative to the observations if

$$\frac{1}{T} \# \{ p_t$$

where $p_t = F_t(x_t)$ is the **probability rank**

exceedance calibrated relative to the observations if

$$\frac{1}{T} #\{x_t < x : t = 1, \dots, T\} \to \overline{F}(x) \text{ for all } x \in \mathbb{R}$$

where $\overline{F}(x) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T F_t(x)$

calibrated relative to the observations if they are both probabilistically calibrated and exceedance calibrated