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University of Washington
MM5 mesoscale short-range ensem-
ble forecasting system

Eric Grimit and Cliff Mass

www.atmos.washington.edu/ ẽpgrimit/ensemble.cgi

Western North America and NE Pacific Ocean,

36-km domain

Washington, Oregon and S British Columbia,

12-km domain

phase I ensemble consists of MM5 runs driven

by five different global models: AVN, CMC,

ETA, NGM, and NOGAPS

supported by a consortium of local and federal

agencies



From ensemble forecasts to predic-
tive distributions

Predictive distributions

univariate, continuous predictand X

for example, windspeed at a certain location

but could be any user-relevant functional of

the model output

seek a probabilistic forecast in the form of a

predictive distribution function

F (x) = P (X < x) for x ∈
�



Natural approach based on an ensemble

forecast system

ensemble values x1, . . . , xm (phase I: m = 5)

their order statistics x(1) < x(2) < · · · < x(m)

partition the real line into m + 1 bins

v

x(1)

v

x(2)

v v v

x(m)

and we obtain a crude predictive distribution

through the formula

F (x(i)) =
i

m + 1
for i = 1, . . . , m

specified at m points only

Richardson (2001) and Palmer (2002): lessens

the economic value of an ensemble forecast

system



Full predictive distributions through statis-

tical postprocessing

Hamill and Colucci (1998), Eckel and Walters

(1998):

• stratification by ensemble spread

• calibration

• linear interpolation and climatological ex-

trapolation of the natural approach

Wilson, Burrows and Lanzinger (1999):

• fit parametric predictive distributions to the

ensemble output

Raftery, Balabdouai and Gneiting (200x):

• BMA: Bayesian Model Averaging



Gneiting, Westveld and Raftery (200x):

EMOS: Ensemble Model Output Statistics

multiple regression model

X = a + b1x1 + · · · + bmxm + e

where e ∼ N (0, σ2); basically

F = N
(
a + b1x1 + · · · + bmxm, σ2

)

CHMOS: Conditionally Heteroscedastic Model

Output Statistics

modification in which

F = N
(
a + b1x1 + · · · + bmxm, (c2S2 + 1) σ2

)

respects spread-error relationship

uncertainty decomposition: between-model (IC)

and within-model (physics) uncertainty



Example

probabilistic wind speed forecasts based on the

UW MM5 ensemble forecast system

phase I data, training and test set
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48-hour predictive distribution for wind speed

W of La Push, Olympic Peninsula, verified Jan-

uary 16, 2000, 4pm



various approaches of forming predictive distri-

butions

need to compare and assess

a single probabilistic forecast cannot be veri-

fied: need to average



Assessing predictive distributions:
a diagnostic approach

Requirements

calibration (reliability, statistical consisten-

cy): we want events with forecast probability

p to verify with relative frequency p

sharpness (refinement): we want to mini-

mize the spread of the predictive distributions

Key points

diagnostic approach as proposed and imple-

mented by Murphy, Brown and Chen (1989) in

the deterministic context

calibration diagram and sharpness diagram

summary measures or scores don’t suffice



Assessing calibration

predictive distribution Ft for t = 1,2, . . .

verified value or observation xt for t = 1,2, . . .

define the probability rank

pt = Ft(xt) for t = 1,2, . . .

predictive distributions are probabilistically cal-

ibrated relative to the observations if

1

T
#{pt < p : t = 1, . . . , T} → p for all p ∈ (0,1)

calibration is a joint property of predictive

distributions and observations



Hoeting diagram

plot of observed frequency of probability ranks,

1

T
#{pt < p : t = 1, . . . , T} versus p

should be a straight line

proposed by Hoeting (1994) and recently used

by Moyeed and Papritz (2002)

Calibration diagram

histogram of the probability ranks pt

should be flat

similar to the verification rank histogram or

Talagrand diagram (Anderson 1996, Tala-

grand, Vautard and Strauss 1996, Hamill and

Colucci 1997)

and to the multicategory reliability diagram

(Hamill 1997)
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Hoeting Diagram

suggestions:

• violations of calibration easier to detect in

histogram form

• choosing 20 bins in the calibration diagram

works well



Assessing sharpness

sharpness refers to the spread of the predictive

distributions

should be as small as possible

a property of the predictive distributions

only

challenge of probabilistic prediction is to max-

imize sharpness while maintaining calibra-

tion

Sharpness plot

key tool to assess sharpness

displays the spread of the predictive distribu-

tions: best understood by example



Probabilistic wind speed forecasts in the

Pacific Northwest

predictive distribution Ft(x) = P (Xt < x) for

t = 1, . . . , T

given p ∈ (0,1), we define the predictive quan-

tile qp,t by

Ft(qt,p) = p

given α ∈ (0,1), the length of the α-level cen-

tral predictive interval is

lt(α) = q
t,1+α

2
− q

t,1−α
2

the sharpness plot displays lt(α) versus α
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Scores/summary measures

predictive distribution Ft(·) with predictive

density ft(·), for t = 1, . . . , T

verified value or observation xt

evaluation in terms of a score or summary

measure for (Ft(·), xt) or (ft(·), xt)

Traditional scores

spherical, log, and quadratic score

SphS(ft(·), xt) = ft(x)

/(∫∞
−∞ f2

t (u) du
)1/2

LogS(ft(·), xt) = log ft(x)

QS(ft(·), x) = 2 ft(x) −
∫∞
−∞ f2

t (u) du

continuous ranked probability score

CRPS(Ft(·), xt) =

∫ ∞

−∞
(Ft(u) − 1{u > xt})

2 du



I. J. Good class

GoodSβ(ft(·), xt) =

1

β − 1





 ft(xt)(∫ ∞

−∞ f
β
t (u) du

)1/β




β−1

− 1




β = 2 spherical score

β → 1 log score

Properties of the scores

strictly proper, i.e., the forecaster maximizes

her expected score if she states her true beliefs

but not combined measures of calibration and

sharpness

supplement but not a substitute for calibra-

tion and sharpness diagram

key use in probabilistic forecast competitions



Discussion

• statistical postprocessing of ensemble fore-

casts yields full predictive distributions

• verification of predictive distributions is

a challenging and largely unexplored en-

deavor

• diagnostic approach is essential: need to

assess both calibration and sharpness

• key tools: calibration diagram and sharp-

ness diagram



Addendum: probabilistic calibration
and exceedance calibration

predictive distribution Ft(·) for t = 1,2, . . .

verified value or observation xt for t = 1,2, . . .

predictive distributions are

probabilistically calibrated relative to the ob-

servations if

1

T
#{pt < p : t = 1, . . . , T} → p for all p ∈ (0,1)

where pt = Ft(xt) is the probability rank

exceedance calibrated relative to the obser-

vations if

1

T
#{xt < x : t = 1, . . . , T} → F̄ (x) for all x ∈

�

where F̄ (x) = limT→∞
1
T

∑T
t=1 Ft(x)

calibrated relative to the observations if they

are both probabilistically calibrated and exceed-

ance calibrated


