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SUMMARY

Estimating the probability of extreme temperature events is difficult because of limited
records across time and the need to extrapolate the distributions of these events, as opposed
to just the mean, to locations where observations are not available. Another related issue
is the need to characterize the uncertainty in the estimated probability of extreme events
at different locations. Although the tools for statistical modeling of univariate extremes
are well-developed, extending these tools to model spatial extreme data is an active area of
research. In this paper, in order to make inference about spatial extreme events, we intro-
duce a new nonparametric model for extremes. We present a Dirichlet-based copula model
that is a flexible alternative to parametric copula models such as the normal and t-copula.
This presents the most flexible multivariate copula approach in the literature. The proposed
modelling approach is fitted using a Bayesian framework that allow us to take into account
different sources of uncertainty in the data and models. To characterize the complex de-
pendence structure in the extreme events we use nonstationary (space-dependent) extremal-
coefficient functions, and threshold-specific extremal functions. We apply our methods to
annual maximum temperature values in the east-south-central United States.

1 Introduction

Extremely hot summers can drastically reduce agricultural production, increase energy con-
sumption, and lead to hazardous health conditions. Thus, understanding and predicting
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the spatial and temporal variability and trends of extreme weather events is crucial for the
protection of socio-economic well-being. Quantifying extremely high surface air temperature
changes, and trends in extremes is also crucial for understanding global warming and miti-
gating its regional impact. Often of interest to scientists is the n-year return level for annual
maximum of daily temperatures, which is defined as the quantile zn (from the distribution
of the extreme temperatures) which has probability 1/n of being exceeded in a particular
year. Thus, to calculate return levels, we need to have a good characterization of the distri-
bution of the extreme temperatures. Return values represent rare events, for instance, the
twenty year return value is likely to occur only a few times over the course of an individual’s
lifetime. The probability of an extreme event under non-stationary conditions depends on
the rate of change of the distribution as well as on the rate of change of the frequency of
their occurrence.

Tools for statistical modeling of univariate extremes are well-developed. However, extending
these tools to model spatial extreme data is an active area of research. One of the challenging
issues in spatial extreme value modeling is the need for spatial extreme value techniques in
high dimensions, since most of the multivariate extreme value theories only work well for
low dimensional extreme values. In this paper innovative and general statistical methods
for modelling of extreme events are proposed, to produce maps of temperature return levels,
to estimate trends and variability of extreme temperature events, and to provide uncer-
tainty measures. We introduce a new framework to characterized extremes, a nonparametric
Dirichlet process (DP) copula approach. This DP copula defines the most flexible type of
copula framework that we currently have in the literature.

Recently, there has been some work focusing on spatial characterization of extreme values
(e.g. Kharin and Zwiers, 2005, Cooley et al., 2007, Sang and Gelfand, 2009, Zhang et al.,
2008), including papers discussing spatial interpolation for extreme values (e.g. Cooley et al.,
2008, and Buishand and Zhou, 2008). Sang and Gelfand (2009) used a Bayesian hierarchical
model, which assumes that the annual maxima at each location follows a one-dimensional
GEV distribution and that the parameters of this distribution varying according to a latent
spatial model capturing the spatial dependence. Nonstationarity refers to spatial dependence
that is a function of location, rather than just relative position of observations. To account
for nonstationarity in univariate extreme events in an approach popularised by Davison and
Smith (1999), the model parameters are modelled as functions of covariates. Eastoe and
Tawn (2009) and Eastoe (2009) suggest an alternative approach for spatial nonstationary
extremes: the nonstationarity in the whole dataset is first modelled and removed, using
a preprocessing technique. Then, the extremes of the pre-processed (transformed) data
are then modelled using the approach of Davison and Smith (1990), giving a model with
both pre-processing and tail parameters. We introduce here new continuous spatial models
for extreme values to account for spatial dependence which is unexplained by the latent
spatial specifications for the distribution parameters, characterizing also the potential lack
of stationarity across space and time. This is the first time that the pre-processing and
tail-parameters are analyzed simultaneously using a fully Bayesian approach to account for
all sources of uncertainty.
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Although these methods in the literature for extremes would account for spatial correlation
between nearby stations, the high-dimensional joint distributions induced by these mod-
els are restrictive. For example, the Gaussian copula is asymptotically (as the threshold
increases) equivalent to the independence copula. In this work we use measures to charac-
terize complex spatial dependence in extreme temperatures, allowing the extremal coefficient
function, commonly used to study dependence structure for max-stable models, to be space
dependent. This extremal coefficient function is threshold independent for max stable distri-
butions. In this work, we introduce a nonparametric spatial framework to model extremes for
annual maximum temperature, that is not max-stable, it has marginals that are GEVs, and
it is flexible enough to characterize extreme events with complex spatio-temporal structures.

This paper is organized as follows. In Section 2, we review different measures to character-
ize dependence in extremes, and we use them in this paper for spatial nonstationary and
threshold dependent extreme processes. In Section 3, we present copula-based spatial ex-
treme models. In Section 4, we introduce a new nonparametric copula framework, a DP
copula. In Section 5, we present some simulation studies to evaluate the performance of the
new nonparametric model proposed here. In Section 6, we apply our methods to maximum
annual temperature data. We finish in Section 7 with some conclusions and final remarks.

2 Measures of spatial dependency for extremes

We assume Xt(s), the recorded maximum temperature amount at location s on year t, follows
a marginal generalised extreme value (GEV) distribution. The GEV at each site s in a given
domain D, is given by

Fs(x; µt, σt, ξt) = exp

[

−
{

1 − ξt(s)(x − µt(s))

σt(s)

}

−1/ξt(s)

+

]

, (1)

where µt(s) is the location parameter, σt(s) is the scale, and ξt(s) is the shape. The GEV
distribution includes three distributions as special cases (Fisher and Tippett, 1928): the
Gumbel distribution if ξt(s) → 0, the Fréchet distribution with ξt(s) > 0, and the Weibull
with ξt(s) < 0. The distribution’s domain also depends on ξt(s); the domain is (−∞,∞) if
ξt(s) = 0, (µt(s) − σt(s)/ξt(s),∞) if ξt(s) > 0, and (−∞, µt(s) − σt(s)/ξt(s)) if ξt(s) < 0.
We assume the values of µt(s), σt(s), and ξt(s) result from latent spatial processes that
characterize and drive spatial dependence in the temperature extremes. An example of one
of the models used for the GEV parameters is

µt(s) = αµ(s) + βµ(s)t,

where αµ(s) and βµ(s) are spatial processes with a covariance that is a function of the
distance between stations and other parameters.

In addition to allowing the GEV parameters to vary spatially, we also model residual corre-
lation not captured by the GEV parameters. We define the GEV residuals Yt(s) using the
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probability integral transformation

yt(s) =

{

1 − ξt(s)(xt(s) − µt(s))

σt(s)

}1/ξt(s)

, (2)

that has a standard Fréchet distribution function (Fs(y) = e−1/y), so the transformation
z = 1

y
have an exponential with mean 1 distribution function, Fs(z) = 1 − e−z. To simplify

notation, throughout this paper we describe our residual spatial model using these Fréchet
distributions, but in the application section, as part of our hierarchical Bayesian framework
we use the relationship between yt and xt given in (2) at any given location s, to obtain the
GEV distributions with space-dependent parameters. For the GEV residuals, since we have
replications across time, to simplify the notation throughout the next sections, we write Y (s)
dropping the subindex t.

2.1 Nonstationary extremal coefficient

The association between extreme events is often summarized, rather than using a correlation
function, using the extremal coefficient, described next. If the vector (Y (s1), . . . , Y (sm))
follows an m−variate extreme value distribution where the univariate margins are identically
distributed, the extremal coefficient, ϑ, between sites s1, . . . , sm is given by

P (max(Y (s1), . . . , Y (sm)) < u) = (P (Y (s1) < u))ϑ

for all u ∈ R, where ϑ is independent of the value of u. The extremal coefficient was
introduced by Smith (1990), see also Coles (1993), and Coles and Tawn (1996).

The extremal coefficient ϑ can be interpreted as the number of independent variables involved
in an m−variate distribution, and ϑ takes values in [1,m] where ϑ = 1 refers to complete
dependence, and ϑ = m to independence.

The spatial dependency structure of extremes may change with location. We define a sta-

tionary extremal function, ϑ(s1, s2), as the extremal coefficient between locations s1 and s2,
that depends on s1 and s2 only through their vector distance s1 − s2, for any s1, s2 ∈ D.
Thus,

P (max(Y (s1), Y (s2)) < 1) = (P (Y (s1) < 1))ϑ(s1,s2),

and there is a function ϑ0, such that,

ϑ(s1, s2) = ϑ0(s1 − s2).

This stationary extremal function was introduced by Schlather and Tawn, 2003. Here, we
extend this function to a nonstationary setting. A extremal function ϑ(s1, s2) that is a
function of locations s1 and s2, but not s1 − s2 is called in this paper a nonstationary

extremal function.
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2.2 Threshold-specific extremal coefficient

Consider a extremal coefficient that satisfies

P (max(Y (s1), Y (s2)) < u) = (P (Y (s1) < u))ϑ(u), (3)

and there is a function ϑ0, such that,

ϑ(u) = ϑ0(1),

for all u. Then, we name it a threshold-independent extremal coefficient.

A extremal coefficient ϑ(u) that depends on u is called in this paper a threshold-specific

extremal coefficient. Max stable processes cannot have threshold-specific dependence struc-
ture (Beirlant et al, p255). The common tool used to study extremes for non max stable
processes is the χ̄ coefficient (Coles et al., 1999), the threshold-specific extremal coefficient
is just a function of χ̄, we have ϑ(u) = 2 − χ̄(u).

In Figure 1 we plot the extremal coefficient for annual maximum temperatures in FL for what
we define warm years versus cold years. Here, we took the 30 annual maximum temperatures
at each site and averaged across space to obtain a value for each year, thus warm years are
the 15 years with the largest spatial-average maximum temperature values, and the cold
years are the other 15 years. The significant difference in the extremal coefficient for the
different type of years illustrates the potential need of models that allow for threshold-specific
dependence structure in the extremes for the temperature data.

In the next section we introduce a nonparametric extension of the copula approach that can
be used to generate non-stationary dependence structure in extremes and threshold-specific
extremal functions.

3 Copula-based multivariate extreme models

3.1 Spatial Gaussian copula

The Gaussian copula function (e.g. Nelsen, 1999) is defined as Cρ(u, v) = Φρ(Φ
−1(u), Φ−1(v)),

where u, v ∈ [0, 1], Φ denotes the standard normal cumulative distribution function (CDF),
and Φρ denotes the CDF of the standard bivariate Gaussian distribution with correlation
ρ. If we use a Gaussian copula to characterize the bivariate dependence structure between ex-

tremes at two locations s1 and s2, then, we have (Y (s1), Y (s2))
d
=

(

G−1
s1

Φ(Z(s1)), G
−1
s2

Φ(Z(s2))
)

where Z(s1) and Z(s2) are standard normal r.v.s with correlation ρ, and G−1
s1

and G−1
s2

are
the inverse marginal distribution functions for Y (s1) and Y (s2). The distribution function
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of (Y (s1), Y (s2)) is given by H(Y (s1), Y (s2), ρ) = Φρ (Φ−1Gs1
(Y (s1)), Φ

−1Gs2
(Y (s2)). The

marginal distributions of Y (s1) and Y (s2) remain Gs1
and Gs2

.

We generalize the bivariate case (with two sites, s1 and s2), to a set of sites {s1, . . . , sm},
using a spatial copula; good references for multivariate copulas are Joe (1997), and Nelsen
(1999). The spatial copula introduces a latent Gaussian process Z(s) with mean zero, unit
variance, and spatial covariance cov(Z(s1), Z(s2)) = ρZ(s1, s2). FZ denotes the multivariate
distribution function MV N(0, Σ), where Σ = [ρ(si, sj)]

m
i,j=1, of the spatial process Z. Then

T (s)
(def)
= Φ(Z(s)) ∼ Unif(0,1). To relate the latent and data processes, let G be the CDF of

the standard Fréchet distribution. Then,

Y (s) = G−1(T (s)) ∼ G. (4)

T (s) determines the Y (s)’s percentile, and since the T (s) have spatial correlation matrix
(via Z(s)), the outcomes also have spatial correlation. Given the correlation function ρZ of
the latent process Z we can derive the Gaussian copula CZ for the distribution function of
Z

CZ(u1, . . . , um) = FZ(Φ−1(u1), . . . , Φ
−1(um)),

where (u1, . . . , um) ∈ [0, 1]m. Let FY denote the multivariate distribution of Y , then

FY (y1, . . . , ym) = CZ(G(y1), . . . , G(ym)) = FZ(Φ−1G(y1), . . . , Φ
−1G(ym)), (5)

where (y1, . . . , ym) ∈ Rm.

If the spatial covariance ρZ is stationary, i.e. cov(Z(s1), Z(s2)) = ρZ(s1 − s2) then the
resulting extremal function between s1 and s2 will be also stationary. Since,

ϑ(s1, s2) = ϑ0(s1 − s2) = −log
(

FZ(Φ−1Gs1
(1), Φ−1Gs2

(1)
)

,

only depends on s1 and s2 through its vector distance, because FZ has a stationary covariance.

If the spatial covariance ρZ is nonstationary, this can be achieved by, for instance, using
the nonstationary model for the covariance of Z that is presented in Section 7.2, then the
resulting extremal function is nonstationary

ϑ(s1, s2) = −log
(

FZ(Φ−1Gs1
(1), Φ−1Gs2

(1)
)

),

since the covariance of Z is nonstationary.

The extremal function could be also made threshold-specific, by calculating the ϑ(s1, s2; u)
function that satisfies equation (3), then, we have,

ϑ(s1, s2; u) = −ulog
(

FZ(Φ−1Gs1
(u), Φ−1Gs2

(u)
)

).
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3.2 Limiting copula for the Gaussian copula

Consider iid random vectors Y(1), . . . ,Y(N), where Y(i) = (Y (i)(s1), . . . , Y
(i)(sm)), with dis-

tribution function F , and define MN the vector of the componentwise maxima (the jth

component of MN is the maximum of the jth component over all N observations). We say
that F is in the maximum domain of attraction (eg. Nasri-Roudsari, 1996) of the distribution
function H, if there exist sequences of vectors AN > 0 and BN ∈ Rd, such that

lim
N→∞

P

(

MN,1 − BN1

AN,1

≤ y1, . . . ,
MN,d − BNm

AN,d

≤ ym

)

= lim
n→∞

FN(ANy + BN) = H(y).

A non-degenerate limiting distribution H is known as a multivariate extreme value distribu-
tion. The unique copula C0 of the limit H is an extreme value (EV) copula.

The spatial copula, for ρ < 1 (where ρ is the off-diagonal element of the correlation ma-
trix), is attracted to an independent EV copula (eg. Demarta and McNeil, 2004). It is
straightforward to calculate the extremal coefficient for the independent EV copula, we have,
ϑ(s1, s2; u) = 2, for all values of u and all pair of locations s1 and s2. Then, based on this
asymptotic result, when a bivariate Gaussian copula is used to characterize the distribution
of extreme values, this distribution may not offer much flexibility to characterize complex
dependence in the tails.

In Figure 2, we present the extremal coefficient function for a Gaussian copula, ϑρ(s1, s2; u),
evaluated at different values of u and ρ. When ρ = 1, the distribution is degenerate, and
ϑ1(s1, s2; u) = 1 for all values of u, in contrast, ρ = 0, corresponds to the independent
case and the extremal coefficient is always 2. Similar to the independent case, for ρ = 0.5,
ϑ0.5(s1, s2; u), converges to 2 for large values of u. The asymptotic theory presented in this
Section suggests this will be the case for all ρ < 1.

If the pairwise extremal coefficients equal 2, then, the extremal coefficient for m variables
equals necessarily m (Tiago de Oliveira, 1975). Thus, the multivariate (spatial) Gaussian
copula may not be able to characterize complex tail spatial dependence structures, since
asymptotically it does not allow for tail dependence.

4 A Dirichlet process copula model

In this section we introduce an extension of the Gaussian copula model that is more flexible
and should capture better the phenomenon of dependent extreme values. A Gaussian cop-
ula can provide a poor fit for the extremes data when the assumed model is incorrect, and
asymptotically does not allow for tail dependence. Instead of assuming a Gaussian distribu-
tion for the copula or any other distribution (e.g. a t-distribution), we introduce a Bayesian
nonparametric representation of the copula. Bayesian nonparametric methods avoid depen-
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dence on parametric assumptions by working with probability models on function spaces, in
other words, by using infinitely-many parameters.

In particular, we use the spatial Dirichlet process (DP) priors, described in the next sec-
tion. The Gaussian copula is a particular case, but we allow for other distributions beyond
normal. Thus, this approach is flexible enough to characterize the potentially complex spa-
tial structures of the extreme values. This DP model provides a random joint distribution
for a stochastic process of random variables. The fitting of this type of SB model is fairly
straightforward using Markov chain Monte Carlo (MCMC) methods.

4.1 The Dirichlet process

In this section we introduce Dirichlet processes, so we start by explaining the Dirichlet distri-
bution. The Dirichlet distribution is the multivariate generalization of the beta distribution,
and conjugate prior of the categorical distribution and multinomial distribution in Bayesian
statistics. The result of sampling from a Dirichlet distribution is itself a distribution on
some discrete probability space. Let Θ = {θ1, θ2, . . . , θn} be a probability distribution on
the discrete space χ = {χ1, χ2, . . . , χn}, such that, P (X = χi) = θi, where X is a random
variable in the space χ. The Dirichlet distribution on Θ is given by

P (Θ|ν,M) =
Γ(ν)

∏n
i=1 Γ(νmi)

n
∏

i=1

θνmi−1
i

where M = {m1,m2, . . . ,mn} is the base measure defined on χ and is the mean value of Θ,
and ν is a precision parameter that explains how concentrated the distribution is around M .
Both Θ and M are proper probability distributions.

If we replace θi by Θ(χi), and, correspondingly, mi by M(χi), the Dirichlet distribution on
χ can be written as

Θ(χ1), Θ(χ2), . . . , Θ(χn) ∼ Dir(Θ; νM) (6)

where Dir(.) is the Dirichlet density function.

The Dirichlet process is simply an extension of the Dirichlet distribution to continuous
spaces. Expression (6) implies the existence of a Dirichlet distribution on every partition of
any (possibly continuous) space χ. The Dirichlet Process Θ, represented as DP (νM) is the
unique distribution over the space of all possible distributions on χ , such that the relation

Θ(χ1), Θ(χ2), . . . , Θ(χn) ∼ Dir(νM) (7)

holds for every natural number n and every n-partition {χ1, χ2, . . . , χn} of χ. Since M is con-
tinuous, one might think that Θ is a continuous process. However, Blackwell and McQueen
(1973) showed that Dirichlet processes are discrete, as they consist of countably infinite point
probability masses. This is often not desirable for directly modelling observables that are
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considered realizations of some continuous process. To avoid this problem, the mixture of
Dirichlet processes model (DPM), that we introduce next, is commonly used in practice.

Consider a finite mixture model of the form Z ∼
∑K

i=1 pif(Z|θi). Then, Z is distributed
as a mixture of distributions having the same parametric form f, but different parameters.
The parameters θi are drawn from the same distribution H0. This mixture model can be
expressed hierarchically as follows

Z|c, Θ ∼ f(Z|θc) (8)

c|p1:K ∼ Discrete(p1, p2, . . . , pK)

θi ∼ H0(θ)

p1, p2, . . . , pK ∼ Dir(νM)

Here c are the indicators or labels that assign the measurements Z to a parameter value θc,
and pi are the mixture coefficients drawn from a Dirichlet distribution. Given the mixture
coefficients, the indicator variables are distributed multinomially. The latent indicator vari-
ables are used here only to simplify the notation. If the number of components in the mixture
is known a priori, the parameters for each component can be drawn from H0 beforehand,
and then the Dirichlet distribution would be on {θ1, θ2, . . . , θK}. If we consider the limiting
model as K → ∞, then the Dirichlet distribution becomes a Dirichlet process with base
measure M. For each indicator c, drawn conditioning on all the previous indicators from the
Multinomial distribution, there is a corresponding θi that is drawn from H0. In the limit as
K → ∞, the labels lose their meaning as the space of possible labels becomes continuous.
Thus, we discard the use of labels in the model and let the parameters be drawn from a
Dirichlet process with base measure H0 instead. Then, the DPM model is represented as

Z|θi ∼ f(Z|θi) (9)

θi|H ∼ H(θ)

H ∼ DP (νH0)

where DP (νH0) is the Dirichlet Process with base measure H0 and spread ν, and H is a
random distribution drawn from the DP.

An approach to the construction of a Dirichlet process prior (Fegurson, 1973) is provided by
the so-called stick-breaking (SB) prior, discussed next.

4.2 An alternative representation of the DP: Stick-breaking

An alternative representation of the DP is the SB representation, which we exploit for
computation. A random probability distribution, F , has a stick-breaking prior if

F
d
=

K
∑

i=1

piδθi
, (10)
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where δz denotes a Dirac measure at z, p1 = V1, pi = Vi

∏

j<i(1−Vj) where V1, . . . , VK−1 are
independent with Vi ∼ Beta(ai, bi) and θ1, . . . , θK are independent draws from a centering
(or base) distribution H0.

The definition in (10) allows for either finite or infinite K (with the latter corresponding
to the conventional definition of nonparametrics). For K = ∞ several interesting and well-
known processes fall into this class:

The Dirichlet process prior characterised by νH, where H is a distribution and ν is a
positive scalar (often called the mass or spread parameter), arises when Vi follows a
Beta(1, ν) for all i. This representation was first introduced by Sethuraman (1994).

The Pitman-Yor (or two-parameter Poisson-Dirichlet) process occurs if Vi follows a
Beta(1 − a, b + ai) with 0 ≤ a < 1 and b > −a. As special cases we can identify the
Dirichlet process for a = 0 and the stable law when b = 0.

Stick-breaking priors such as the Dirichlet process almost surely lead to discrete probability
distributions. To avoid this problem, the mixture of Dirichlet process model (introduced
in 10) is now the most commonly used specification in practice. Such models assume a
continuous model for the observables, given some unknown parameters, and then use a
stick-breaking prior as in (10) to model these parameters nonparametrically. An important
aspect of these models is that they tend to cluster the observations by assigning several
observations to the same parameter values (or atoms of the nonparametric distribution).

Conducting inference with such models relies on MCMC computational methods. One ap-
proach corresponds to marginalising out F and using a Polya urn representation to conduct a
Gibbs sampling scheme. See MacEachern (1998) for a detailed description of such methods.
Another approach (see Ishwaran et al. (2001)) directly uses the stick-breaking representa-
tion in (10) and either truncates the sum or avoids truncation through slice sampling or the
retrospective sampler proposed by Papaspiliopoulos and Roberts (2008).

4.3 Spatial Dirichlet process

In order to make this wide class of nonparametric priors useful for our spatial context, we need
to index it by space. More generally, we can attempt to introduce dependencies on time or
other covariates (leading to nonparametric regression models). Most of the (rather recent)
literature in this area follows the ideas in MacEachern (1999), who considered allowing
the masses, V = (V1, V2, . . . ), or the locations, θ = (θ1, θ2, . . . ), of the atoms to follow a
stochastic process defined over the domain. This leads to so-called Dependent Dirichlet
(DDP) processes and a lot of this work concentrates on the “single-p” DDP model where
only the locations, θ, follow stochastic processes. An application to spatial modelling is
developed in Gelfand et al. (2005) by allowing the locations θ to be drawn from a random
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field (a Gaussian process). Other spatial extensions are introduced by Griffin and Steel
(2006), Reich and Fuentes (2007), Dunson and Park (2008), and An et al. (2009).

The idea in Gelfand et al. (2005) is to introduce a spatial dependence through the locations,
by indexing θ with the location s and making θ(s) a realization of a random field, with H
being a stationary Gaussian process. In the simple model Z(s) = θ(s) + ǫ(s) where θ(s) has
this spatial Dirichlet prior and ǫ(s) ∼ N(0, τ 2) is a nugget effect, the joint density of the
transformed residuals Z = (Z(s1), . . . , Z(sm)) is almost surely a location mixture of Normals
with density function of the form

K
∑

i=1

piNm(Z|θi, τ
2Im), (11)

using (10), where θi = (θi(s1), . . . , θi(sm)), and Nm(Z|θi, τ
2Im) denotes a m-dimensional

Normal density function evaluated at Z, with mean θi and covariance matrix τ 2Im. The
density function representation in (11) allows for a large amount of flexibility.

4.4 DP copula model

The spatial Dirichlet process copula introduces a latent process Z, such that in year t, for
t = 1, . . . , T, the joint density of Z = (Z(s1), . . . , Z(sm)) at m locations (s1, . . . , sm), given,
Hm, the m-random probability measure of the spatial part (m-variate normal) and τ 2, the
nugget component, f(Z|Hm, τ 2), is almost surely of the form

fZ =
∞

∑

i=1

piNm(Z|θi, τ
2Im), (12)

where the vector θi = (θi(s1), . . . , θi(sm)), p1 = V1, pi = Vi

∏

j<i(1 − Vj), Vi ∼ Beta(1, ν),

θi|Hm ∼ind Hm,

and Hm = DP (νHm
0 ), Hm

0 = Nm(.|0m, Σ). We denote FZ the distribution of Z associated
to the density in (12).

Then, T (s) = H(Z(s)) ∼ Unif(0, 1), where Hs is the CDF for Z(s),

Hs =
∞

∑

i=1

piΦ(θi(s)).

The copula CZ for the distribution function of Z(s1), . . . , Z(sm) is (conditioning on the θi

components),
CZ(u1, . . . , um) = FZ(H−1

s1
(u1), . . . , H

−1
sm

(um)),

where u1, . . . um ∈ [0, 1]m. Then, Y (s) ∼ G−1(T (s)) ∼ G. G is the CDF of the standard
Fréchet distribution. Using the relationship in (2), we allow the marginal distributions to
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be GEVs with space-dependent parameters, by incorporating a change of variable (y to x in
(2)) in the likelihood function. The multivariate distribution of Y is

FY (y1, . . . , ym) = CZ(G(y1), . . . , G(ym)).

Spatial dependence for spatial extremes using the DP copula.

If the spatial covariance Σ in fZ is nonstationary, then the resulting extremal function is
nonstationary

ϑ(s1, s2) = −log
(

FZ(H−1
s1

G(1), H−1
s2

G(1)
)

),

since the covariance Σ in FZ is nonstationary. The extremal function could be also made
threshold-specific,

ϑ(s1, s2; u) = −ulog
(

FZ(H−1
s1

G(u), H−1
s2

G(u)
)

).

Since FZ is a multivariate distribution, the results above can be extended and calculated
simultaneously for any number of sites {s1, . . . , sm}.

In Figure 2 we present the extremal coefficient ϑ() for different quantiles, for a copula that
is a mixture of normal distributions. This is a simplified version of the mixture copula
proposed in this section, we present it here as an illustration of the flexibility that this
mixture copula framework offers to explain tail dependence structures. The mixture copula
density in Figure 2 is

∑K
j=1 pjN2(x|µj12, Σj) where K = 10, x is a 2-vector, µ is a 10-

dimensional vector with equally spaced values between −3 and 3, the jth component of µ is
µj, the weights are pj = 1/K, and Σj is the correlation matrix with off-diagonal element ρj.
The two mixture copulas in Figure (2) have either ρ = (0, . . . , 1), where ρ is a 10-dimensional
vector with equally spaced values between 0 and 1, such as the jth component of ρ is ρj,
and ρ = (1, . . . , 0). In one case the extremal coefficient increases for large values of u, while
in the other we have the reverse situation, that a Gaussian copula could not characterize.
As we increase K we allow for more flexibility in the tail dependence, ultimately, in the
mixture presented in this Section with K = ∞, we can obtain all different type of shapes
for the extremal coefficient as a function of u. Though in practice, it might be useful
to consider finite approximations to the infinite stick-breaking process. Dunson and Park
(2008) study the asymptotic properties of truncation approximations to the infinite mixture,
while Papaspiliopoulos and Roberts (2008) introduce an elegant computational approach to
work with an infinite mixture for Dirichlet processes mixing.

5 Simulation study

In this section we conduct a simulation study to illustrate the effect of modeling the joint
spatial distribution on estimation the marginal GEV parameters. For each simulated data
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set, we generate n = 20 spatial locations randomly on [0, 1]2, and then generate T = 50
independent (over time, not space) replications of the spatial process. The marginal GEV
parameters with linear trend are denoted

µt(s) = αµ(s) + Utβµ(s) (13)

log(σt(s)) = ασ(s) + Utβσ(s)

ξt(s) = αξ(s) + Utβξ(s)

where Ut is the time variable, t, standardized to have mean zero and variance one. We
generate M = 100 data sets from each of six simulation designs:

1. αµ(s) = 0; βµ(s) = 1/2; Zt ∼ N (0, Σ(ρ1))

2. αµ(s) = 0; βµ(s) = 1/2; Zt ∼ N (0, Σ(ρ2))

3. αµ(s) = 0; βµ(s) = 1/2; Zt|gt ∼ N (µgt
, Σ(ρgt

)), P (gt = g) = 1/3 for g ∈ {1, 2, 3}

4. αµ(s) =
(

s1 +
√

s1s2 − 1
)

; βµ(s) = 1
2

(

s2 +
√

s1s2 − 1
)

; Zt ∼ N (0, Σ(ρ1))

5. αµ(s)αµ(s) =
(

s1 +
√

s1s2 − 1
)

; βµ(s) = 1
2

(

s2 +
√

s1s2 − 1
)

; Zt ∼ N (0, Σ(ρ2))

6. αµ(s) =
(

s1 +
√

s1s2 − 1
)

; βµ(s) = 1
2

(

s2 +
√

s1s2 − 1
)

; Zt|gt ∼ N (µgt
, Σ(ρgt

)), P (gt =
g) = 1/3 for g ∈ {1, 2, 3}

where s = (s1, s2), Σ(ρ) is the n×n covariance matrix with (i, j) element exp(−||si−sj||/ρ),
µ = (−2, 0, 2), ρj = (0.01, 0.3, 1), and for all designs ασ(s) = 1, αξ(s) = 0.1, and βσ(s) =
βξ(s) = 0. The first three designs have the same marginal GEV distribution at each location,
but different copulas used to generate the data. The first design is the Gaussian copula
with a weak spatial correlation, the second design is the Gaussian copula with moderate
spatial correlation, and the third design is a mixture of three normals, with a different
spatial correlation for each mixture component. Designs 4-6 have spatially-varying location
parameters.

For each data set we fit three copula models: the independent copula (“Indep”), the usual
single-component Gaussian copula (“Gauss”), and the DP mixture copula of Section 4.4
(“DP”). For all copula models, we model the GEV parameters as constant across space for
Designs 1-3, and allow the location parameters, but not the scale or shape parameters, to vary
spatially for Designs 4-6. The GEV parameters held constant across space have N(0, 102)
priors. The GEV parameters allowed to vary spatially have Gaussian process priors with
E(αµ(s)) = ᾱµ and Cov(αµ(s), αµ(s′)) = τ 2

αµ
exp(−||s − s′||/φαµ

), with ᾱµ ∼ N(0, 102) and

τ 2
αµ

∼ InvG(0.1,0.1). We use the same prior model introduced here for αµ(s) for the other
GEV space-dependent parameters in (13). All the spatial range parameters φ have U(0,10)
priors. For the DP model we take the spread parameter ν ∼ Gamma(1,1), and we use 10
terms in the DP mixture model.
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For each model we compute the posterior mean of the GEV parameters and we obtain the
mean square error. We present here the MSE for αµ(s). We denote α̂µ(s)(sim) the posterior
mean of αµ(s) for data set number sim, and compute the mean square error

MSEαµ
=

1

Mn

M
∑

sim=1

n
∑

i=1

(αµ(si) − α̂µ(si)
(sim))2 (14)

where αµ(s) is the true value used to generate the data. In addition, we report the coverage
probabilities of the 95% intervals, averaged across space and simulated data set. The results
are given in Tables 1 and 2.

The first design has weak spatial association, and all three model have similar MSE and
coverage. This illustrates that the complex spatial models can reduce to the independence
copula if appropriate. The non-spatial model has large MSE and small coverage for the
spatial data generated by Designs 2 and 3, and the usual Gaussian copula performs poorly
for Design 3 with non-Gaussian latent spatial data. Therefore, failing to adequately model
the underlying spatial process can adversely affect estimation of the GEV parameters, and
thus estimates of return levels.

Designs 4-6 have spatially-varying location parameters. The results for all three models are
similar for Design 4 with weakly-correlated residuals. For Designs 5 and 6 with spatially
correlated residuals, the copula models do not reduce MSE compared to the independence
model. This may be due to a lack of identifiability between the spatially-varying location
parameters and the spatially-correlated residuals. However, the copula models have smaller
MSE for the shape and scale parameters and generally have higher coverage probability than
the independence copula model. Also, for the final design with a non-Gaussian latent spatial
process, the nonparametric Bayesian model outperforms the usual Gaussian copula model.
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Table 1: 100*MSE (SE) for the simulation study.

Location Scale Shape Location Scale Shape
Design Model int (αµ) int (ασ) int (αξ) slope (βµ) slope (βσ) slope (βξ)
1 Indep 1.29 (0.16) 0.08 (0.01) 0.06 (0.01) 1.28 (0.18) 0.09 (0.01) 0.07 (0.01)
1 Gauss 1.28 (0.16) 0.08 (0.01) 0.06 (0.01) 1.27 (0.17) 0.09 (0.01) 0.07 (0.01)
1 DP 1.30 (0.17) 0.08 (0.01) 0.06 (0.01) 1.27 (0.17) 0.09 (0.01) 0.07 (0.01)

2 Indep 5.07 (0.72) 0.19 (0.03) 0.14 (0.02) 5.54 (0.89) 0.24 (0.04) 0.12 (0.02)
2 Gauss 4.59 (0.69) 0.17 (0.02) 0.09 (0.01) 4.65 (0.73) 0.18 (0.03) 0.06 (0.01)
2 DP 4.59 (0.68) 0.17 (0.02) 0.09 (0.01) 4.67 (0.75) 0.18 (0.03) 0.06 (0.01)

3 Indep 5.86 (0.79) 0.29 (0.04) 0.13 (0.02) 5.54 (0.86) 0.34 (0.05) 0.17 (0.03)
3 Gauss 6.46 (0.81) 0.31 (0.04) 0.17 (0.03) 7.06 (1.17) 0.49 (0.08) 0.21 (0.03)
3 DP 2.80 (0.39) 0.20 (0.02) 0.08 (0.01) 2.11 (0.32) 0.16 (0.02) 0.11 (0.02)

4 Indep 5.03 (0.27) 0.08 (0.01) 0.05 (0.01) 4.66 (0.21) 0.09 (0.01) 0.06 (0.01)
4 Gauss 4.94 (0.28) 0.08 (0.01) 0.05 (0.01) 4.68 (0.19) 0.09 (0.01) 0.06 (0.01)
4 DP 4.91 (0.27) 0.08 (0.01) 0.05 (0.01) 4.61 (0.19) 0.08 (0.01) 0.06 (0.01)

5 Indep 9.90 (0.76) 0.30 (0.04) 0.13 (0.02) 8.88 (0.61) 0.24 (0.03) 0.13 (0.02)
5 Gauss 12.74 (1.50) 0.32 (0.05) 0.08 (0.01) 9.90 (0.70) 0.14 (0.02) 0.06 (0.01)
5 DP 11.98 (1.30) 0.36 (0.06) 0.09 (0.01) 9.95 (0.69) 0.15 (0.02) 0.06 (0.01)

6 Indep 10.25 (0.83) 0.42 (0.06) 0.20 (0.03) 10.28 (0.86) 0.28 (0.04) 0.18 (0.02)
6 Gauss 15.32 (1.15) 0.43 (0.06) 0.21 (0.03) 12.57 (1.01) 0.37 (0.05) 0.14 (0.02)
6 DP 8.63 (0.73) 0.27 (0.04) 0.10 (0.01) 9.42 (0.92) 0.20 (0.03) 0.07 (0.01)

Convergence is monitored using trace plots of the deviance and several parameters. We
generated a data set from design 6 and fit the full Bayesian DP copula model. The trace
plots of the deviance (measure of overall model convergence) and the spatial range φk of the
covariance for the spatially-varying coefficients (the worst parameter in terms of convergence)
are presented in Figure 3. The deviance does seem to converge for about 1000 iterations,
but in the simulations presented in this Section we used a burn-in of 1000 iterations.

The trace plots for the range paramters are parameterized in terms of the correlation between
points separated by 0.5, i.e., exp(−0.5/φ). In Figure 3 we plot these trace plots for φαµ

and
φβµ

which are the range of the covariance for the intercept and slope parameters of the
spatially-varying GEV location parameter. The prior 95% interval for this is (0.14, 0.95), so
there is a significant Bayesian learning.
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Table 2: Coverage probabilities for the simulation study.

Location Scale Shape Location Scale Shape
Design Model int (αµ) int (ασ) int (αξ) slope (βµ) slope (βσ) slope (βξ)
1 Indep 0.90 0.94 0.95 0.91 0.92 0.93
1 Gauss 0.90 0.94 0.95 0.93 0.92 0.91
1 DP 0.90 0.93 0.95 0.93 0.93 0.90

2 Indep 0.58 0.75 0.80 0.64 0.73 0.85
2 Gauss 0.92 0.97 0.90 0.92 0.92 0.94
2 DP 0.93 0.98 0.92 0.91 0.94 0.95

3 Indep 0.56 0.72 0.82 0.63 0.64 0.79
3 Gauss 0.74 0.83 0.78 0.80 0.67 0.76
3 DP 0.91 0.92 0.95 0.95 0.94 0.91

4 Indep 0.96 0.95 0.97 0.97 0.95 0.97
4 Gauss 0.97 0.96 0.98 0.98 0.94 0.97
4 DP 0.97 0.96 0.97 0.97 0.95 0.97

5 Indep 0.84 0.64 0.86 0.88 0.76 0.82
5 Gauss 0.88 0.90 0.93 0.89 0.93 0.97
5 DP 0.89 0.89 0.93 0.90 0.95 0.96

6 Indep 0.84 0.60 0.69 0.83 0.73 0.76
6 Gauss 0.86 0.71 0.78 0.87 0.73 0.82
6 DP 0.89 0.87 0.93 0.89 0.92 0.97
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6 Application

Extreme temperature events may cause loss of life, injury, property damage, and threaten the
existence of some species. Observed and projected climate change has direct implications for
the occurrence of extreme temperature events. Extreme temperature events are more respon-
sible for changes in natural and human systems than changes in average weather (Parmesan
et al., 2000). The recent report of the government’s Climate Change Science Program (CCSP,
2008) states that the greatest impacts of climate change on society and wildlife will be ex-
perienced through changes in extreme weather events as global temperatures increase (Vliet
and Leemans, 2006). The frequency and intensity of many temperature extremes is now
changing. For example, in recent decades most of North America has experienced more un-
usually hot days (IPCC third assessment report). Systems tend to adapt to their historical
range of extremes, in the meantime the impacts of these extreme events are more likely to
have negative as opposed to positive impacts on human and biological systems. Thus, it is
of paramount importance for climate change adaption planning to accurately quantify this
historical range (distribution) of extreme temperature events and monitor its evolution.

The climate models described in the Intergovernmental Panel on Climate Change (IPCC)
First Assessment Report (Mitchell et al., 1990) showed that a warmer mean temperature
increases the probability of extreme warm days and decreases the probability of extreme cold
days. This result has appeared consistently in a number of more recent different climate
model configurations (Dai et al., 2001; Yonetani and Gordon, 2001). Using global climate
deterministic models, in North America the greatest increase in the 20-year return values
of daily maximum temperature (IPCC third assessment report), is found in central and
southeast North America (Figure 4), where there is a decrease in soil moisture content. In
this paper we study extremes for maximum daily temperatures in this subdomain of interest,
south-east-central U.S., and we obtain maps of 20 and 50 year return values, using Bayesian
spatial statistical modelling frameworks, rather than climate models. We also present the
uncertainty in the obtained return-value maps. In our analysis we allow for nonstationarity
across space and time. The probability of an extreme event under nonstationary conditions
is going to depend on the rate of change of the distribution as well as on the rate of change
of the frequency of their occurrence. Under these nonstationary conditions, the concept
of the return period or return level is altered, since the value is highly dependent on the
extrapolated period of consideration.

6.1 Data

Our application uses surface air daily maximum temperature data produced by the Na-
tional Climatic Data Center (NCDC) in Asheville, NC. The online data files are available at
www.ncdc.noaa.gov/cgi-bin/res40.pl?page=gsod.html.

In this section, we study temperature extremes in the east-south-central and south Atlantic
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United States over a 30 year period from 1978 to 2007. More specifically, daily surface air
temperature records were obtained over the years 1978−2007 from 60 stations located in
Alabama (AL), Florida (FL), Georgia (GA), Kentucky (KY), Mississippi (MS), and Ten-
nessee (TN). In our application, we work with temperature data from 8, 14, 12, 7, 10, and 9
stations in AL, FL, GA, KY, MS, and TN respectively. These stations are shown in Figure 5,
and are located within the region with the greatest increase in 20-year return values of daily
maximum temperature (see Figure 4) according to the Intergovernmental Panel on Climate
Change (IPCC) Third Assessment Report “Climate change 2001”.

In the following section we apply a DP copula and a nonstationary spatial copula to the
data.

6.2 Copula approach

We assume that the annual maximum temperature at location s for year t, Xt(s), follows a
GEV distribution with location parameter µt(s), scale parameter σt(s) and shape parameter
ξt(s). In this section we use a copula framework to characterize the spatial dependence in
the extreme temperatures that is left, after accounting for the spatial structure of the GEV
parameters. We call this residual spatial dependence. We apply a spatial copula and a DP
copula to explain this residual spatial structure. We allow for nonstationarity, by using a
nonstationary spatial copula and DP copula approach (Section 4). To characterize the lack
of stationarity in the copula, we use a covariance function for the latent process Z (in Section
4.2) that is a mixture of local stationary covariance functions, as in Fuentes (2001). This is
obtained by representing Z as a weighted average of independent local stationary processes:

Z(s) =
K

∑

i=1

Zi(s)wi(s),

where Zi is an latent stationary process in the subregion Si, with a exponential stationary
covariance function Ci, and wi(x) is a weight function, the inverse of the distance between
s and the centroid of region Si. The local stationary covariance functions are defined at the
state level, i.e. each Si is one of the states in our domain, so, we have a mixture with 6
components (k = 6). Extensive preliminary analysis suggested that there was not need to
go beyond 6 components. To allow for potential lack of stationarity in the GEV parameters,
we also model them at the state level, and we allow the location’s time trend to be a spatial
process. We have,

µt(s) = αµ(S(s)) + βµ(s)t + γµ(S(s)) ∗ elevation(s) (15)

log[σt(s)] = ασ(S(s)) + βσ(S(s))t + γσ(S(s)) ∗ elevation(s) (16)

ξ(s) = αξ(S(s)) (17)

where S(s) ∈ {1, ..., K} is the state of location s, t = 1 corresponds to the first year of data
collection, 1978, and elevation(s) is the elevation at location s. In Figure 6 we present a
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Table 3: Posterior means (standard deviations) for the yearly maximum temperature data.

αµ ασ αξ βσ γµ γσ

FL 36.477 (0.174) 0.565 (0.092) 0.029 (0.035) -0.031 (0.005) 0.489 (0.106) -0.070 (0.051)
GA 38.729 (0.105) -0.022 (0.082) -0.150 (0.033) 0.001 (0.005) -0.088 (0.122) 0.009 (0.038)
KY 37.290 (0.183) 0.024 (0.108) -0.173(0.041) 0.013 (0.006) -0.676 (0.195) -0.101 (0.056)
TN 38.403 (0.186) 0.362 (0.083) -0.177 (0.038) -0.011 (0.005) -1.065 (0.148) 0.074 (0.043)
AL 38.349 (0.175) 0.446 (0.094) -0.201 (0.038) -0.028 (0.005) 0.178 (0.139) -0.013 (0.046)
MS 38.700 (0.137) 0.021 (0.089) -0.039 (0.025) -0.003 (0.005) 0.193 (0.128) -0.083 (0.052)

map of the elevation in our domain of interest. Areas with higher elevation have smaller
values for the maximum temperatures. All GEV spatial parameters vary across States but
not within, except for the slope for the location. The location is the GEV parameter that we
need to study more closely to interpret temporal trends in extreme temperatures. For all the
other parameters there was not much variation within state. More general results with the
GEV parameters varying continuously across space are presented in the model diagnostic

section. βµ(s) has a spatial Gaussian prior with mean β̄µ
iid∼ N(0, Var = 52) and covariance

τ 2(k) exp {−||s − s′||/ρ(k)} , where τ 2(k) ∼ InvGamma(0.5, 0.005) and ρ(k) ∼ Unif(0, 500).
We have the following prior distributions for the other GEV parameters:

αµ(k) ∼ N(35, 52), k = 1, . . . , 6
ασ(k) ∼ N(0, 0.52), k = 1, . . . , 6
γµ(k), βσ(k) and γσ(k) are all N(0, 52) , k = 1, . . . , 6.
αξ(k) ∼ N(−0.3, 0.12), k = 1, . . . , 6

Table 3 has the posterior means and standard deviations (SD) of the GEV parameters using
a spatial Gaussian copula. The location parameters seem to change significantly across our
domain. However for the scale parameter, only the intercept seems to vary across space.
The shape parameter also varies across space. Figure 7a has a map of the posterior mean
for the spatially varying coefficient in the location parameter that multiplies the temporal
trend. There is an increasing trend in the eastern part of our domain, in parts of FL and
in western GA. Figure 7b presents the posterior SD for the trend, there is higher variability
for this parameter in areas with higher elevation.

Figure 8 presents the posterior median (and 95% posterior bands) for the pairwise extremal
coefficient function using data from GA and TN. The extremal functions are significantly
different for both states, which indicates lack of stationarity in the spatial dependence of
extreme temperatures. The extremal coefficient is presented as a function of distance and
also threshold. The results suggest stronger spatial correlation in TN for the extreme tem-
peratures at larger distances than in GA. In GA the extremal function takes the value 2
(independence) after few kilometers.
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In the context of modelling extreme temperatures, it is often of interest to obtain the n-year
return level, the quantile at a given location, which has probability 1/n of being exceeded in a
particular year. We obtain return levels using the spatial Gaussian and DP copula approach.
Figure 9 presents the mean and SD of the posterior distributions for the 20 and 50 years
return values for annual extremes of maximum daily temperatures, using the nonstationary
spatial Gaussian copula introduced in this section. We use data from 1978 to 2007, and we
fix t (time) at the last time point. The return levels have very similar spatial patterns as the
sample mean of the extreme temperatures presented in Figure 5. Though, the sample mean
is smoother across space. The 20-year return levels are about 2 degrees Celsius (◦C) higher
(Figure 9a) than the sample mean of the extreme temperatures, and the 50-year return levels
are about 3 ◦C higher (Figure 9c). The maximum values for the return levels are obtained
in the eastern and central part of our domain, eastern KY, MS, TN, and also in central
parts of AL, and GA, which are the areas that also have higher extreme temperatures. The
variability for the 20 and 50 years return levels seems to be greater in areas with larger
elevation (Figures 9b and d) .

Figure 10 presents the mean and SD of the posterior distribution for the difference in the 20-
year and 50-year return levels for surface air temperature using the nonstationary Gaussian
copula. The difference in the return values is obtained by calculating the return levels using
data from 1978 - 2007, at two different values of the time covariate (t), using t= 2007, and
t= 1997. This difference is greater and significant in MS and GA (about 0.5 ◦C), also in
KY, but in KY there is also larger variability.

We estimated the GEV parameters and obtained 20-year return levels using the same frame-
work, but replacing the spatial copula with a DP copula. In Figure 11 (a) and (b) we plot
the posterior mean and standard deviation of the time trend βµ(s) in the GEV location using
the DP copula, there is an increasing trend in central AL and eastern MS, and a decreasing
trend in central TN and KY, and parts of FL. In Figure 11 (c) and (d) we plot the mean and
SD of the posterior distribution for the 20-year return levels, with the location parameter
at the final time-point. The spatial patterns obtained are very similar to the ones for the
mean extreme temperature values in Figure 5a. However, as expected, for the sample mean
of extreme temperatures we have a smoother surface. The 20-year return levels are about 2
◦C greater than the sample mean for the extreme temperature values, the same result was
obtained using the spatial nonstationary Gaussian copula framework. The maximum values
for the return levels are obtained in the eastern part of our domain, eastern KY, MS, TN,
and also in central part of AL, and western part of GA, which are the areas with higher
temperatures.

To understand the difference in the performance of the Gaussian spatial versus the DP
copula, we present results from some model comparison criteria. In the next section we show
some model diagnostics to determine and evaluate the performance of the DP copula versus
alternative models for extreme temperatures.
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6.3 Model diagnostics

In this section a 5-fold cross-validation (CV) is done to compare the Dirichlet process copula
model with the spatial Gaussian copula model, and to asses how well these models fit the
annual maximum temperature described in Section 6.1. The CV is done by splitting the
temperature data randomly over space and time into g = 5 groups. We consider six, different
models, summarized in Table 4 and described below, each fit using 4 of the 5 groups of data.
These models are then used to predict temperature values for those locations and time points
that have been removed. This is repeated so that each group is removed once. We compare
the models using the MSE values between observed and predicted temperature values.

We assume marginal GEV distributions with parameters

µt(s) = αµ(s) + βµ(s)t, (18)

log σt(s) = ασ(s) + βσ(s)t, and (19)

ξt(s) = αξ(s) + βξ(s)t. (20)

Recall from Section 6.1 that there are 60 locations with t = 1, . . . , 30 years of annual max-
imum temperatures. We did not include elevation in these models, since it did not appear
to be a significant covariate in the analysis presented in Section 6.2.

αµ and βµ spatial Copula Type MSE Coverage Probability
Model 1 No Independent 3.348 93.78%
Model 2 No Gaussian 3.052 94.00%
Model 3 No DP 3.002 92.28%
Model 4 Yes Independent 2.623 94.17%
Model 5 Yes Gaussian 1.945 93.94%
Model 6 Yes DP 1.558 94.78%

Table 4: Cross validation results for the annual temperature data

In Models 1-3, no parameters in (18)-(20) are varying spatially, while models 4-6 have
spatially-varying location parameters, αµ and βµ, and all other parameters constant across
space. Models 1-2 and 4-5 are Gaussian copula models with GEV marginal distributions,
while Models 3 and 6 are Dirichlet process (DP) copula models with GEV marginal dis-
tributions. We approximated the DP copula density in (12) with a 3-component mixture.
The GEV parameters in (18)-(20) that are held constant across space have N(0, 102) priors,
while those varying spatially have the same Gaussian process spatial priors as described in
Section 5. The spatial range parameters DP model spread parameter also have priors as in
Section 5.

From Table 4 it is clear that allowing the marginal GEV parameters to vary spatially improves
prediction, regardless of the residual correlation model. MSE varies substantially by the type
of copula. Model 4 which ignores residual correlation has 35% larger MSE than Model 5’s
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Gaussian copula. Also, accounting for complex spatial relationships using the flexible DP
mixture copula with spatially-varying GEV coefficients gives the smallest MSE of the models
considered. This seems to suggest that the flexible DP copula model introduced in this paper
for extreme temperature data outperforms some of the available competitive models.

7 Discussion

In this work we study the spatial structure of extreme temperature values. We introduce a
modelling framework that offers a flexible approach to characterize complex spatial patterns
and explain potential nonstationarity in the extremes. We present an extension of copula
frameworks using Dirichlet type of mixtures. An advantange of the formulation presented
in this paper using nonparametric models is that many of the tools developed for Dirichlet
processes can be applied with some modifications. In terms of the computational effort
and feasibility of its implementation, the DP copula and the spatial Gaussian copula offer
similar challenges, since the main computational inconvenience is working with the spatial
covariance matrix.

Multivariate extensions of the nonparametric spatial approaches presented here can be
adopted to model simultaneously maximum and minimum extreme temperature values or
other extreme weather variables, using, for instance the nonparametric spatial framework
proposed by Fuentes and Reich (2008). They could also be applied to spatial daily data with
Generalized Pareto marginal distributions.
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Figure 1: Extremal coefficient functions for the maximum temperatures in FL using a spatial
Gaussian copula, plotted as a function of distance for warm years (red lines) and cold years
(blue lines). In this graph we present the median of the posterior distribution for the extremal
coefficient (solid lines), as well as 95% posterior bands (dashed lines).
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Figure 2: Extremal coefficients for different copula models with standard Fréchet marginals.
The thin lines are the extremal coefficients for Gaussian copulas with different spatial cor-
relation parameters ρ. The solid lines are the extremal coefficients for mixture of normals
copula with different mean and spatial correlation for each term, µk and ρ(µk), respectively.
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Figure 3: Monitoring convergence, trace plots for the Deviance and range parameters.
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Figure 4: The change in 20-year return values for daily maximum surface air temperature
(◦C) simulated in a global coupled atmosphere-ocean model (CGCM1) in 2080 to 2100
relative to the reference period 1975 to 1995 (graph from IPCC third report). Contour
interval is 4◦C. Zero line is omitted.
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Figure 5: Mean and SD of the yearly maximum surface air temperature values (◦C) using
data from years 1978-2007. The circles are the observation locations.
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Figure 6: Elevation in meters above the sea level.
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Figure 7: Posterior mean and standard deviation of the spatially-varying coefficient in the
location parameter that multiplies the temporal trend, using the nonstationary Gaussian
copula framework.
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Figure 8: Extremal coefficient functions for the maximum temperatures in GA (black line)
and TN (blue line) using a nonstationary Gaussian copula. In this graph we present the
median of the posterior distribution for the extremal coefficient (thick lines), as well as 95%
posterior bands (thin lines).
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Figure 9: Graphs (a) and (b) present the mean and SD of the posterior distribution for the
20 year-return levels for surface air temperature (◦C), respectively, using a nonstationary
Gaussian copula. Graphs (c) and (d) present the mean and the SD of the posterior distribu-
tion for the 50 year-return levels, using a nonstationary Gaussian copula, and fixing t (time)
at the last time point.

−92 −90 −88 −86 −84 −82 −80

26
28

30
32

34
36

38

36

37

38

39

40

41

42

 37 

 38 

 3
8 

 39 

 3
9 

 3
9 

 40 

 40 

 40 

 40 

 41 

 4
1 

 41 

 42 

 42 

 4
2 

 42 

(a) 20-year return levels

−92 −90 −88 −86 −84 −82 −80

26
28

30
32

34
36

38

0.3

0.4

0.5

0.6

 0.3 

 0.35 

 0.35 

 0.35 

 0.35 

 0.4 

 0.4 

 0.45 

 0.45 

 0.5 
 0.55 

 0
.6

 

(b) 20-year return levels (SD)

−92 −90 −88 −86 −84 −82 −80

26
28

30
32

34
36

38

36

37

38

39

40

41

42

43

 38 

 38 

 39 

 39 

 39 

 4
0  40 

 4
0 

 40 

 40 

 40 

 41 

 41 

 4
1 

 42 

 4
2 

 42 

 4
2 

 43 

 43 

(c) 50-year return levels

−92 −90 −88 −86 −84 −82 −80

26
28

30
32

34
36

38

0.3

0.4

0.5

0.6

0.7

 0.3 

 0.35 

 0.4 
 0.4 

 0.45 

 0.45 

 0.45 

 0.5 

 0.5 

 0.55 
 0.6 

 0
.6

5 

 0
.6

5 

 0.65 

(d) 50-year return levels (SD)

34



Figure 10: Graphs (a) and (b) present the mean and SD of the posterior distribution for the
difference in the 20-year return levels for surface air temperature (◦C), using a nonstationary
Gaussian copula and all the available data. The differences are obtained by calculating the
return levels at two different values of the time covariate (t), using t= 2007, and t= 1997.
Graphs (c) and (d) present same analysis but for the difference in the 50-year return levels.
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Figure 11: Graphs (a) and (b) present the posterior mean and standard deviation of the
time trend (βµ(s)) in the GEV location, using the DP copula. Graphs (c) and (d) present
the mean and SD of the posterior distribution for the 20 year-return levels for surface air
temperature (◦C), respectively, using a DP copula model with GEV spatial parameters,
fixing t (time) at the last time point.

−90 −88 −86 −84 −82

2
6

2
8

3
0

3
2

3
4

3
6

3
8

−0.06

−0.04

−0.02

0.00

0.02

0.04

−90 −88 −86 −84 −82

2
6

2
8

3
0

3
2

3
4

3
6

3
8

0.010

0.015

0.020

(a) Location trend, posterior mean (b) Location trend, posterior SD

−90 −88 −86 −84 −82

2
6

2
8

3
0

3
2

3
4

3
6

3
8

36

37

38

39

40

41

42

−90 −88 −86 −84 −82

2
6

2
8

3
0

3
2

3
4

3
6

3
8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) 20-year return levels (mean) (d) 20-year return levels (SD)

36


