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ABSTRACT: 

Many problems in current climate research deals with extreme events. Since by 

definition there are few observations of really extreme events, it is a statistical challenge 

to assess whether observed trends are significant. In this paper we illustrate one method 

to look for climate signals in extreme temperature data, and how to compare the data to a 

climate reconstruction based on a regional model. 
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1. Stockholm temperature data 

One of the longest temperature series in the world has been collected in a park in 

Stockholm since 1756. While the observing location has been moved twice during this 

time, it has always been at or near the north wall of the Observatory (Moberg et al., 2002, 

2003).  

 

[Figure 1 about here] 

 

The series, shown in Figure 1, has been corrected for the heat island effect on mean 

temperature as well as for changes in the calculations of daily mean temperature, for one 

jump due to a miscalibrated thermometer, and for another jump that may possibly be due 

to the painting of the thermometer screen (Moberg et al., 2003). It is easier to see visually 

what happens with the extremes. While the maxima look relatively stationary there is 

some indication that the minima show a slight trend. From the point of view of climate 

change research, most general circulation models predict that at the latitude of Stockholm 

we should see an increase in annual minima, a decrease in annual range, and a slight 

increase in annual mean temperature (IPCC, 2007). We thus will look at low 

temperatures to see if we can visualize the expected climate signal. 

 

[Figure 2 about here] 
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 Figure 2 shows the minimum annual mean daily temperature for the Stockholm series. 

The smooth line is a lowess trend line, i.e. a locally weighted local polynomial fit 

(Cleveland, 1979). There is a clear indication of a continuing increase in minimum 

temperature through the entire series, although the rate slows down towards the end. 

Comparing to the corresponding series from nearby Uppsala (cf. Bergström and Moberg, 

1997) a similar increase in the minimum annual temperature occurs there from around 

1850 on. This increase coincides with the start of a substantial population increase in 

Uppsala (where population tripled between 1850 and 1890; 

http://www2.historia.su.se/urbanhistory/cybcity/index.htm). Hence it is possible that the 

increase in minimum temperature may be related to urbanization and the heat island 

effect (Akbari, 2001 points out that while Los Angeles mean annual temperature had 

increased by 2.5K, the annual daily minimum had increased by 4K). Stockholm’s 

population was increasing similarly to Uppsala’s, but with the substantial growth starting 

around 1800 instead of 1850. 

 

[Figure 3 about here] 

 

An alternative way of viewing the series is to look at the point process of extremely cold 

days. In Figure 3 we show the coldest 0.1% days from the entire series. Since cold 

weather is associated with high pressure systems that usually last a few days, one would 

expect the point process to be clustered, which is indeed the case. 
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The figure suggests that cold winters have become less common since about 1900, but 

that the number of cold days in a cold winter remains about the same (2–6). However, it 

would be premature to draw any firm conclusions about a decreasing trend in the rate of 

the point process. 

 

2. Parametric modeling 

We would expect that the negative of the annual minimum temperature should follow a 

GEV-distribution (Coles, 2001), which has cdf G(x;µ,σ ,ξ) = exp − 1+ ξ x − µ
σ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−1/ξ⎛

⎝
⎜

⎞

⎠
⎟ , 

for arguments x such that the quantity in square brackets is positive. The parameters µ, σ 

and ξ are measures of location, scale and shape, respectively. After fitting the cdf to the 

negative of the data it is straightforward to change back to the original scale, for which 

the location parameter will change sign. 

 

[Figure 4 about here] 

 

Figure 4 shows fitted distributions together with a hanging rootogram (Tukey 1972) of 

the difference between roughly the first and the second half of the data (before and after 

1879). Jarušková and Rencová (2008) analyzed several long European temperature series, 

looking for change points, either of the jump type or a ramp of hockey stick form. Their 

analysis indicated that there may be either a jump (around 1901) or a ramp (starting 

around 1887). The asymptotic standard error of the rootogram, 2nΔ( )−
1
2 , where Δ is the 

histogram bin width, is computed under the assumption of iid observations (dotted line in 
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right panel of Figure 4). There is some relatively slight autocorrelation in the minimum 

series, but this should not affect the standard errors substantially. The rootogram plot 

indicates substantially higher probability of low temperatures in the first half of the data. 

 

[Figure 5 about here] 

 

Given the smooth apparent change in the minimum temperatures, it seems reasonable to 

try to model a trend in the GEV parameters. A running window estimation (see Figure 5) 

of the parameters indicates an increasing location parameter, but relatively constant scale 

and shape parameters. A likelihood ratio test decides in favor of a GEV model having 

constant shape and scale, and a linear increase in the location parameter of the model (see 

Gilleland et al. 2009 for details of the model and the fitting procedure). Table 1 shows the 

various models and the likelihood values. If the linear increase in the location parameter 

is continued, we would extrapolate the minimum annual temperature to average -9.2°C 

by the year 2100.  

[Table 1 about here] 

 

3. Comparison to a regional climate model 

Climate can be thought of as the distribution of weather. A climate model, therefore, does 

not produce output that is directly comparable (on a day-by-day or even year-by-year 

basis) to weather data. Rather, one needs to look at the distribution over a number of 

years of the two outputs. Were climate stationary, the comparison would be more 

powerful the longer stretch of data we compared. However, since we are looking for 
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indications of changing climate, we need to compare relatively short stretches of data, 

thus reducing the power of the comparison. 

 

The weather at a given station cannot reasonably be compared to the output of a global 

climate model, typically operating at a spatial resolution of 3–5 degrees. Instead, regional 

climate models are used. A regional model is intended to predict local consequences of 

various climate scenarios (describing greenhouse gas emissions, policy alternatives etc.). 

It is typically constrained by the output of a global model, which is the only way we can 

forecast the large-scale consequences of the scenarios. However, when we want to 

compare regional model output to data, it is useful to constrain the regional model with 

observed weather data (reanalysis of actual observations using the latest weather 

forecasting technology). This is the closest a regional model can come to data. 

 

[Figure 6 about here] 

 

For the Stockholm station, we are using the Rossby Center Coupled Regional Climate 

Model RCA3 (Kjellström et al., 2005), constrained by the European Centre for Medium-

Range Weather Forecasts ERA40 reanalysis data (Uppala et al. 2005). The model 

operates on a time scale of 3 hrs, and a spatial scale of 50 km. In Figure 6 we show a QQ-

plot of the observed and model output data. It is clear that the model output is shifted 

towards higher temperatures. In other words, the regional model is oversmoothing the 

extremes. The model is tuned to match averages, so expecting it to reproduce the 

distribution of extremes is perhaps unfair. However, we expect the model to be used to 
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describe probabilities of extreme weather events, and this misfit casts some doubt over its 

usefulness for this purpose. Doksum and Sievers (1976) introduced the shift 

functionΔ(x) , defined by F(x +Δ(x))=
d
G(x) , to compare two distribution functions F 

and G. Using the empirical distribution functions Fn and Gn, the natural nonparametric 

shift function estimate is Δ̂(x) = Fn
−1 Gn (x)( ) − x . Simultaneous confidence bounds are 

obtained from the Kolmogorov-Smirnov test statistic (Doksum and Sievers, 1976). 

 

[Figure 7 about here] 

 

 In Figure 7 we see that the distribution of the model output apparently is shifted 2–6°C 

upwards compared to the data. Also, since the horizontal line at height 0 falls outside of 

the simultaneous confidence band, we are able to reject the hypothesis of no difference 

between the two distributions at the 95% level. Of course, the regional model is 

calculating a spatial average of the temperature, while the observations are in a single 

location. In fact, the regional model averages over separate calculations for water, 

forested land and open land. The observation is, of course, on open land, which would 

tend to have the lowest temperature on a cold day. Using several series from the region 

one could estimate the average minimum temperature over a grid square, as in Meiring et 

al. (1998) (see also the recent work by Mannshardt-Shamseldin et al. 2009). The 

discussion in Kjellström et al. (2005) indicates that the model bias may be related to the 

representation of moisture in clouds and consequent downward longwave radiation. 

 

4. Discussion 
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The minimum temperature calculated from the data in this paper are the annual minima 

of daily mean temperatures, calculated as indicated in Moberg et al. (2002). After 1859 

there are observations of the actual minimum daily temperature (and these are used in the 

calculation of the daily mean temperature for these years). Comparing the annual daily 

minima to the annual minimum daily means (for the years for which we have both series 

available) it turns out that the actual minima are well approximated by the minimum daily 

means, shifted down by 3.5 °C. The correlation between the two series is high (0.94). 

Hence no essential differences would be obtained were one to analyze the shorter series 

of observed daily minima. 

 

While the annual minimum daily mean temperatures do not exhibit much serial 

correlation, the daily mean temperature series itself clearly indicates long term memory 

(Smith 1993). This has important consequences for homogenization techniques. The 

traditional work by Alexandersson (1986) assumes independent normally distributed 

values. Simulation studies indicate that the significance level of the hypothesis test for 

step changes (relative to comparison series that are reasonably well correlated with the 

series being studied) are quite a bit higher than the nominal size. We intend to pursue this 

in a later paper (cf. also Lund et al., 2007). 

 

One would perhaps expect the regional model to be better tuned to annual average 

temperatures than to annual minima. A comparison similar to that in the previous section, 

indicates that the regional model climate mean annual temperature is shifted up by 1.7° C 
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compared to the observations. This is a known artifact of RCA3, and is likely also due to 

the cloud representation (Kjellström et al., 2005). 

 

Acknowledgements: The authors are grateful to Daniela Jarušková, Erik Kjellström and 
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Table 1. Log likelihood values for GEV fits of the Stockholm annual minima. 

Model Estimated µ -Log likelihood  Number of parameters 

All years, fixed µ -13.6 705.2 3 

Early years, fixed µ -15.3 350.7 3 

Late years, fixed µ -12.3 335.7 3 

Early and late combined  686.4 6 

Linear model in µ -16.3 – -11.2 687.2 4 
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Figure 1: Mean daily temperature readings (°C) from Stockholm Observatory 1756-2004.  
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Figure 2. Annual minimum mean daily temperature for Stockholm. Trend curve is a 

locally weighted polynomial fit, obtained using a default lowess smoother (Cleveland, 

1979) in R (R Development Core Team, 2009). 
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Figure 3. Times of the 0.1% lowest Stockholm temperatures. 
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Figure 4. GEV fit using ExtRemes (Gilleland et al. 2009) to all data, first and second half 

(leftmost three panels). Parameter values are given in Table 1. Hanging rootogram of the 

difference between first and second half (rightmost panel). The dotted lines are two 

asymptotic standard errors above and below the x-axis (Tukey, 1972). 
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Figure 5. Running estimate of µ with a window size of 149 years. X-axis label indicates 

the ordinal of the window. The sloped line is the estimated linear mean from extRemes 

(Gilleland et al., 2009). The horizontal lines are the estimates assuming constant µ (solid) 

and two standard errors up and down (dashed).
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Figure 6. Q-Q plot (Wilks and Gnanadesikan 1968) of observed annual minima in the 

Stockholm temperature series 1960–2004 and regional model output forced by reanalysis 

data 1961-2005. The light lines are asymptotic 95% simultaneous confidence bands 

(Doksum, 1974). 
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Figure 7. Shift function estimate (solid curve) for the relation between simulated and 

observed data. The horizontal dashed line corresponds to identical distributions. The light 

curves are asymptotic 95% simultaneous confidence bands (Doksum and Sievers, 1976). 
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