
4.2 Statistics, data, and
deterministic models

NRCSE



Some issues in
model assessment

Spatiotemporal misalignment
Grid boxes vs observations

Types of error
Measurement error and bias
Model error
Approximation error

Manipulate data or model output?
Two case studies:

SARMAP – kriging
MODELS-3 – Bayesian melding

Other uses of Bayesian hierarchical
models



Assessing the
SARMAP model

60 days of hourly observations at 32
sites in Sacramento region
Hourly model runs for three “episodes”



Task

Estimate from data the ozone level at
x’s in a grid square. Use sum to
estimate integral over grid square.
Issues:

Transformation
Diurnal cycle
Temporal dependence
Spatial dependence
Space-time interaction



Transformation

Heterogeneous variability–mean and
variance positively related
Square root transformation
All modeling now on square root
scale–approximately normal



Diurnal cycle



Temporal dependence



Spatial dependence



Estimating a
grid square average

Estimate using

(not averages of squares of kriging
estimates on the square root scale)

Vt (s) = Zt (s)

Vt (s) = µ t (s) +Wt (s)
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Looking at an episode



Afternoon comparison



Nighttime comparison



Bayesian melding

Deterministic model: M(θ)
Prior: f(θ)
Induced prior on outputs: h(m)=M(f(θ))
Direct prior on outputs: g(m)
Melded prior on outputs: 

f(m)=h(m)λg(m)1-λ

Data: x
Likelihood: f(x|m)
Posterior: f(m|x)



A state space approach

SARMAP study spatially data rich
If spatially sparse data, how estimate
grid squares?

P = βZ + M + A + δ
O = (γ)Z + B + E

P = process model output
O = observations
Z = truth (state variable)
Calculate (Z |P,O) for prediction
Calculate (O |P, β = 1, M = S = A = 0) for
model assessment



CASTNet and Models-3

CASTNet is a dry deposition network
Models-3 sophisticated air quality model
Average fluxes on 36x36 km2 grid
Weekly data and hourly output



Estimated model bias

The multiplicative bias β is taken
spatially constant (= 0.5). The additive
bias E(M+A+δ) is spatially distributed.



Assessing model fit

Predict CASTNet observation Oi from
posterior mean of prediction using
Models-3 output Pi and remaining
observations O-I.
Average length of 90% credible
intervals is 7 ppb
Average length using only Models-3 is
3.5 ppb



The Bayesian
hierarchical approach

Three levels of modelling:
Data model:

f(data | process, parameters)
Process model:

f(process | parameters)
Parameter model:

 f(parameters)
Use Bayes’ theorem to compute
posterior

f(process, parameters | data)



Application to Models-3

where θ(I) are samples from the
posterior distribution of θ
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Predictions



Two examples

Precipitation modeling (Tamre Cardoso,
PhD UW 2004)
Ocean wind dynamics (Anders
Malmberg, PhD Lund U 2005)



Rainfall measurement
Rain gauge (1 hr)

High wind, low rain rate (evaporation)
Spatially localized, temporally moderate

Radar reflectivity (6 min)
Attenuation, not ground measure
Spatially integrated, temporally fine

Cloud top temp. (satellite, ca 12 hrs)
Not directly related to precipitation
Spatially integrated, temporally sparse

Distrometer (drop sizes, 1 min)
Expensive measurement
Spatially localized, temporally fine



Radar image





Drop size distribution



Basic relations
Rainfall rate:

v(D) terminal velocity for drop size D
N(t) number of drops at time t
f(D) pdf for drop size distribution
Gauge data:

g(w) gauge type correction factor
w(t) meteorological variables such as wind
speed
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Basic relations, cont.

Radar reflectivity:

Observed radar reflectivity:
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Structure of model

Data: [G|N(D),θG]  [Z|N(D),θZ]
Processes: [N|µN,θN]   [D|ξt,θD]

log GARCH      LN
Temporal dynamics: [µN(t)|θµ]

     AR(1)
Model parameters: [θG,θZ,θN,θµ,θD|θH]
Hyperparameters: θH



MCMC approach



Observed and predicted
rain rate

 



Observed and calculated
radar reflectivity

 



Wave height prediction



Misalignment
in time and space



The Kalman filter

Gauss (1795) least squares
Kolmogorov (1941)-Wiener (1942)

dynamic prediction
Follin (1955) Swerling (1958)
Kalman (1960)

recursive formulation
prediction depends on
how far current state is
from average

Extensions



A state-space model

Write the forecast anomalies as a
weighted average
of EOFs (computed from the empirical
covariance) plus small-scale noise.
The average develops as a vector
autoregressive model:

Y(s, t + !) = ws (u)Y(u, t)du +" #(s, t + !)

Y(s, t) = ai (t)!i (s)"



EOFs of wind forecasts



Kalman filter forecast
emulates forecast model



The effect of satellite data



Model assessment
Difference from
current forecast of

Previous forecast

Kalman filter

Satellite data
assimilated




