
1.2 Kriging



Research goals in
air quality research

Calculate air pollution fields for health
effect studies
Assess deterministic air quality models
against data
Interpret and set air quality standards
Improved understanding of
complicated systems
Prediction of air quality



The geostatistical model

Gaussian process
µ(s)=EZ(s)  Var Z(s) < ∞

Z is strictly stationary if

Z is weakly stationary if

Z is isotropic if weakly stationary and

Z(s),s !D " R2

(Z(s1),...,Z(sk )) =
d

(Z(s1 +h),...,Z(sk +h))

µ(s) ! µ Cov(Z(s1),Z(s2 )) = C(s1 " s2)

C(s1 ! s2) = C0( s1 ! s2 )



The problem

Given observations at n locations
Z(s1),...,Z(sn)
estimate

Z(s0) (the process at an unobserved site)

(an average of the
  process)

In the environmental context often time
series of observations at the locations.

Z(s)d!(s)
A

"or



Some history

Regression (Galton, Bartlett)
Mining engineers (Krige 1951,
Matheron, 60s)
Spatial models (Whittle, 1954)
Forestry (Matérn, 1960)
Objective analysis (Grandin, 1961)
More recent work Cressie (1993), Stein
(1999)



A Gaussian formula
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Simple kriging
Let X = (Z(s1),...,Z(sn))T, Y = Z(s0), so that

µX=µ1n, µY=µ,
ΣXX=[C(si-sj)],  ΣYY=C(0), and

 ΣYX=[C(si-s0)].

Then

This is the best unbiased linear predictor
when µ and C are known (simple kriging).

The prediction variance is

p(X) ! Ẑ(s0 ) = µ + C(si " s0 )[ ]
T
C(si " sj )#$ %&

"1

X " µ1n( )

m1 = C(0) ! C(si ! s0 )[ ]
T
C(si ! sj )"# $%

!1

C(si ! s0 )[ ]



Some variants

Ordinary kriging (unknown µ)

where

Universal kriging (µ (s)=A(s)β  for some spatial
variable A) 

Still optimal for known C.

p(X) ! Ẑ(s0 ) = µ̂ + C(si " s0 )[ ]
T
C(si " sj )#$ %&

"1

X " µ̂1n( )

µ̂ = 1n
T C(si ! sj )"# $%

!1

1n( )
!1

1n
T C(si ! sj )"# $%

!1

X

!̂ = ( A(si )[ ]
T
C(si " sj )#$ %&

"1
A(si )[ ])"1

A(si )[ ]
T
C(si " sj )#$ %&

"1
X



Universal kriging variance

E Ẑ(s0 ) ! Z(s0 )( )
2

= m1 +

A(s0 ) ! [A(si )
T[C(si ! sj )]

!1[C(si ! s0 )]( )
T

"( A(si )[ ]
T
C(si ! sj )#$ %&

!1

A(si )[ ])!1

" A(s0 ) ! [A(si )
T[C(si ! sj )]

!1[C(si ! s0 )]( )

simple kriging 
variance

variability due to estimating β



The (semi)variogram

Intrinsic stationarity
Weaker assumption (C(0) needs not
exist)
Kriging predictions can be expressed in
terms of the variogram instead of the
covariance.

! ( h ) =
1

2
Var(Z(s + h) " Z(s)) = C(0) " C( h )



Ordinary kriging

where

and kriging variance
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Parana data

Built-in geoR data set
Average rainfall over different years for
May-June (dry-season)
143 recording stations throughout
Parana State, Brazil



Parana precipitation



Fitted variogram



Is it significant?



Kriging surface



Kriging standard error



A better combination



Spatial trend

Indication of spatial trend
Fit quadratic in coordinates



Residual variogram



Effect of estimated
covariance structure

The usual geostatistical method is to
consider the covariance known. When it is
estimated
• the predictor      is not linear
• nor is it optimal
• the “plug-in” estimate                of the
variability often has too low mean

Let                                      . Is          a good
estimate of m2(θ) ?

p2 (X) = p(X;!̂(X))

m1(!̂(X))

m2(!) = E!
(p2 (X) " µ)2 m1(!̂)



Some results

1. Under Gaussianity, m2(θ) ≥ m1(θ) with
equality iff p2(X)=p(X;θ) a.s.
2. Under Gaussianity, if      is sufficient,
and if the covariance is linear in θ,  then

3. An unbiased estimator of  m2(θ) is

where      is an unbiased estimator of
m1(θ).

!̂

E
!
m1(!̂) =m2(!) " 2(m2 (!) "m1(!))

2m̂ !m1("̂)

m̂



Better prediction
variance estimator

(Zimmerman and Cressie, 1992)

(Taylor expansion; often approx. unbiased)

A Bayesian prediction analysis takes
account of all sources of variability (Le and
Zidek, 1992; 2006)

Var(Ẑ(s0;!̂)) "m1(!̂)

+2 tr cov(!̂) #cov($Ẑ(s0;!̂)%
&

'
(
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