

2.1 Spatial covariances

Valid covariance functions

Bochner's theorem: The class of covariance functions is the class of positive definite functions C:

$$\sum_{i}\sum_{j}a_{i}a_{j}C(s_{i},s_{j})\geq 0$$

Why?
$$\sum_{i}\sum_{j}a_{i}a_{j}C(s_{i},s_{j}) = Var(\sum a_{i}Z(s_{i}))$$

Spectral representation

By the spectral representation any isotropic continuous correlation on R^d is of the form

$$\rho(\mathbf{v}) = \mathbf{E}\left(\mathbf{e}^{\mathbf{i}\mathbf{u}^{\mathsf{T}}\mathbf{X}}\right), \mathbf{v} = \|\mathbf{u}\|, \mathbf{X} \in \mathbf{R}^{\mathsf{d}}$$

By isotropy, the expectation depends only on the distribution G of $\|X\|$. Let Y be uniform on the unit sphere. Then

$$\rho(\mathbf{v}) = \mathbf{E} \mathbf{e}^{\mathbf{i}\mathbf{v} \| \mathbf{X} \| \mathbf{Y}} = \mathbf{E} \Phi_{\mathbf{Y}} \left(\mathbf{v} \| \mathbf{X} \| \right)$$

Isotropic correlation

$$\Phi_{\mathbf{Y}}(\mathbf{u}) = \left(\frac{2}{\mathbf{u}}\right)^{\frac{d}{2}-1} \Gamma\left(\frac{d}{2}\right) \mathbf{J}_{\frac{d}{2}-1}(\mathbf{u})$$

 $J_v(u)$ is a Bessel function of the first kind and order v.

Hence
$$\rho(\mathbf{v}) = \int_{0}^{\infty} \Phi_{\mathbf{Y}}(\mathbf{sv}) d\mathbf{G}(\mathbf{s})$$

and in the case d=2
 $\rho(\mathbf{v}) = \int_{0}^{\infty} J_{0}(\mathbf{sv}) d\mathbf{G}(\mathbf{s})$

$$(\mathbf{v}) = \int_{0} J_0(\mathbf{s}\mathbf{v}) d\mathbf{G}(\mathbf{s})$$
 (Hankel
transform)

The Bessel function J₀

The exponential correlation

A commonly used correlation function is $\rho(v) = e^{-v/\phi}$. Corresponds to a Gaussian process with continuous but not differentiable sample paths.

More generally, $\rho(v) = c(v=0) + (1-c)e^{-v/\phi}$ has a *nugget* c, corresponding to measurement error and spatial correlation at small distances.

All isotropic correlations are a mixture of a nugget and a continuous isotropic correlation.

The squared exponential

Using
$$G'(\mathbf{x}) = \frac{2\mathbf{x}}{\phi^2} e^{-4\mathbf{x}^2/\phi^2}$$
 yields
 $\rho(\mathbf{v}) = e^{-\left(\frac{\mathbf{v}}{\phi}\right)^2}$

corresponding to an underlying Gaussian field with analytic paths. This is sometimes called the Gaussian covariance, for no really good reason. A generalization is the *power(ed) exponential* correlation function,

$$\rho(\mathbf{v}) = \exp\left(-\left[\frac{v}{\phi}\right]^{\kappa}\right), \mathbf{0} < \kappa \leq \mathbf{2}$$

The spherical

$$\rho(\mathbf{v}) = \begin{cases} 1 - 1.5\mathbf{v} + 0.5\left(\frac{\mathbf{v}}{\phi}\right)^3; & h < \phi \\ 0, & \text{otherwise} \end{cases}$$

Corresponding variogram

nugget
$$\rightarrow \tau^2 + \frac{\sigma^2}{2} \left(3 \frac{t}{\phi} + (\frac{t}{\phi})^3 \right); \quad 0 \le t \le \phi$$

sill $\rightarrow \tau^2 + \sigma^2; \quad t > \phi$ range

variograms with equivalent "practical range"

The Matérn class

$$\mathbf{G'}(\mathbf{x}) = \frac{\mathbf{2\kappa}}{\phi^{2\kappa}} \frac{\mathbf{x}}{(\mathbf{x}^2 + \phi^{-2})^{1+\kappa}}$$
$$\rho(\mathbf{v}) = \frac{1}{\mathbf{2}^{\kappa-1} \Gamma(\kappa)} \left(\frac{\mathbf{v}}{\phi}\right)^{\kappa} \mathbf{K}_{\kappa} \left(\frac{\mathbf{v}}{\phi}\right)$$

where K_{κ} is a modified Bessel function of the third kind and order κ . It corresponds to a spatial field with κ -1 continuous derivatives

 κ =1/2 is exponential;

κ=1 is Whittle's spatial correlation;

 $\kappa \rightarrow \infty$ yields squared exponential.

models with equivalent "practical" range

Ē

Some other covariance/variogram families

Name	Covariance	Variogram			
Wave	$\sigma^2 \frac{\sin(\phi t)}{\phi t}$	$\tau^2 + \sigma^2 (1 - \frac{\sin(\phi t)}{\phi t})$			
Rational quadratic	$\sigma^2(1-\frac{t^2}{1+\phi t^2})$	$\tau^2 + \frac{\sigma^2 t^2}{1 + \phi t^2}$			
Linear	None	$\tau^2 + \sigma^2 t$			
Power law	None	$\tau^2 + \sigma^2 t^{\phi}$			

Estimation of variograms

Recall $\gamma(\mathbf{v}) = \sigma^2 (\mathbf{1} - \rho(\mathbf{v}))$

Method of moments: square of all pairwise differences, smoothed over lag bins

$$\overline{\gamma}(\mathbf{h}) = \frac{1}{|\mathbf{N}(\mathbf{h})|} \sum_{i,j \in \mathbf{N}(\mathbf{h})} (\mathbf{Z}(\mathbf{s}_i) - \mathbf{Z}(\mathbf{s}_j))^2$$

$$N(h) = \left\{ (i, j) : h - \frac{\Delta h}{2} \le \left| s_i - s_j \right| \le h + \frac{\Delta h}{2} \right\}$$

Problems: Not necessarily a valid variogram Not very robust

A robust empirical variogram estimator

 $(Z(x)-Z(y))^2$ is chi-squared for Gaussian data

Fourth root is variance stabilizing

Cressie and Hawkins:

$$\tilde{\gamma}(h) = \frac{\left\{\frac{1}{|\mathsf{N}(h)|} \sum \left|\mathsf{Z}(s_i) - \mathsf{Z}(s_j)\right|^{\frac{1}{2}}\right\}^4}{0.457 + \frac{0.494}{|\mathsf{N}(h)|}}$$

Least squares

Minimize

$$\theta \mapsto \sum_{i} \sum_{j} \left(\left[\left(\mathsf{Z}(\mathsf{s}_{i}) - \mathsf{Z}(\mathsf{s}_{j}) \right]^{2} - \gamma(\left\| \mathsf{s}_{i} - \mathsf{s}_{j} \right\|; \theta) \right)^{2} \right]$$

Alternatives:

- fourth root transformation
- •weighting by $1/\gamma^2$
- generalized least squares

Maximum likelihood

Z~N_n(μ,Σ) Σ=
$$\alpha$$
[ρ (s_i-s_j;θ)] = α V(θ)
Maximize

$$\ell(\mu, \alpha, \theta) = -\frac{n}{2} \log(2\pi\alpha) - \frac{1}{2} \log \det V(\theta) + \frac{1}{2\alpha} (Z - \mu)^T V(\theta)^{-1} (Z - \mu)$$

 $\hat{\mu} = \mathbf{1}^{\mathsf{T}} \mathbf{Z} / \mathbf{n} \quad \hat{\alpha} = \mathbf{G}(\hat{\theta}) / \mathbf{n} \quad \mathbf{G}(\theta) = (\mathbf{Z} - \hat{\mu})^{\mathsf{T}} \mathbf{V}(\theta)^{-1} (\mathbf{Z} - \hat{\mu})$ and θ maximizes the profile likelihood

$$\ell * (\theta) = -\frac{n}{2} \log \frac{G^2(\theta)}{n} - \frac{1}{2} \log \det V(\theta)$$

A peculiar ml fit

Some more fits

All together now...

Bayesian kriging

Instead of estimating the parameters, we put a prior distribution on them, and update the distribution using the data.

Model: $(\mathbf{Z}|\theta) \sim \mathbf{N}(\beta, \sigma^2 \mathbf{C}(\phi) + \tau^2 \mathbf{I})$

Prior: $f(\theta) = f(\beta)f(\sigma^2)f(\phi)f(\tau^2)$

Posterior:

 $f(\beta \left| \textbf{Z} = \textbf{z} \right) \propto f(\beta) \iiint f(\textbf{z} \left| \theta \right) f(\sigma^2) f(\phi) f(\tau^2) d\sigma^2 d\phi d\tau^2$

geoR

Prior is assigned to ϕ and τ/σ . The latter assumed zero unless specified. The distributions are discretized. Default prior on mean β is flat (if not specified, assumed constant). (Lots of different assignments are possible)

Prior/posterior of ϕ

φ

Variogram estimates

Bayes vs universal kriging

Spectral representation

Stationary processes

$$Z(s) = \int_{R^d} exp(is^{\mathsf{T}}\omega) dY(\omega)$$

Spectral process Y has stationary increments

$$\mathbf{E} |\mathbf{d} \mathbf{Y}(\omega)|^2 = \mathbf{d} \mathbf{F}(\omega)$$

If F has a density f, it is called the spectral density.

$$\mathbf{Cov}(\mathbf{Z}(\mathbf{s}_1), \mathbf{Z}(\mathbf{s}_2)) = \int_{\mathbf{R}^2} e^{i(\mathbf{s}_1 - \mathbf{s}_2)^{\mathsf{T}_{\boldsymbol{\omega}}}} \mathbf{f}(\boldsymbol{\omega}) d\boldsymbol{\omega}$$

Estimating the spectrum

For process observed on nxn grid, estimate spectrum by *periodogram*

$$I_{n,n}(\omega) = \frac{1}{(2\pi n)^2} \left| \sum_{j \in J} z(j) e^{i\omega^T j} \right|^2$$
$$\omega = \frac{2\pi j}{n}; J = \left\{ \lfloor (n-1)/2 \rfloor, ..., n - \lfloor (n-1)/2 \rfloor \right\}^2$$

Equivalent to DFT of sample covariance

Properties of the periodogram

Periodogram values at Fourier frequencies (j,k)π/∆are
•uncorrelated
•asymptotically unbiased
•not consistent
To get a consistent estimate of the spectrum, smooth over nearby frequencies

Some common isotropic spectra

Squared exponential

$$f(\omega) = \frac{\sigma^2}{2\pi\alpha} \exp(-\|\omega\|^2 / 4\alpha)$$
$$C(\mathbf{r}) = \sigma^2 \exp(-\alpha \|\mathbf{r}\|^2)$$

Matérn

$$\mathbf{f}(\boldsymbol{\omega}) = \boldsymbol{\phi}(\boldsymbol{\alpha}^2 + \|\boldsymbol{\omega}\|^2)^{-\nu-1}$$
$$\mathbf{C}(\mathbf{r}) = \frac{\pi \boldsymbol{\phi}(\boldsymbol{\alpha} \|\mathbf{r}\|)^{\nu} \mathcal{K}_{\nu}(\boldsymbol{\alpha} \|\mathbf{r}\|)}{\mathbf{2}^{\nu-1} \Gamma(\nu+1) \boldsymbol{\alpha}^{2\nu}}$$

Thetford canopy heights

39-year thinned commercial plantation of Scots pine in Thetford Forest, UK Density 1000 trees/ha 36m x 120m area surveyed for crown height Focus on 32 x 32 subset

Whittle likelihood

Approximation to Gaussian likelihood using periodogram:

$$\ell(\theta) = \sum_{\omega} \left\{ \log f(\omega; \theta) + \frac{I_{N,N}(\omega)}{f(\omega; \theta)} \right\}$$

where the sum is over Fourier frequencies, avoiding 0, and f is the spectral density Takes O(N logN) operations to calculate instead of O(N³).

Using non-gridded data

Consider

$$\mathbf{Y}(\mathbf{x}) = \Delta^{-2} \int \mathbf{h}(\mathbf{x} - \mathbf{s}) \mathbf{Z}(\mathbf{s}) \mathbf{ds}$$

where

 $h(x) = 1(|x_i| \le \Delta / 2, i = 1,2)$

Then Y is stationary with spectral density

$$f_{Y}(\omega) = \frac{1}{\Delta^{2}} |H(\omega)|^{2} f_{Z}(\omega)$$

Viewing Y as a lattice process, it has spectral density

$$\mathbf{f}_{\Delta,Y}(\omega) = \sum_{\mathbf{q}\in\mathbf{Z}^2} \left| \mathbf{H}(\omega + \frac{2\pi\mathbf{q}}{\Delta}) \right|^2 \mathbf{f}_{\mathbf{Z}}(\omega + \frac{2\pi\mathbf{q}}{\Delta})$$

Estimation

Let
$$Y_{n^2}(x) = \frac{1}{n_x} \sum_{i \in J_x} h(s_i - x)Z(s_i)$$

where J_x is the grid square with center x and n_x is the number of sites in the square. Define the tapered periodogram

$$I_{g_{1}Y_{n^{2}}}(\omega) = \frac{1}{\sum g_{1}^{2}(x)} \left| \sum g_{1}(x)Y_{n^{2}}(x)e^{-ix^{T}\omega} \right|^{2}$$

where $g_1(x) = n_x / \overline{n}$. The Whittle likelihood is approximately

$$\ell_{\mathbf{Y}} = \frac{n^2}{(2\pi)^2} \sum_{j} \left\{ \log f_{\Delta,Y}(2\pi j / n) + \frac{I_{g_1,Y_{n^2}}(2\pi j / n)}{f_{\Delta,Y}(2\pi j / n)} \right\}$$

A simulated example

			_					
		- ,^					``	
	1.		بر د. به زر		i, i.		з, ¹ .	1
1.				11				31
	: ئېر د ژ. ر	2	1997 - 1997 1997 - 1997	Ξ.				
S. Sugar	÷.,	17			, ,	n , ,		
	10					1	1	۰.
			1				÷	1.4
· · ·			"···;		с			
<u>َ</u>		16.51 11 1		2.1	57.7		11	
	÷			· · ·			÷	<i></i>

Estimated variogram

Thetford revisited

Features depend on spatial location

Some references

Bertil Matern; *Spatial Variation*. Medd. Statens Skogsforskningsinst.49: 5, Ch 2-3. (Reprinted in Springer Lecture Notes In Statistics, vol. 36)

Cressie: ch. 2.3.1, 2.4, 2.6.

P. Guttorp, M. Fuentes and P. D. Sampson (2006): Using transforms to analyze space-time processes. http://www.nrcse.washington.edu/pdf/trs80.pdf (to appear,SemStat 2004 proceedings, Chapman & Hall)

Banerjee, S., Carlin, B. P. and Gelfand, A. E.: *Hierarchical Modeling and Analysis for Spatial Data,* Chapman and Hall, 2004. pp. 129-135.