
2.1 Spatial covariances
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Valid covariance functions
Bochner’s theorem: The class of
covariance functions is the class of
positive definite functions C:

Why?
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Spectral representation

By the spectral representation any isotropic
continuous correlation on Rd is of the form

By isotropy, the expectation depends only on
the distribution G of     . Let Y be uniform on the
unit sphere. Then
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Isotropic correlation

Jv(u) is a Bessel function of the first
kind and order v.
Hence

and in the case d=2

                (Hankel 
     transform)
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The Bessel function J0
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The exponential correlation

A commonly used correlation function
is ρ(v) = e–v/φ. Corresponds to a
Gaussian process with continuous but
not differentiable sample paths.
More generally, ρ(v) = c(v=0) + (1-c)e–v/φ

has a nugget c, corresponding to
measurement error and spatial
correlation at small distances.
All isotropic correlations are a mixture
of a nugget and a continuous isotropic
correlation.



The squared exponential

Using yields

corresponding to an underlying
Gaussian field with analytic paths.
This is sometimes called the Gaussian
covariance, for no really good reason.
A generalization is the power(ed)
exponential correlation function,
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The spherical

Corresponding variogram
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The Matérn class

where         is a modified Bessel function of
the third kind and order κ. It corresponds to
a spatial field with  κ–1 continuous
derivatives
κ=1/2 is exponential;
κ=1 is Whittle’s spatial correlation;
           yields squared exponential.
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Some other
covariance/variogram

families

VariogramCovarianceName

NonePower law

NoneLinear

Rational
quadratic
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Recall
Method of moments: square of all pairwise
differences, smoothed over lag bins

Problems: Not necessarily a valid variogram
Not very robust

Estimation of
variograms
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A robust empirical
variogram estimator

(Z(x)-Z(y))2 is chi-squared for Gaussian
data
Fourth root is variance stabilizing
Cressie and Hawkins:
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Least squares

Minimize

Alternatives:
•fourth root transformation
•weighting by 1/γ2

•generalized least squares
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Maximum likelihood

Z~Nn(µ,Σ)  Σ= α[ρ(si-sj;θ)] = α V(θ)
Maximize

and θ maximizes the profile likelihood
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Parana data

ml

ls



A peculiar ml fit



Some more fits



All together now...



Bayesian kriging

Instead of estimating the parameters,
we put a prior distribution on them, and
update the distribution using the data.
Model:
Prior:

Posterior:
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geoR

Prior is assigned to φ and       . The
latter assumed zero unless specified.
The distributions are discretized.
Default prior on mean β is flat (if not
specified, assumed constant).
(Lots of different assignments are
possible)
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Prior/posterior of φ



Variogram estimates

mean
median
WLS



Bayes vs universal kriging

Bayes predictive mean Universal kriging



Spectral representation
Stationary processes

Spectral process Y has stationary
increments

If F has a density f, it is called the
spectral density.
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Estimating the spectrum

For process observed on nxn grid,
estimate spectrum by periodogram

Equivalent to DFT of sample covariance
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Properties of the
periodogram

Periodogram values at Fourier
frequencies (j,k)π/Δ are
•uncorrelated
•asymptotically unbiased
•not consistent
To get a consistent estimate of the
spectrum, smooth over nearby
frequencies



Some common
isotropic spectra

Squared exponential

Matérn
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A simulated process

Z(s) = gjk cos 2!
js1
m

+
ks2
n

"
#$

%
&'
+Ujk

(
)*

+
,-k=.15

15

/
j=0

15

/

gjk = exp(! j+ 6 ! k tan(20°) )



Thetford canopy heights

39-year thinned commercial
plantation of Scots pine in
Thetford Forest, UK
Density 1000 trees/ha
36m x 120m area surveyed for
crown height
Focus on 32 x 32 subset



Spectrum of canopy heights



 Whittle likelihood

Approximation to Gaussian likelihood
using periodogram:

where the sum is over Fourier frequencies,
avoiding 0, and f is the spectral density
Takes O(N logN) operations to calculate
instead of O(N3).
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Using non-gridded data

Consider

where

Then Y is stationary with spectral
density

Viewing Y as a lattice process, it has
spectral density
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Estimation

Let
 
where Jx is the grid square with center
x and nx is the number of sites in the
square. Define the tapered periodogram

where                      . The Whittle
likelihood is approximately
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A simulated example



Estimated variogram

true
exact mle
approx mle



Thetford revisited

Features depend on spatial location



Some references

Bertil Matern; Spatial Variation. Medd. Statens
Skogsforskningsinst.49: 5, Ch 2-3.
(Reprinted in Springer Lecture Notes In Statistics, vol. 36)

Cressie: ch. 2.3.1, 2.4, 2.6.

P. Guttorp, M. Fuentes and P. D. Sampson (2006): Using
transforms to analyze space-time processes.
http://www.nrcse.washington.edu/pdf/trs80.pdf (to
appear,SemStat 2004 proceedings, Chapman & Hall)

Banerjee, S., Carlin, B. P. and Gelfand, A. E.: Hierarchical
Modeling and Analysis for Spatial Data, Chapman and
Hall, 2004. pp. 129-135.


