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Abstract

A stochastic model for relating precipitation occurrences at multiple rain gauge

stations to broad-scale atmospheric circulation patterns (the so-called \downscaling

problem") is proposed. The model is an example of a nonhomogeneous hidden Markov

model and generalizes existing downscaling models in the literature. The model as-

sumes that atmospheric circulation can be classi�ed into a small number of (unob-

served) discrete patterns (called \weather states"). The weather states are assumed to

follow a Markov chain in which the transition probabilities depend on observable char-

acteristics of the atmosphere (e.g. mean sea-level pressure). Precipitation is assumed

to be conditionally temporally independent given the weather state. An autologistic

model for multivariate binary data is used to model rainfall occurrences and capture

local spatial dependencies. A modi�ed EM algorithm based on Markov chain maximum

likelihood procedures is developed for estimation.

This approach is used to model a 15 year sequence of winter data from 30 rain

stations in southwestern Australia. The �rst 10 years of data are used for model

development and the remaining 5 years are used for model evaluation. The �tted model

is able to accurately reproduce the observed rainfall statistics in the reserved data, even

in the face of a non-stationary shift in atmospheric circulation (and, consequently,

rainfall) between the two periods. The �tted model also provides some useful insights

into the processes driving rainfall in this region. We discuss the role that models such

as this might play in assessing the impact of climate change.

Keywords: hidden Markov model, climate change, precipitation model, Monte Carlo

maximum likelihood, EM algorithm
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1 Introduction

Stochastic models for precipitation have long been used to aid in understanding the proba-

bilistic structure of rainfall and for simulation studies. In particular, precipitation simulations

are often used as input into hydrologic models of ooding, runo�, water supply, agricultural

models of crop growth, and other applications. In the past these models considered only the

rainfall process, without reference to the atmospheric processes that drive precipitation. In

part, this reected the absence of good, long-term records of atmospheric circulation. Thus,

Gabriel and Neuman (1962) used a Markov chain with homogeneous transition matrix to

model daily wet/dry occurrences at a single rain gauge station in Israel. Stern and Coe

(1984) extended this model by making the (logits of) transition probabilities a Fourier series

to represent seasonal variations. Others developed more mechanistic models. For example,

LeCam (1961) described rainfall using a cluster point process whereby cyclonic storms were

assumed to contain \bands" (areas of high rainfall intensity) and the bands contained rain

cells where precipitation activity occurs. Waymire and Gupta (1981), Kavvas and Delleur

(1975, 1981) and others expanded on the point process approach.

These models have several limitations, however. In developing hydrologic models re-

searchers use information on temperature, solar radiation and other climatic factors in ad-

dition to precipitation. Ideally, the precipitation model should produce simulations which

are consistent with these other inputs into the hydrologic model. In addition, precipitation

models which exclude atmospheric information can only be used to simulate rainfall under

climatic conditions which are stochastically similar to those used to �t the model. Yet the

atmospheric processes that drive precipitation may be nonstationary, even over relatively

short time periods (i.e. decades). Thus, the ability of these models to produce precipitation

simulations for periods other than those used to �t the model (or even for subintervals of this

period) is limited. In particular, a model which fails to incorporate atmospheric information

would not be useful in studies of climate variability or climate change.
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Over the past few decades advances in data gathering and our understanding of atmo-

spheric circulation have lead to the availability of high quality sets of atmospheric data of vari-

able length (typically, 15-40 years). In addition, the development of physically-based, three-

dimensional, dynamic models of global circulations | general circulation models (GCMs)

| has lead to the creation of realistic simulations of atmospheric circulation of essentially

unlimited duration (some background on GCMs can be found in IPCC (1995)). To take

advantage of these types of data, and to address the problems noted above, a new class of

stochastic precipitation models known as \weather state models" has been developed. Recent

e�orts include papers by Hay et. al (1991), Bardossy and Plate (1992), Kidson (1994) and

others. Weather state models condition precipitation on available atmospheric information.

These models can be thought of as \conditionally stationary" in the sense that any nonsta-

tionarity in large-scale atmospheric circulation is (hopefully) captured by the conditioning

variables.

Weather state models can be used to generate realistic precipitation simulations by using

historical sequences of atmospheric data. Such an approach guarantees that the precipita-

tion simulations will be consistent with the observable atmospheric information. In addition,

weather state models can be used with atmospheric simulations from general circulation mod-

els to study the e�ects of climate variability on precipitation. In this respect, weather state

models provide important data that cannot, at present, be obtained from GCM simulations.

The spatial resolution of GCM's is constrained by both computational considerations as well

as our understanding of atmospheric dynamics to scales of approximately 2� to 5� of longi-

tude and latitude. Precipitation, however, varies on much more local scales. For this reason,

GCMs have been unable to generate realistic simulations of rainfall (Giorgi and Mearns,

1991). Weather state models provide one solution to this so-called downscaling problem.

Using the GCM atmospheric simulations as input, a weather state model can be used to

generate realistic simulations of local precipitation.

A �nal, more speculative, application of weather state models is to investigate the e�ect
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of hypothesized climate changes on precipitation. One such e�ect of particular interest is

the theory (popularly termed the \greenhouse e�ect") that observed increases (along with

predicted future increases) in atmospheric CO2 will lead to a global rise in temperature.

These predictions are based on experiments with GCMs in which the model is run with an

increased (typically doubled) atmospheric concentration of CO2. Under the strong assump-

tion that the historical relationship between precipitation and large-scale circulation would

still apply, a weather state model could be used to access the impact of the altered climate

on precipitation.

Hughes and Guttorp (1994) describe a class of models, which they term non-homogeneous

hidden Markov models (NHMM), that can be used to model the relationship between atmo-

spheric circulation and precipitation and to generate conditional simulations of precipitation.

In a basic hidden Markov model (HMM), one assumes the existence of two processes | an

observed process and a hidden process. The observed process (such as rain occurrence at a

�xed set of stations) is assumed to be conditionally temporally independent given the hid-

den process; the hidden process is assumed to evolve according to a �rst order Markov chain

(see Juang and Rabiner (1991) for a review of hidden Markov models). A nonhomogeneous

hidden Markov model (NHMM) extends this idea by allowing the transition matrix of the

hidden states to depend on a set of observed covariates. In the present application the co-

variates are derived from the atmospheric data. This approach provides a general framework

for the development of weather state models, since Hughes and Guttorp (1994) show that

most existing weather state models can be written as special cases of the NHMM.

In this article we develop a model for precipitation at 30 rain gauge stations in south-

western Australia. The data are described in section 2. In section 3, we describe the model

and an estimation procedure (a modi�cation of the EM algorithm) that is computation-

ally feasible for spatially dense networks of stations. Section 4 provides the results of our

data analysis. In particular, we show that the proposed model is able to detect shifts in

precipitation frequency that result from changes in circulation patterns. In section 5 we
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discuss future directions for research on downscaling models and the NHMM as tools for

precipitation modelling and climate change impact assessment.

2 Data

A �fteen year record (1978{1992) of daily winter (May{October) rainfall occurrences (2760

days, total) at 30 stations in southwestern Australia was made available by the Australian

Bureau of Meteorology. The locations of the stations are shown in �gure 1. Each rainfall

value represents the total rainfall over a 24 hour period ending at 0900 (local standard time).

Atmospheric data were obtained from the Australian Bureau of Meteorology on a Lambert

conformal grid and interpolated to a rectangular grid of similar scale|2:25o latitude by

3:75o longitude (also shown in �gure 1). Available atmospheric measures included sea-level

pressure, geopotential height at 850 hPa (hectoPascals) and 500 hPa, air temperature, dew

point temperature and u (north{south) and v (east{ west) wind speed components. The

atmospheric measurements were taken at 1900 (local standard time) on the preceeding day.

The �rst 10 years of data are used for model �tting and the last 5 years are reserved for

model evaluation.

3 Methods

3.1 Model

Our goal is to develop a model which will identify and quantify relationships between the

observed synoptic (large-scale) atmospheric measures and local precipitation patterns. We

postulate the existence of an unobserved discrete valued process | the \weather state" |

which acts as a link between the two disparate scales. Formally, let Rt be a multivariate

vector giving rainfall amounts or occurrences at a network of sites at time t, St be the weather
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state at time t, and Xt the vector of atmospheric measures at time t for 1 � t � T . The

Xt will usually consist of one or more derived measures from the available atmospheric data

(e.g. north-south gradient in sea-level pressure). The notation XT
1
will be used to indicate

the sequence of atmospheric data from time 1 to T and similarly for RT
1
and ST

1
. Lower case

will be used to indicate realized values of random variables (i.e. P (Rt = r)). All vectors are

row vectors and all vectors and matrices will be written in bold type.

In its most general form, an NHMM is de�ned by the following assumptions:

(M1) P (Rt j S
T
1
;Rt�1

1
;XT

1
) = P (Rt j St)

(M2) P (St j S
t�1
1

;XT
1
) = P (St j St�1;Xt)

and P (S1 j XT
1
) = P (S1 j X1). Speci�c NHMM's are de�ned by parameterizing P (Rt j St)

and P (St j St�1;Xt) as discussed below.

The �rst assumption (M1) states that the rainfall process, Rt, is conditionally inde-

pendent given the current weather state. In other words, all the temporal persistence in

precipitation is captured by the persistence in the weather state described in (M2). As-

sumption (M2) states that, given the history of the weather state up to time t� 1 and the

entire sequence of the atmospheric data (past and future), the weather state at time t de-

pends only on the previous weather state and the current atmospheric data. In the absence

of the atmospheric data this is simply the Markov assumption applied to the hidden process.

The atmospheric data, when included, are used to modify the transition probabilities of the

Markov process | hence the term \nonhomogeneous". Most weather state models in the

literature de�ne the weather states as deterministic functions of the atmospheric variables.

These models can be written as special cases of the NHMM by forcing P (St j St�1;Xt) to

be degenerate.

Various parameterizations for P (Rt j St) are possible. In the present application a model

for rainfall occurrence (rainfall below/above 0.3 mm) is developed; approaches for modelling

amounts are discussed in section 5.
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For an n-station network, let Rt = fR1

t ; : : : ; R
n
t g with observed value of rt = fr1t : : : ; r

n
t g.

Let rit = 1 if rain occurs on day t at station i and 0 otherwise. The autologistic model for

multivariate binary data is de�ned as

P (Rt = r j St = s) / exp

0
@

nX
i=1

�sir
i +
X
j<i

�sijr
irj

1
A (1)

where both �si and �sij must be �nite and �sii = 0. �sij is the \conditional log odds ratio"

of rain at station i to rain at station j (in state s) based on the probability distribution

P (ri; rj j r�i;�j; St = s). When �sij is positive, stations i and j are positively associated

(within weather state s) while a negative value for �sij implies a negative association. To

reduce the number of parameters in this model it will often be reasonable to model �sij as

a function of the distance and direction between stations i and j.

An important special case of (1) arises when �sij = 0 for all i, j, and s. Then

P (Rt = r j St = s) =
nY
i=1

pr
i

si(1 � psi)
1�ri (2)

where psi = exp(�si)=(1+exp(�si)). This will be referred to as the \conditional independence

model" for P (Rt j St = s). The psi give the probability of rain at station i in weather state

s. The rainfall occurrences, Ri
t, are assumed to be spatially independent conditional on the

weather state (unconditionally, however, the Ri
t will be correlated due to the inuence of

the common weather state). Hughes and Guttorp (1994) present an example of a spatially

dispersed network of rain gauge stations for which the conditional independence model works

well.

The parameterization for P (St j St�1;Xt) is motivated by Bayes formula and uses the

normal kernel for the joint distribution of the atmospheric data:

P (St = j j St�1 = i;Xt) / P (St = j j St�1 = i)P (Xt j St�1 = i; St = j)

= ij exp(�
1

2
(Xt � �ij)V

�1(Xt � �ij)
0) (3)

where �ij is the mean of Xt and V is the corresponding covariance matrix. This model shows

clearly how the NHMM is a general version of the simpler HMM. The ij may be thought of as
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the baseline transition matrix of the weather state process and corresponds to the transition

matrix of an HMM. The exponential term quanti�es the e�ect of the atmospheric data on

the baseline transition matrix. To ensure identi�ability of the parameters, the constraints
P

j ij = 1 and
P

j �ij = 0 are imposed. In this formulation V is used for scaling and

numerical stability (typically,V is set equal to the raw covariance matrix of the atmospheric

variables). It is not estimated as part of the model.

3.2 Parameter Estimation

Letting � denote the model parameters, the likelihood can be written as

L(�) = P (RT
1
j XT

1
; �)

=
X

S1;:::;ST

P (RT
1
; ST

1
j XT

1
; �)

=
X

S1;:::;ST

P (S1 j X1)
TY
2

P (St j St�1;Xt)P (Rt j St) (4)

which appears to be computationally intractable, even for a short sequence of data. How-

ever, the forward-backward procedure, a recursive algorithm developed to solve the standard

hidden Markov model (e.g. Juang and Rabiner, 1991) can be extended to the NHMM and

makes the calculation possible. The basic idea is to successively pass each of the multiple

summations in the likelihood as far to the right as possible. For example, the summation over

ST may be passed through all terms in the product except the T 'th term. If one has several

independent sequences of data (for instance, multiple years of data) then the likelihoods for

each sequence are multiplied together to form the overall likelihood.

Baum et al. (1970) developed an algorithm (later shown to be equivalent to the EM

algorithm of Dempster et al., 1977) to obtain maximum likelihood estimates for hidden

Markov models by considering the hidden states, ST
1
, to be \missing" data. This same

approach may be used with the NHMM. Let � = (�R; �S), the parameters of the observed
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and hidden processes, respectively. Then, the EM algorithm for the NHMM may be written

as (see Juang and Rabiner, 1991, for details)

� E step: compute

vt(s) = P (St = s j RT
1
;XT

1
; �)

wt(s1; s2) = P (St�1 = s1; St = s2 j R
T
1
;XT

1
; �) (5)

� M step: maximize

	(�0R j �) =
X
t;s

vt(s) lnP (Rt j s; �
0

R)

and

	(�0S j �) =
X

t;s1;s2

wt(s1s2) lnP (St = s2 j St�1 = s1;Xt; �
0

S) (6)

as functions of �0.

In the nonhomogeneous case, maximization of 	(�0S j �) always requires numerical optimiza-

tion. Maximizing 	(�0R j �) has a simple closed form solution when model (2) is used for

P (Rt j St), namely, p̂si =
P

t vt(s)r
i
t=
P

t vt(s). When the more general formulation (1) is

used, however, numerical optimization is required for 	(�0R j �) also and both the E-step and

the M-step become computationally intractable as the number of stations, n, increases. In

the E-step P (Rt j St) is used to compute the weights v(s) and w(s1; s2) so the normalizing

constant of this distribution (which requires summing over 2n terms) is needed; in the M-step

both the the normalizing constant as well as the �rst and second moments of Rt are needed

(the moments are used to compute the derivatives of 	(�0R j �) and 	(�0S j �); numerical

optimization techniques are more e�cient if �rst derivatives are provided). To address these

di�culties, a modi�ed EM algorithm was developed using the method of Monte Carlo max-

imum likelihood (MCML) (Geyer and Thompson, 1992). This modi�ed EM algorithm is

described below.
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The autologistic model (1) may be written as

P (Rt = r j St = s; �) =
1

c(�)
exp(w(r)�T )

where � = (�s1; : : : ; �s12; : : :), w(r) = (r1; r2; : : : ; r1r2; : : :) and c(�) is the normalizing con-

stant of the distribution. Geyer and Thompson (1992) show that if some �0 is in the param-

eter space then

c(�) �
c(�0)

N

NX
i=1

exp(w(ri)(� � �0)
T ): (7)

where r1; : : : ; rN are samples from P (Rt j St; �0). Thus, if there is at least one � in the

parameter space, say �0, for which the normalizing constant c(�0) can be computed, then (7)

can be used to approximate the normalizing constant anywhere in the parameter space. For

the autologistic model, this can be achieved by setting �sij = 0 where c(�) =
Q

i(1+exp(�si)).

The �rst and second moments of Rt may be approximated in a similar manner:

E�(R
k
t ) =

E�0r
k exp(w(r)(� � �0)T )

E�0 exp(w(r)(� � �0)T )

�

PN
i=1 r

k
i exp(w(ri)(� � �0)T )PN

i=1 exp(w(ri)(� � �0)T )
(8)

and

E�(R
k
tR

h
t ) �

PN
i=1 r

k
i r

h
i exp(w(ri)(� � �0)T )PN

i=1 exp(w(ri)(� � �0)T )
(9)

We used these results to develop a modi�ed EM algorithm (which will be referred to as

EM/MCML) which may be summarized as follows:

� E step: compute

v̂t(s) = P̂ (St = s j RT
1
;XT

1
; �)

ŵt(s1; s2) = P̂ (St�1 = s1; St = s2 j R
T
1
;XT

1
; �) (10)

� M step: maximize (or partly maximize)

	(�0R j �) =
X
t;s

v̂t(s) ln P̂ (Rt j s; �
0

R)
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and

	(�0S j �) =
X

t;s1;s2

ŵt(s1s2) ln P̂ (St = s2 j St�1 = s1;Xt; �
0

S) (11)

as functions of �0.

where P̂ indicates that the probability uses the estimated normalizing constant computed in

(7). Equations (8) and (9) are used in the M-step to compute �rst derivatives of 	(�0R j �).

To improve the e�ciency of this approach we update �0 and c(�0) in 7 at the beginning

of each EM iteration with the values from the previous iteration. In addition, it is often

advantageous to limit the parameter change in each EM iteration by limiting the number of

Newton-Raphson iterates in the M-step. Such an algorithm remains self-consistent (Rai and

Matthews, 1993) but will reduce the number of samples needed to update the normalizing

constant and moments via MCML. Other computational issues and strategies are dicussed

in Geyer and Thompson (1992).

4 Results

Consultation with atmospheric scientists produced a list of 24 summary measures of the

atmospheric data that might inuence rainfall in this area. These included measures such

as mean sea-level pressure and geopotential height over the region of interest, north{south

and east{west gradients, etc. Some preliminary analyses were conducted to get a rough

idea of the ability of each of these summary measures to predict rainfall. These analyses

included simple procedures such as correlating each summary atmospheric measure with

rainfall at each station, as well as more complex multivariate procedures such as using

tree-based classi�cation (Breiman et al., 1984) to determine which summary atmospheric

measures best predicted rainfall occurrence patterns at a subset (stations 7, 9, 16, and 17) of

the stations. Using the results of these preliminary analyses to provide a tentative ranking

of the 24 atmospheric measures, a series of NHMM's were �t to the �rst 10 (of 15) years
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of data. Both the number of weather states and the atmospheric measures included in the

model were varied. For computational considerations, the conditional spatial independence

model (equation 2) was used during this preliminary model �tting stage; the EM/MCML

procedure was used to �t the general autologistic model after the number of weather states

and atmospheric measures had been selected.

Selection of a �nal model was somewhat subjective, in part because existing procedures

for model selection cannot be justi�ed theoretically for hidden Markov models (for instance,

order selection in HMM's inherits many of the di�culties associated with selecting the num-

ber of components in a mixture model - see Titterington xxxx for a review). As a rough

guide, we have found the Bayes information criterion (BIC) (see, for example, Kass and

Raftery, 1995) useful for identifying the best �tting models but we do not rely solely on this

measure. Interpretability of the weather states is also an important consideration. In the

present example the \best" models (i.e. lowest BIC) had either 6 or 7 weather states and 2

or 3 atmospheric measures (table 1). Comparison of the precipitation occurrence patterns

associated with each weather state with their corresponding composite MSLP and GPH850

�elds (see �gure 5 for an example) suggested that the six state NHMM had a high degree

of physical realism. In addition, the patterns associated with the six states were distinct.

In contrast, the patterns for two of the states in the seven state models were almost indis-

tinguishable. For this reason, and because the seven state model did not noticably improve

the �t of the the model by the measures we examine below, a six state model was chosen.

Finally, for reasons discussed further in section 5 we prefer models with fewer weather states

and more atmospheric variables. Since the BIC's for the two 6 weather state models with

and without the geopotential height covariate were similar, we selected the model with more

atmospheric measures. Our �nal model, therefore, included six weather states and three

atmospheric measures (mean sea-level pressure (MSLP), north-south gradient in sea-level

pressure and the east-west gradient in 850 hPa geopotential height (GPH850)) and had a

log-likelihood of -17110 (table 1).
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Table 1: Comparison of several nonhomogeneous hiddenMarkov models using the conditional

spatial independence model for P (Rt j St). Covariates are 1 = mean sea-level pressure; 2

= Mean geopotential height at 500mb; 4 = N-S gradient in sea level pressure; 8 = E-W

gradient in geopotential height at 850mb.

no. states covariates log-likelihood df BIC

6 1,4 17214 270 36458

6 1,4,8 17110 300 36475

7 1,4 16876 336 35751

7 1,4,8 16747 378 36336

Figures 2 and 3 illustrate the �t of this model to important observed rainfall statistics,

including �rst and second moments, and the distribution of storm lengths (de�ned as the

number of consecutive days of rain; the model-based statistics are computed by generating

multiple simulations from the model, conditional on the observed atmospheric data, and then

averaging over the simulations so that variability in the predicted quantities is negligible).

The distribution of storm lengths is of particular interest to hydrologists because storm du-

ration strongly inuences ood magnitude and frequency. This distribution has also proven

to be the most di�cult characteristic of rainfall to reproduce using weather state models.

From these �gures it is clear that the �tted model (which assumes conditional spatial

independence) does well in reproducing the observed probability of rainfall at each station

and the distribution of \storm durations" (number of consecutive days with rain). However,

this model does less well at reproducing the observed patterns of spatial correlation between

stations, particularly for stations that are highly correlated. This makes sense: most of the

spatial correlation between stations is induced by the common weather state and this source

of correlation is captured by the model. However, additional correlation between nearby

stations is created by local orographic and other \sub weather state" scale e�ects and this

13



source of correlation is not captured in the independence model for P (Rt j St). We note

that none of the other models shown in table 1 �t this aspect of the data either.

To include these local e�ects, an NHMM was �t using the general autologistic model

(eq. 1) for P (Rt j St). The conditional log-odds ratios, �sij, were modelled as a function

of the distance and direction between the stations to reduce the number of parameters.

To determine an appropriate functional form for the �sij, each day was �rst classi�ed into

its most likely weather state using the 6 state, 3 atmospheric variables, conditional spatial

independence model described above (a procedure known as the Viterbi algorithm can be

used to classify each day into a weather state; see, for example, Juang and Rabiner, 1991).

Then, for each state, empirical estimates of the pairwise (unconditional) log-odds ratios were

generated and plotted against the distance and direction between the stations. These plots

suggested that the within-state spatial correlation declined as the distance between stations

increased and varied elliptically with direction. Using a nonlinear least-squares regression

analysis, the following functional form was found to give a good �t to the empirical log-odds

ratios and was, therefore, adopted as a model for the conditional log-odds ratios:

�sij = b0s + b1s log(dij
q
cos(�s + hij)2 + sin(�s + hij)2=es) (12)

where dij and hij are, respectively, the distance and direction between stations i and j.

For each state, s, there are 4 parameters in this model. Although, theoretically, all four

parameters could be estimated by the methods outlined in section 3.2, estimation of the

nonlinear parameters, �s and es, slows down the computations substantially. Therefore,

these parameters were �xed at the values obtained from the nonlinear regression analyses of

the empirical log-odds ratios. The b's were then estimated using the procedure described in

section 3.2.

This approach signi�cantly improved the �t of the model to the empirical log-odds ratios,

as seen in �gure 2. The EM/MCML algorithm converged to a model with estimated log-

likelihood equal to -15688. This may be compared to the log-likelihood of the �nal model
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obtained under the assumption of conditional independence of -17110 with a di�erence of 24

parameters.

The ability of the NHMM to reproduce key precipitation statistics conditional on the

observed atmospheric data suggests that this model could be useful for generating condi-

tional rainfall simulations for the period 1978{1987. However, if the model is to be used to

generate precipitation simulations for other periods or alternative atmospheric datasets (e.g.

to investigate the e�ects of climate change) then it is important to test the model on reserved

data. Figure 4 compares various observed rainfall statistics to those predicted by the model

for the 5 years of reserved data. Results for the spatial model �t using the EM/MCML

algorithm are shown. Figure 4 shows increased variability when the model is applied to

reserved data (as expected) but no systematic biases. This latter point is important since

a small but measureable shift in the mean atmospheric data �elds occurred during the 5

year period of reserved data (-0.81hPa in MSLP, +0.47hPa in N-S SLP gradient, +0.45m

in E-W GPH850). If this shift is deliberately removed from the atmospheric data (e.g. by

recentering the atmospheric measures in the 5 year period around the same means as were

observed in the 10 year period) then a small but noticable downward bias is observed in

the predicted rainfall probabilities (averaging 3.1 percentage points over the 30 stations).

However, when the atmospheric data are correctly included in the model the rainfall bias

is essentially eliminated. In other words, the lack of bias seen in �gure 4 indicates that the

model was able to adjust the rainfall probabilities to account for the (slight) nonstationary

shift in the atmospheric data. This is clearly a necessary condition if the model is to be able

to make useful predictions about rainfall under altered climates.

Although the weather states are abstract constructs of the model, they can be examined

by �rst classifying each day into its most likely state (using the Viterbi algorithm) and

then averaging the values of sea-level pressure, geopotential height or other atmospheric

measures, over all days in a given state, at each node of the atmospheric data grid. The

resulting "composite" �eld can be contoured to give a visual representation of the average
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�eld in that state. The resulting �elds provide a means of assessing the physical realism

of the hidden states as they are analogous to traditional synoptic classi�cations used by

meteorologists and climatologists (e.g. Yarnal, 1993).

Figure 5 shows the rainfall probabilities and composite sea-level pressure and 850 hPa

geopotential height �elds associated with three out of the six hidden states. The synop-

tic pattern associated with state 2 (high rainfall probabilities at all stations) is a typical

winter pattern, indicating a strong cold front traversing the study region. The strong and

widespread rains associated with this pattern produce the majority of the runo� within the

water supply catchments of the region (Ref to add!). This state occurred 20% of the time

during the 1978 - 1987 period and then decreased to 18% of the time during the 1988 - 1992

period (table 2) which partly explains the reduced probability of precipitation during the

latter period.

In contrast, the synoptic pattern associated with state 5 (low rainfall probability of rain

at all stations) shows a dominant high pressure system centered in the Great Australian

Bight. Such systems dominate the atmospheric circulation of the entire continent. Their

intensity and rate of movement control the weather changes experienced across the study

region (Sturman and Tapper, 1996). Their progression eastwards typically follows a well

de�ned period of 5 to 7 days. However, highs can remain stationary in the Bight for longer

periods, blocking the general circulation and leading to prolonged dry periods of continental

easterlies throughout the study region (Southern, 1979). This pattern is the single most

common weather state, occurring 29% of the time and is also the most persistent state with

a mean duration of 2.7 days (table 2).

The remaining four states are characterized by rainfall in particular regions of the study

area. For example, state 4 (shown in the middle row of plots in �gure 5) exhibits high

probability of rain at the southwest stations but low probability in the north and western

stations. The frontal systems associated with this synoptic pattern are weaker than those

associated with state 2. They do not penetrate as far north or inland, with little rainfall
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falling east of the Darling Range (a 500 m escarpment running north-south for much of the

region, approximately 25-50 km inland from the west coast).

The interpretability of the mean sea level pressure patterns suggests that the NHMM

weather states have a high degree of physical realism. Also, as the patterns seen in the

MSLP plots are complemented by those seen in the 850 hPa GPH plots, we believe that

the model has identi�ed the dominant synoptic scale features of precipitation in this region.

This supports our hypothesis that the model successfully downscales the synoptic-scale at-

mospheric circulation to the point-scale multisite precipitation process.

Other aspects of the weather state process such as the percent of time spent in each

weather state or the pattern of transitions between weather states can be derived from the

model. Table 2 contrasts the relative frequency and mean duration for each of the six weather

states for the 10 year and 5 year period. It is interesting that only the small changes in the

frequency and persistance of the weather states seen in table 2 were required to produce the

change in precipitation between the two periods that we have noted previously.

Table 2: Model predicted relative frequency and mean duration for the weather states.

relative frequency

1 2 3 4 5 6

10yr 0.06 0.2 0.13 0.20 0.29 0.12

5yr 0.06 0.2 0.14 0.18 0.29 0.13

mean duration (days)

1 2 3 4 5 6

10yr 2.4 1.8 1.4 1.8 2.7 1.4

5yr 2.3 1.8 1.4 1.7 2.6 1.5
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5 Discussion

Nonhomogeneous hidden Markov models can provide hydrologists and atmospheric scientists

with a useful tool for generating realistic simulations of precipitation and understanding

the relationships between atmospheric circulation patterns and rainfall. This approach to

precipitation modelling will be most successful in areas and/or seasons where precipitation is

driven by synoptic-scale systems. It is unlikely that these models will be successful in areas or

seasons in which rainfall is driven primarily by convective activity (e.g. thunderstorms) since

these processes evolve on relatively small scales and may not be predictable from synoptic

circulation patterns.

NHMMs generalize the concept of a weather state model as described by Hay et al.

(1991), Bardossy and Plate (1992), Kidson (1994) and others. In these models, however,

the investigators explicitly de�ned the weather states. The resulting states, while reecting

meteorological intuition, may not be optimal for modelling rainfall. An important advantage

of the NHMM approach is that it allows one to combine meteorological intuition (through

selection of the atmospheric measures) with data analysis to de�ne weather states that are

\optimal" in the sense of separating precipitation patterns. Plots such as �gure 5 can provide

insight into the interpretation of the weather states and the relationship between atmospheric

circulation patterns and precipitation. A comparison of the total variance in the atmospheric

measures to the within-weather state variance can be used to assess the homogeneity of the

weather states.

Another important distinction of the NHMM approach is the use of the Markov assump-

tion in the de�nition of the weather states. This is both a strength and weakness of the

model. Although it is conceptually appealing to assume that the current weather state

(and, therefore, the current rainfall pattern) should depend only on current atmospheric

conditions, practical aspects of the data collection may invalidate such an assumption. The

atmospheric data are typically measured at a point in time while the rainfall measurements
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represent an accumulation over a 24 hour period. We believe that conditioning on the pre-

vious day's weather state helps recover some of the atmospheric information that is relevant

to the 24 hour precipitation period. From a strictly practical point of view, inclusion of the

Markov assumption typically improves the �t of the model to observed rainfall statistics,

particularly the observed duration distribution. The danger of this assumption, however,

as noted by one reviewer, is that the previous day's weather state can serve as an \omit-

ted covariate" which will not respond to a climate change signal when the model is used

to generate simulations under an altered climate. Indeed, we have observed some trade-o�

between the number of weather states identi�ed and the number of atmospheric variables

included in the model|models with fewer weather states achieve a minimumBIC with more

atmospheric variables while models with more weather states achieve a minimum BIC with

fewer atmospheric variables. Since one would expect that a model with more atmospheric

information will produce precipitation simulations which are more responsive to shifts in

atmospheric conditions, we favor models with fewer weather states and more atmospheric

variables.

NHMMs represent a completely stochastic approach to the downscaling problem. Thus

far, more mechanistic approaches, such as GCM-based simulations of precipitation, have

proved to be de�cient at the spatial and temporal scales of relevance to regional and lo-

cal hydrology (Grotch and MacCraken, 1991). Although it is, at present, computationally

impossible to implement an entire GCM at local scales, some progress has been made in

developing \nested" GCMs which implement phenomenologic models for rainfall on a �ner

grid over a restricted area and use the coarse scale GCM data as boundary conditions. These

limited area models are able to achieve grid spacings on the order of 1o by 1o. Even at this

scale, however, de�ciencies in the precipitation simulations have been noted (Mearns et al.,

1995). Additional studies to compare the NHMM approach with the nested GCM approach

in terms of ability to accurately reproduce current climate precipitation patterns are ongoing

(Charles et al., 1996). However, even if GCMs are, at some point, able to accurately char-

19



acterize local precipitation patterns, downscaling models will still be valuable for modelling

phenomena that are not explicitly included in the GCMs (e.g. air pollution patterns).

We believe that future research in this area should focus on both conceptual and method-

ological issues. The outstanding conceptual issue in research on downscaling is making pre-

dictions under altered climate regimes. Predictions of the e�ects of hypothesized changes in

climate (e.g. global warming) are based on GCM simulations and are, therefore, restricted

to large scale e�ects. As described in IPCC (1995, sec. 6.6), there are considerable dis-

crepancies between predictions of di�erent GCMs in terms of changes in precipitation that

would occur on a sub-continental scale under a doubled CO2 climate. In addition, there are

substantial biases in precipitation between GCM control runs and observations. At present,

therefore, assessment of the local hydrologic e�ects of climate change necessitates the use of

models to downscale the (altered climate) GCM circulation patterns. However, this means

that the downscaling models must be used under di�erent conditions than they were �t

under. Clearly, in the absence of observations from the altered climate, it is impossible to

completely ascertain the validity of a downscaling model under an altered climate regime;

indeed, model validity may vary depending on the nature of the climate change. However,

certain aspects of the model and the intended application may increase our con�dence in the

ability of the model to predict precipitation under an altered climate. These include

� The range of the atmospheric variables under the altered climate should be similar to

the range of these measures under the current climate

� The model should include all atmospheric measures showing distributional changes

under the altered climate (unless it can be demonstrated that the omitted covariates

have no e�ect on precipitation)

� The model should respond to changes in observed precipitation caused by climate

variability (as in the example presented here) and other natural changes in the current
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climate regime (e.g. the eruption of Mt. Pinatubo in 1991, which caused measureable

changes in global climate)

Of course, the validity of downscaling models for impact assessment also depends on the

validity of the GCM model which provides the atmospheric information that drives precip-

itation. Assessment of GCM models is an active area of research | the interested reader

is referred to the IPCC report (1995, chapter 5) for a summary of the current state of

knowledge.

Several methodological issues remain, also. The model developed here deals with rainfall

occurrences only. For some applications it is also necessary to simulate amounts. One

approach is to �rst �t an NHMM to the occurrence data and then �t a model to the amounts,

conditional on occurrence (and, possibly, weather state), a posteriori. The simplest approach

to simulating amounts is to independently �t a model at each station. However, we have

observed that there is considerable spatial correlation in the amounts even after the spatial

correlation in the occurrences is accounted for using the model proposed here. Correct

simulation of the spatial distribution of amounts is particularly important for runo� and

ood models. When only a few stations are modelled, simulated amounts can be obtained by

resampling an entire vector of amounts from the historical data, conditional on the simulated

occurrence pattern (i.e. sampling from the joint amounts distribution). In applications

with many stations this approach is problematic since it is possible to simulate occurrence

patterns that never occur in the historical data. In that case, it is possible to incorporate

spatial dependencies in the simulated amounts by resampling separately from the historical

data at each station, conditional on the simulated occurrence pattern at nearby stations (i.e.

sampling from the univariate conditional distributions).

In either of the approaches outlined above, however, the amounts do not inuence the

de�nitions of the weather states. To fully integrate an amounts model into the NHMM

would require speci�cation of a multivariate mixed discrete-continuous model for P (Rt j St).
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While there is a large literature on rainfall models at single stations, multi-station models

are less common. In the context of a weather state model, Bardossy and Plate (1992) used

a truncated multivariate normal distribution to model amounts at multiple stations. We are

currently investigating this and other approaches to this problem and hope to report results

at a future date. To extend this idea further, models based on multivariate observations

(e.g. precipitation and temperature) could be developed and would be useful for input into

hydrologic models.

To further extend the utility of the weather state approach, methods could be developed

to simulate rainfall occurrence at locations that have not been explicitly included in the

model. In the context of the autologistic model this could be accomplished by spatially

interpolating the �si (note that a spatially smooth model for �sij has already been included

in the present analysis). For the example presented in section 4 we observed that the �si

from the best-�tting autologistic model were small and showed little variation within weather

state in the interior of the network (e.g. -2.0 to -6.0, depending on the weather state; note

that exp(�si)=1 + exp(�si) is the probability of rain at station i given no rain at all other

stations). Thus, to generate rainfall probabilities at a new location, i0, in the interior of the

network one could set �si0 equal to the mean value of �si from other stations in the interior

and compute �si0j from (12).
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Figure 1: Map of study area showing the locations of the atmospheric data grid and rain

gauge stations in southwestern Australia. Atmospheric data are interpolated to the verticies

of the grid as described in the text.
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Figure 2: Comparison of observed and model-predicted rainfall statistics based on the 10

years of data used for model �tting. Model-predicted statistics are generated by simulation

from the �tted model using the observed atmospheric data. Observed statistics are on the

x-axis; model-predicted statistics are on the y-axis.
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Figure 3: Comparison of observed and model-predicted rainfall statistics: duration distri-

bution. Results are presented for 6 representative stations (see �gure 1). Observed and

model-predicted statistics are based on the 10 years of data used for model �tting.
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Figure 4: Comparison of observed and model-predicted rainfall statistics on the 5 years of

reserved data. Model-predicted statistics are generated by simulation from the �tted model

using the observed atmospheric data. Duration distributions are shown at a representative

subset of stations. Station 2 represents the poorest �t seen at any station.
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Figure 5: Probability of rain, composite sea-level pressure (hPa) and 850 hPa geopotential

height (m) �elds for three states from the six state spatial model estimated using EM/MCML.

Each day is �rst classi�ed into its most likely state using the Viterbi algorithm. All days

in a particular state are then averaged at each station (for rainfall) or grid node (for the

atmospheric variables) to obtain the composite �elds.
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