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Abstract

This paper combines existing models for longitudinal and spatial data in a hierar-

chical Bayesian framework, with particular emphasis on the role of time{ and space{

varying covariate e�ects. Data analysis is implemented via Markov chain Monte Carlo

methods. The methodology is illustrated by a tentative re-analysis of Ohio lung cancer

data 1968-88. Two approaches that adjust for unmeasured spatial covariates, partic-

ularly tobacco consumption, are described. The �rst includes random e�ects in the

model to account for unobserved heterogeneity; the second adds a simple urbanization

measure as a surrogate for smoking behaviour. The Ohio dataset has been of particular

interest because of the suggestion that a nuclear facility in the southwest of the state

may have caused increased levels of lung cancer there. However, we contend here that

the data are inadequate for a proper investigation of this issue.

�
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1 Introduction

Data on disease incidence or mortality over a set of contiguous geographical regions are

very common. Typically such data are strati�ed according to several covariates, with the

number of persons and the number of cases or deaths being recorded for each region and

covariate combination. There can be several reasons for a spatial analysis of such data.

For example, a risk map may be required as an aid to the allocation of resources or as

an attempt to discover new factors regarding the disease. Raw or standardized incidence

rates may produce very unreliable maps, because some populations at risk are small and/or

the disease is rather rare. The goal here could be described as one of smoothing, in which

both spatial and non-spatial considerations may arise; the examination of residuals may be

particularly important. At the other end of the spectrum, there may be a quite concrete task,

perhaps involving the assessment of additional risk from a known putative source, such as

a nuclear installation. For some further comments contrasting \focussed" and \unfocussed"

analysis in a frequentist setting, see Besag and Newell (1991). For Bayesian methodology

and examples, mainly with regard to unfocussed analysis, see Clayton and Kaldor (1987),

Besag, York and Molli�e (1991), Clayton, Bernardinelli and Montomoli (1993) and, more

comprehensively, Clayton and Bernardinelli (1993).

Longitudinal information on incidence rates introduces a further dimension that is often

crucially important because of changes in socio-demographic structure or other risk factors

during the time period of the study. In the present paper, we use for illustration a dataset

on mortality from lung cancer for 21 successive years in the 88 counties of Ohio. We describe

the data in Section 2 of the paper. They have been analyzed previously by Waller, Carlin,

Xia and Gelfand (1997) and have been of particular interest because of the suggestion that a

nuclear installation in the southwest of the state may have been responsible for an increased

level of lung cancer there; for a purely spatial analysis, see Devine (1992) and Devine, Louis

and Halloran (1994). Although we comment further on this issue during the course of the

paper, we contend that Bayesian smoothing is not the most appropriate tool for focussed

analysis and that, in any case, the Ohio dataset does not provide enough information for any

proper conclusion to be drawn. Thus, our main concern with these data is as an illustration

of Bayesian mapping in time and space and, even in this limited pursuit, we do not yet
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produce a complete solution.

Among the many formulations developed for non-spatial analysis of longitudinal data,

hierarchical dynamic models play a central role in our approach. Such models accommodate

an appropriate degree of temporal exibility and can be easily combined with spatial formu-

lations already in use for the analysis of cross-sectional data. Perhaps the most compelling

feature of dynamic models is that the parameters associated with time trends and speci�c

covariates are free to vary over time; see, for example, Fahrmeir and Tutz (1994, Ch.8).

Thus, they provide a generalization of the state space models that have been popular in ana-

lyzing approximately Gaussian data (e.g. Harvey, 1989; West and Harrison, 1989). Dynamic

models in a Bayesian framework aim to produce smoothness in time trends, so that estimates

for any particular time can \borrow strength" from data at adjacent times. The correspond-

ing prior distributions neither impose stationarity nor assume a speci�c parametric form;

in fact dynamic models are related to the semi{ and non{parametric smoothing methods

of Hastie and Tibshirani (1990), as reviewed by Fahrmeir and Knorr-Held (1997a). Recent

applications of dynamic models for longitudinal and survival data are given in Berzuini and

Clayton (1994), Besag, Green, Higdon and Mengersen (1995), Berzuini and Larizza (1996)

and Fahrmeir and Knorr{Held (1997b).

In Section 3, we describe our approach to time-space modelling of disease risk data, in

the particular context of the Ohio dataset, though it applies more widely. We also include

some details of the Markov chain Monte Carlo (MCMC) computations used in implementing

the corresponding statistical analysis. In Section 4, we discuss the numerical results for

the Ohio data, both in applying the basic model and an extended version that attempts to

capture smoking patterns more explicitly via the Kafadar{Tukey index. Section 5 provides

some general discussion.

2 Ohio lung cancer data

The state of Ohio is located in the northeast of the United States and is divided into 88

counties. The database records the population size and the number of deaths from lung

cancer, strati�ed by age, gender and race (white or non{white), for each year between 1968
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and 1988 and for each county. Age is categorized as under 15 years, 15{24, 25{34, : : :, 65{74,

and over 74 years. Since very few deaths from lung cancer occur below age 45, we combine

the �rst four categories, which therefore results in �ve agegroups, labelled 1 through 5.

The spatial variability in the crude annual death rates �1000 is shown in Figure 1. This

map does not allow for di�erential risk factors The variability over time is illustrated in

Figure 2, which focuses on 45 to 54 year{old white males in four di�erent counties and

displays time series of the numbers at risk, the numbers of deaths and the corresponding

mortality rates. As one might expect, the widest range in the mortality rates occurs in the

two counties with the lowest populations at risk, Lawrence and Wyondot.

Figure 3 shows the observed mortality rate from lung cancer over time, broken down by

gender and race in the top panel, ignoring deaths below age 45, and by agegroup in the

bottom one. However, these plots can be misleading. For example, we must not conclude

that there is a higher risk for white than for non{white women, since the di�erence in

the mortality rates might be an artifact of disparities in the age distributions of the two

subgroups. Indeed, later we shall see that this appears to be the case.

Of course, a major risk factor for lung cancer is cigarette consumption and any analysis

that ignores this is highly questionable. Our basic formulation allows for unobserved co-

variates in each county but this device is unlikely to be entirely satisfactory here. Although

there is no reliable direct information on smoking behaviour across Ohio, it should help to

include a measure of urbanization in the model, primarily as a surrogate for cigarette con-

sumption. For example, Kafadar and Tukey (1993) suggest the logarithm of the population

size of the largest city in each county and compare this favourably with other, more obvious,

measures, such as population density, in a nationwide analysis of deaths from lung cancer.

Figure 4 shows a map of the Kafadar{Tukey (K{T) index for Ohio, based on population

data from 1970. The four counties containing the major cities (Cleveland, on Lake Erie, in

the north; Cincinnati, in the southwest; Columbus, approximately in the middle of the state;

and Toledo, on the Michigan/Ohio border, in the northwest) are clearly identi�ed.
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3 Time{space modelling

We describe our model formulation in terms of the Ohio dataset but of course it applies

more generally with appropriate modi�cation. Thus, let nijkt denote the number at risk in

county i (i = 1; : : : ; I) and year t (t = 1; : : : ; T ), for a speci�c agegroup j (j = 1; : : : ; J)

and gender � race combination k (k = 1; : : : ;K); here I = 88, T = 21, J = 5 and K = 4.

We assume that the number of deaths yijkt from lung cancer, during year t and in category

(i; j; k), has a binomial distribution with parameters nijkt and �ijkt, and that the likelihood

for the entire data is the corresponding product of binomial terms. In some contexts, a

Poisson approximation to the binomial might be appropriate but this has no real advantage

and here there are some categories for which the death rates are uncomfortably large.

The above binomial formulation might be adopted as a convenient approximation in a

frequentist framework but there is also a subjective justi�cation. Thus, consider a particular

individual who is in category (i; j; k) during year t. Suppose that she belongs to some �ner

risk category l; for example, she may be a heavy smoker, working in the steel industry. Now

assume that she will die of lung cancer during the year with a probability that is a random

draw from a distribution with mean �ijklt; this distribution might or might not reduce to

a single atom. Then, under independence, the number of deaths in category (i; j; k; l; t) is

binomial with parameters nijklt, the relevant number at risk, and �ijklt. However, the nijklt

are unknown to us and we therefore suppose they form a multinomial sample in which an

(i; j; k; t) individual falls in group l with probability �ijklt. It follows that yijkt has a binomial

distribution of the required form, where

�ijkt =
X

l

�ijklt�ijklt

and it is only this probability that we need to model. Note that, in general, �ijkt is not the

probability of death for anyone in particular but is merely the mean of a distribution. Of

course, this is a weakness but one that cannot be avoided without making additional rather

strong assumptions.

We follow a standard path in modelling �ijkt with a logit link to the binomial and use

a linear predictor �ijkt that decomposes additively into time{ and space{dependent e�ects.

For some motivation, consider a single individual in each category (i; j; k; t) and suppose
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that �ijkt is the corresponding probability of death from lung cancer. Thus, nijkt = 1 and

yijkt = 0 or 1. Then the simplest plausible assumption is that, conditional on a single death,

this occurs to the individual in category (i; j; k; t) with a probability that is the product of

the corresponding marginals; that is,

Pr(yijkt = 1jy++++ = 1) = Pr(yi+++ = 1jy++++ = 1)Pr(y+j++ = 1jy++++ = 1)

�Pr(y++k+ = 1jy++++ = 1)Pr(y+++t = 1jy++++ = 1):

The probability on the left{hand side is proportional to �ijkt=(1��ijkt) and thus we obtain a

simple additive model for the logistic transform of �ijkt. However, this simple independence

assumption is too naive and we must allow some interactions, though we maintain the

separability of space and time. Our eventual model is that the log{odds,

�ijkt = lnf�ijkt=(1 � �ijkt)g;

has the decomposition,

�ijkt = �t + �jt + kt + �zi + �i + �i; (1)

where �t is the e�ect of year t, �jt is the agegroup j e�ect at time t, kt is the gender � race

e�ect for combination k at time t, and zi is the (centred) K{T index in county i, if included.

Finally, �i and �i represent unspeci�ed features of county i that respectively do or do not

display spatial structure and can be interpreted as surrogates for unmeasured covariates, as

in Besag et al. (1991). If information on relevant temporal covariates was not available, we

would include surrogates here as well but the model would become very crude.

We have also used a more general formulation, in which interactions between gender,

agegroup and time and between race, agegroup and time are allowed in equation (1) but

the inclusion of such terms makes little di�erence here. Note that there is no simple way

to include cohort e�ects, because information on age is not available on an annual basis. In

principle, one might remedy this using a missing values formulation, as suggested in Besag

et al. (1995), but this requires knowledge of the number at risk on an annual basis both for

age and calendar time. Here, we have allowed for cohort e�ects indirectly via the agegroup

� period interactions �kt.
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The formulation (1) is completed by assigning prior distributions to the various compo-

nents of �ijkt. For e�ects that are a function of time, we do not expect exchangeability and

must seek a viable alternative. Thus, for �1; : : : ; �T , we adopt a random walk with inde-

pendent Gaussian increments, conditional on a variance �2

� which is then assigned a highly

dispersed but proper hyperprior. Note that the overall e�ect of the �ijkt can be absorbed

by the level of the random walk. Other possible priors include those based on second di�er-

ences, as opposed to �rst di�erences, as in Berzuini et al. (1993) or Besag et al. (1995), and

increments that conform to the hierarchical-t structure in Besag and Higdon (1997).

As regards the other temporal e�ects, we wish to make analogous assumptions but also

to avoid identi�ability problems. Therefore, we constrain the means �:t and :t to be zero for

each t. This device results in singular covariance matrices, which are known apart from the

individual variances �2

�j
and �2

k
. A related approach is described by Harvey (1989); for full

details in the present context, see Knorr-Held (1996). Note that it is not valid here merely

to set some parameter values to zero because this would destroy the prior exchangeability

of the �jt and the kt for each �xed t. Note also that, even though Figure 3 happens not to

conict with linearity, we would not want to impose deterministic time trends on the data

nor to make an assumption of stationarity.

For the spatially structured components �i, we choose a simple Gaussian intrinsic au-

toregression; see, for example, Besag et al. (1991). Thus, the conditional distribution of �i

is

�ij��i; �
2

� � N(��i; �
2

�=mi); i = 1; : : : ; I;

where ��i is the corresponding mean value over the mi counties that are geographically con-

tiguous to i, and �2

� is a variance parameter. This autoregression is a spatial analogue of the

random walk and similarly is just non-stationary. For an alternative median{related prior,

see Besag et al. (1991), and for further relevant discussion of intrinsic autoregressions, Be-

sag and Kooperberg (1995). For di�erent choices of neighbourhoods and weights, see Besag

(1975) and the rejoinder in Besag et al. (1991). Finally, unstructured spatial heterogeneity

is accounted for by assuming the �i to be independent and Gaussian with mean zero and

variance �2

�. Both �2

� and �2

� are assigned highly dispersed but proper inverse gamma priors.

We used Markov chain Monte Carlo to sample from the posterior distribution implied
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by the above formulation. Speci�cally, we applied univariate or block Metropolis steps,

as described for example in Smith and Roberts (1993) or Besag et al. (1995). Pilot runs

con�rmed the existence of a large negative correlation between the spatial and non{spatial

parameters in some counties, which led to extremely slow mixing. We remedied this by

updating �i and �i in a single block. The dispersion matrix of the corresponding bivariate

Gaussian proposal was chosen roughly to match the second moments, based on the results of

the pilot runs. The �i were recentred after each cycle, so that the overall e�ect was absorbed

by the �t; see Besag et al. (1995). Finally, for each t, we updated the time{dependent

parameters in blocks, again to improve computational e�ciency.

4 Results

In this section, we re{analyze the Ohio dataset, using the formulation described in Section

3, both with and without the K{T index zi in equation (1). First, we consider the temporal

parameters: the pictures we show are for the full model but the results are virtually indis-

tinguishable from those when zi is excluded. Figure 5 displays the posterior medians and 50,

80 and 95% pointwise credible intervals for the overall time trend �t and for the aggregate of

this with the �ve agegroup e�ects �jt, all plotted on the same scale. There is some evidence

of a change of slope in the overall e�ect around 1980. The risks in the �ve agegroups follow

the expected ordering and there is a similar ranking as regards the increase in risk over the

period of the study. Recall that mortality in agegroup 1 is almost negligible.

Figure 6 shows corresponding plots, aggregating the e�ects kt for the four gender �

race combinations with the overall time trend �t. There are large di�erences between the

e�ects for men and for women and between white and non-white men. Although the risk

for men shows a slight increase over time and is always much greater than for women, the

gender e�ect declines in importance over the period of the study, in accordance with known

increases in cigarette consumption by women. Perhaps the most interesting aspect of Figure

6 is the dominance of the median e�ect for non{white women over that for white women

at each time point; indeed the posterior probability that the risk for non{white women is

greater at all 21 time points is 0.76 and that the average e�ect dominates is essentially unity.
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Although this result again agrees with expectation, recall that it is in apparent conict with

the observed rates in Figure 3. The explanation is that collapsing over age provides an

instance of Simpson's paradox. Suppose instead that one were to collapse over time. Then

the observed rates for non{white women would be greater in every agegroup, especially the

�rst three, despite the fact that the overall rate is higher for white women. Note that, for

example, in 1968, non-white women comprised 10.9% of the population under 15 but only

5.4% of those over 65; for 1988, the corresponding �gures were 14.4% and 7.4%. Thus, there

is confounding in the observed rates between race and age, which the model resolves by the

inclusion of (time{dependent) race and age e�ects. In the analysis by Waller et al. (1997),

there is no allowance for age e�ects and hence the anomaly in the rates is inherited by the

estimated risks. Note that the purely spatial analyses in Clayton and Kaldor (1987), Besag

et al. (1991) and Devine et al. (1994) employ rates that are standardized for age, which

would seem to be a minimal requirement.

In Figure 7, we again plot the observed mortality rates for white males aged between 45

and 54 in four of the counties, as in Figure 2, and now compare these with the posterior

median and 50, 80 and 95% credible intervals for the estimated risk of death. We also show

corresponding 50 and 80% simultaneous credible regions, calculated by the method in Besag

et al. (1995, Section 6.3), which is equivariant to monotone transformations. Despite the

highly disparate observed mortality rates, there is no evidence of di�erences in risk and the

same holds true when comparisons with other counties are made. On the other hand, Figure

8 provides a map of the overall �tted annual death rates �1000 for each county, and this

shows large di�erences across the state. The map does not relate in any useful way to the

change in risk for an individual moving from county to county; and this remark would hold

also for any corresponding single-period map. However, it is directly comparable to Figure

1, which it resembles quite closely.

An important advantage of a formulation that does not include time� space interactions,

when this is valid, is that the spatial parameters can be interpreted more easily. In particular,

we de�ne the adjusted relative risk in county i by

ARRi = exp(�i + �i);

which is automatically calibrated to a common base for all other covariates. Of course, ARRi
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does not measure some average risk from lung cancer in county i but it does address the

existence of additional risk factors.

Figures 9 and 10 are maps of the posterior medians of the ARRs, omitting and including

the K{T index, respectively. We �rst discuss the basic unadjusted results. The most striking

feature in Figure 9 is the concentration of high values in the southwest of the state. Indeed,

three of the four highest ARRs occur there: 1.30 in Hamilton, in the extreme southwest;

1.32 in Clermont, immediately to the east; and 1.25 in Butler, immediately to the north.

The corresponding 95% credible intervals are (1.26, 1.35), (1.24, 1.41) and (1.19, 1.31).

The posterior probability of an above average ARR is essentially unity in any of these three

counties. Recall that Hamilton is of particular interest because it contains the nuclear facility

at Fernald. However, these results are all suspect because they do not take account of the

K{T index and yet there is clearly a visual similarity between Figures 4 and 9; indeed, the

corresponding correlation coe�cient is 0.42. Note, incidentally that the variability in the

posterior distribution of the ARRs reects population density and so is also broadly in line

with Figure 4 but with an inverse shading.

We turn now to the extended analysis, in which the ARRs are also calibrated for urban-

icity and hence, crudely, for smoking behaviour. In general, the posterior medians in Figure

10 are shrunk towards unity, as one might expect. In particular, those for Hamilton and

Butler are much reduced to 1.07 and 1.15, respectively. However, the posterior median for

Clermont increases to 1.41, because of the very low K{T index there. The corresponding

95% credible intervals are (0.98, 1.17), (1.09, 1.21) and (1.31, 1.50); in Hamilton, the prob-

ability of an above average ARR decreases to 0.93. The result for Clermont perhaps merits

further investigation but the obvious explanation is that its close proximity to Cincinnati

induces an above average level of tobacco consumption. Indeed, one might modify the linear

predictor (1) to incorporate information about the K{T indices in adjacent counties but the

real message here is that surrogate measures must always be treated with some suspicion.
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5 Conclusions

The modelling of data in time and space is a challenging task, made all the more di�cult

in many environmental applications because the spatial units are not arranged on a regular

array. The present paper presents some Bayesian methodology, exempli�ed by an assessment

of risk from lung cancer in the state of Ohio, based on annual observations of mortality in

each of the 88 counties. Our formulation includes e�ects for agegroup and gender � race,

through time, and for space. Rigorous analysis is hampered by the absence of direct informa-

tion on tobacco consumption in each county and we therefore introduce the Kafadar{Tukey

urbanization index as a surrogate measure. We also recognize the existence of other unknown

county e�ects and model these by non-speci�c surrogates. Although this approach is less

than ideal, we hope that our formulation provides a useful stepping stone in the development

of time{space methodology for the statistical analysis of risk from (non{communicable) dis-

eases and will perhaps encourage the collection of more complete information in the future.

We conclude with some comments towards these goals.

There is of course no doubt that a carefully designed case{control study would be much

preferred to the observational data with which the present paper is concerned. The results

from observational studies may suggest the need for further investigation but can rarely

be seen as an end in themselves. Nevertheless, computational advances during the past

decade, particularly the adoption of Markov chain Monte Carlo as a standard Bayesian tool,

have largely removed the need for models of convenience, so that one can now contemplate

more realistic formulations, incorporating features that might hitherto have been ignored.

For example, we believe that discrete dynamical models provide a signi�cant advance in

describing e�ects that develop over time.

The construction of complex stochastic models for observational data is likely to remain

a mixture of art and science. All models are incorrect and there is often a quite thin line

between those that are too naive to be useful and those that are too complicated to be

�tted reliably to the available data. We have not followed Waller et al. (1997) in applying

formal model choice criteria, though we did use standard contingency table methods on the

temporal data, as an exploratory tool. We contend that the above authors selected their

models from an inappropriate class and that this led to an analysis with which even they
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were ill at ease; in particular, none of their potential formulations incorporated agegroup

e�ects or interactions between period and age, race or gender. Instead, presumably all such

factors were to be described by the inclusion of time � space interactions, which breaks the

premise that these represent unknown or unmeasured covariates. Also, there is a considerable

advantage in interpretation if one can identify a viable model that is separable in time and

space. However, we recognize that time � space interactions may be an important residual

feature, in which case our formulation would require appropriate expansion. As regards

the spatial surrogates, recall that the ultimate goal is to remove the need for non{speci�c

covariates, so that ideally neither � nor � should enter into the formulation. However, in

practice, lack of available data or insu�cient insight will often lead to a compromise solution,

as in the present paper.
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0.18 thru 0.24
0.24 thru 0.30
0.30 thru 0.36
0.36 thru 0.42
0.42 thru 0.48
0.48 thru 0.54
0.54 thru 0.60

Figure 1: Crude annual death rate � 1000 for each county in Ohio.
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Figure 2: Temporal data for 45 to 54 year{old white males in four counties
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Figure 4: Kafadar{Tukey urbanization index for each county.
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Figure 7: Observed and �tted mortality rates for 45 to 54 year{old white males in four

counties. Centre panels: medians and 50, 80 and 90% credible intervals. Right{hand panels:

50 and 80% simultaneous credible regions.
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Figure 8: Overall �tted annual death rate � 1000 for each county.
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Figure 9: Posterior median for the adjusted relative risk in each county, without allowance

for the Kafadar{Tukey index.
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Figure 10: Posterior median for the adjusted relative risk in each county, allowing for the

Kafadar{Tukey index.
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