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Abstract

Environmental monitoring networks are recording pollu-

tant levels, weather, and a myriad of other factors. It

is often of interest to estimate these values at locations

where records are not available. Many spatial estimation

procedures rely on spatial covariance models. Assump-

tions of spatial isotropy or stationarity may be violated

due to factors such as topography and local emissions

structures. In this paper we discuss computational issues

for a heterogeneous (spatially non-stationary) model for

spatial correlations between point monitoring sites. The

modeling procedure involves deforming the geographic

space into a new space (D-space) where inter-site corre-

lations depend only on distances. Correlations between

unmonitored sites are then estimated as a function of

distance in the D-space. The estimation of the D-space

locations of the monitoring sites, and of the parameters

of the isotropic D-space variogram model is a di�cult

multidimensional problem. The dimensionality increases

with the number of monitoring sites. We use examples

to review the modeling approach and illustrate compu-

tational complexities. We indicate directions for future

work necessary for modeling massive data sets.

1 Introduction

Spatial correlation estimates are frequently used in the

estimation of values of environmental processes at spa-

tial locations. Assumptions such as isotropy and spatial

stationarity are often made. There may be local inu-

ences in the correlation structure however. For example,

there may be pollutant sources that impact a small geo-

graphic region, or there may be di�erences in topography

which inuence the spatial process. Sampson and Gut-

torp (1992) and Guttorp and Sampson (1994) developed

a heterogeneous spatial correlation modeling approach

using spatial deformations. Other heterogeneous spatial

correlation modeling approaches have been developed by

Haas (1990 a,b; 1995), Loader and Switzer (1992), and

Oehlert (1993).

In this paper we consider computational issues in the

implementation of the spatial deformation approach, and

directions for future work. In section 2, we review the

estimation problem and the estimation approach devel-

oped by Sampson and Guttorp (1992) for <p ! <d

deformations, assuming that the spatial correlation is

an isotropic function of distance in a d-dimensional de-

formation of the geographic space. We concentrate on

the special case of p = d = 2 in describing the estima-

tion procedure that we currently use, although higher-

dimensional extensions are immediate. In section 3, we

describe the optimization procedures and computational

di�culties that we have encountered. Other approaches

have been used for the estimation of the deformations,

and section 4 references some of these, including the ap-

proach of Smith (1996). Section 5 describes directions

for future work, including higher-dimensional mappings

and challenges in analyzing satellite data.

Ten-day aggregated precipitation data for November

and December at 20 sites in a French precipitation net-

work will be used as an illustrative example in this paper.

Figure 1 shows the site locations. This is a subset of the

sites used in Monestiez et al. (1993) and Meiring et al.

(1996).

2 Review of estimation problem

Suppose observations Y (xi; t) are collected at T time

points t 2 f1; : : : ; Tg at each of N monitoring sites

fxi : i = 1; : : : ; Ng, which may be irregularly located

in space. Suppose that Z (xi; t) represent the data that

result from standardization by the site speci�c temporal

variances. In this paper we assume that the observations

are independent in time, and that the spatial correlation

is constant in time.



We model spatial association in terms of the variance

of the spatial increments, which we call the spatial dis-

persion function, de�ned as

D (u;w) = var [ Z(u; t) � Z(w; t) ] (1)

for sites u and w. We will only use the terminology

variogram (c.f., Cressie, 1991) when we are referring to

dispersion models which depend only on the Euclidean

distance between sites (isotropic models), and will other-

wise use the term \dispersion". A dispersion of 2 corre-

sponds to zero correlation on the variance-standardized

scale.

The estimation approach introduced by Sampson

and Guttorp (1992) models correlation structure as an

isotropic function of distances after a deformation of

the geographic coordinate system. We refer to the ge-

ographic space or coordinate system as the G-space (or

G-plane for p = 2) and the deformation space as the

D-space (or D-plane for d = 2). The model is of the

form

dij = � (kf (xi)� f (xj)k) + eij (2)

where dij is the sample dispersion between geographic

sites xi and xj , � is a valid isotropic variogram with
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Figure 1: Network of precipitation monitoring sites in a

region of France. Data from the 20 numbered sites are

used in this paper.

parameters �, and f (xi) and f (xj) are coordinates in the

D-space, corresponding to geographic locations xi and

xj ; eij is an error term. The form of � must be chosen|

for example � might be an exponential variogrammodel

with nugget|and the variogram parameters � and the

D-plane coordinates must be estimated. In the example

in this paper, we use an exponential D-plane variogram

with nugget. For the variance-one spatial �eld this is of

the form

D(u;w)

=

�
a0 + (2� a0) f1� exp (�t0 huw)g if huw > 0

0 otherwise

where a0 is the nugget e�ect representing small scale

variability and measurement error, t0 is a scaling pa-

rameter, and huw is the distance between sites u and

w.

We currently use a penalized weighted least squares

criterion in estimating the variogram parameters and D-

space coordinates of the monitoring sites. If there are N

monitoring sites, the criterion to be minimized is

NX
j=2

j�1X
i=1

"
dij � cdijcdij

#2
+ � BEP; (3)

where dij is the sample dispersion, and cdij is the �t-

ted dispersion between the ith and jth monitoring sites,

calculated as cdij = 
�̂

�f̂ (xi)� f̂ (xj)
� : BEP is pro-

portional to the \bending energy" for the transformation

f(:) of the G-plane to the D-plane and � is a smoothness

parameter controlling the variance-bias trade-o�.

For p = d = 2 we compute the bending energy penalty

as the sum of the bending energy for two <2 ! < thin-

plate spline mappings:

f1 : (x; y)! xD and f2 : (x; y)! yD

where (x; y) is a geographic location, and (xD ; yD) is the

corresponding D-plane location. The bending energy of

each mapping fi is

Z
<2

"�
@2fi

@x2

�2
+ 2

�
@2fi

@x@y

�2
+

�
@2fi

@y2

�2#
dx dy: (4)

It may be calculated as a quadratic form in the new co-

ordinates or as a quadratic form in the spline coordinates

(c.f., Wahba, 1990). We use the formulae of Mardia et

al. (1991), namely

[fi (x1) ; : : : ; fi (xN )]B [fi (x1) ; : : : ; fi (xN )]
T
; (5)



where

B = [(I �A)K (I �A)]
�

Kij =

�
0 if i = j

h2ij log
�
h2ij
�

if i 6= j
;

Pi: =
�
1 xi(1) xi(2)

�
;

A = P (P 0P )�1P 0;

and [ ]
�
denotes the Moore-Penrose generalized inverse

(see for example Pringle and Rayner, 1971). The expres-

sion given by (5) is proportional to (4).

Meiring et al. (1996) illustrate the variance-bias

trade-o� in choosing � in criterion (3) and present a

cross-validation study of choosing �. For small �, one

may �t the sample dispersion estimates too closely, not

allowing for variability in these estimates. As � in-

creases, the model tends to a stationary spatial corre-

lation structure with elliptical contours of constant dis-

persion. Figure 2 illustrates the e�ect of changes in �

on the �tted dispersions and deformations using an ex-

ponential variogram model with nugget as the D-plane

variogram for the precipitation data. (The exponential

variogram is almost linear in the range of dispersions

shown.) Pairwise dispersions between site 72 and other

sites are highlighted, indicating substantial bias in the

estimation of these for � = 1000.

The cross-validation simulation experiment of Meiring

et al. (1996), minimizes the cross-validation criterion

X
i2N

X
j2N�fig

 
dij � 

�̂i�
(f̂i�(xi)� f̂i�(xj))


�̂i�

(f̂i�(xi)� f̂i�(xj))

!2

:

(6)

with respect to �. The estimates subscripted by i� are

based on observations from all sites except xi, using � as

the smoothing parameter. N = f1; : : : ; Ng. The mean

square error between the �tted and the true dispersions

was lower when the �tted dispersions were based on �

chosen by cross-validation, than when choosing � by a

simpler stopping rule, or than when using a homogeneous

spatial dispersion model corresponding to an in�nitely

large value of �. Due to the complexities of optimizing

criterion (3), cross-validation may prove too computa-

tionally intensive for use in routine analyses. This points

to the need for e�cient estimation routines and careful

consideration of computational issues.

3 Implementation and

computational issues

For a speci�c choice of �, we use an algorithm which

alternates between estimation of the D-plane coordi-

nates for �xed variogram parameters, and estimation of

the variogram parameters for �xed D-plane coordinates.

Two sites are �xed at their geographic coordinates in

order to �x the scale, orientation and location of the D-

plane con�guration. The matrix B in (5) depends only

on the geographic locations of the monitoring sites so

remains constant throughout the optimization.

Estimation of the few variogram parameters for �xed

monitoring site locations is substantially less complex

than the optimization over the monitoring site locations.

However, standard optimization considerations such as

scaling and starting values are vitally important. Figure

3 shows the objective surface as a function of variogram

parameters for an exponential variogram with nugget,

keeping the monitoring sites at their geographic loca-

tions. Such plots may be considered to decide on the

starting values for variogram parameter estimation, and

also on the scaling of the coordinates so that the local

minimum does not appear to fall along a sharp ridge in

the objective surface. The vertical axis on the left of

Figure 3 represents the t0 parameter scaled by 10�3 to

make it more comparable with the nugget parameter a0
on the horizontal axis. In terms of the actual t0 coor-

dinates on the right vertical axis the objective surface

would appear to have an extremely long ridge.

In the optimization step for the D-plane monitoring

site locations, the objective surface is highly complex

and is often multimodal with points of inection. For

<2 ! <2 mappings with N monitoring sites the surface

is de�ned over a 2N � 4-dimensional parameter space

(after �xing two monitoring sites sites at their G-plane

locations in order to �x the orientation, scale and loca-

tion of the D-plane up to reection of the entire plane).

Figure 4 shows multimodality in the objective surface for

� = 0. Contours are plotted of the objective surface for

a grid of locations of site 23 with the variogram param-

eters �xed at their optimized values and the other mon-

itoring sites �xed at their (optimal) D-plane locations,

which are indicated by solid triangles. The geographic

and D-plane locations for site 23 are indicated. Note

that peaks in the objective surface at other monitoring

sites prevent sites from getting too close in the D-plane.

However, there may be multiple local minima around the

D-plane, as indicated by the dotted lines corresponding

to an objective value of 3.5.

Problems of multi-modality are reduced as � in-

creases, since the mapping approaches an a�ne defor-

mation in the limit. Figure 5 separately displays the

weighted least squares and bending energy components

of criterion (3) over a grid of site locations for site 72.

Site 72 was chosen for this �gure since it is relatively iso-

lated, allowing clearer presentation. The objective sur-

face of the weighted least squares component is highly
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Figure 2: Deformations and �tted variograms for di�erent values of � for 20 sites in a French precipitation network.

Dispersions involving site 72 are highlighted.



complex, whereas the surface of the bending energy com-

ponent is much simpler. As � increases, the bending

energy penalty component begins to dominate the op-

timization. The �nal solution corresponds to a weight-

ing between the optimum of the bending energy compo-

nent and the weighted least squares component, with the

weighting determined by �. Similar plots for � = 1000

showed that the optimized D-plane location for site 72

corresponded with the minimum of the bending energy

component, at which stage we had �tted a stationary

dispersion model.

As with many cases of multi-modality, it is di�cult to

create diagnostics for the existence of multiple modes,

or to explore the objective surface to search for these

modes. We have demonstrated plots of the objective

surface over a grid of D-plane locations for a monitoring

site while keeping the variogram parameters and D-plane

locations for the other sites �xed at their optimized val-

ues. However, such plots are not su�cient as diagnostics

since the set of N (conditional) surfaces does not repre-

sent all the modes for the 2N � 4 dimensional space.
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Figure 3: Objective surface over a grid of variogram

parameter values, corresponding to coordinates �xed at

their geographic locations. The vertical axis on the left

represents the t0 parameter scaled by 10�3 to make it

comparable with the scale of the nugget parameter. The

vertical axis on the right represents the actual coordi-

nates of t0.

We begin the optimization of the locations for the

monitoring sites at their geographic locations, since we

model the spatial dispersions as a smooth function of ge-

ographic location. For this reason we are perhaps most

interested in modes that are near the original geographic

locations, which are least likely to result in a mapping

that folds (is not bijective). Repeating the optimization

with di�erent initial locations for the monitoring sites,

may aid in investigating multi-modality. However, we

would not expect a reasonable transformation mapping

if the starting values were too far from the original geo-

graphic locations.

Clearly, the complexity of the optimization also de-

pends on how well-de�ned the minima are in the objec-

tive space. In Guttorp et al. (1997), we illustrated that

the spatial correlation of pre-whitened and demeaned

transformed hourly ozone residuals, is diurnally varying.

The optimization routines converge relatively quickly for

the (day to day) correlation structure of the afternoon

hours, but not for the morning hours. For the morning

hours all of the spatial correlations are close to zero (pos-

itive and negative) and the �tted variogram is relatively

at. During the morning hours, the optimization proce-

dure cannot distinguish between a at variogram with a

nugget close to 2 (corresponding to zero correlation) or

a �tted variogram with a low nugget, but a sharp rate

of increase at distances less than the minimum intersite

distance.

3.1 Current optimization approach

Our current implementation uses the NPSOL 4.0 non-

linear optimizer developed by Gill, Murray, Saun-

ders and Wright (1986), or the routines E04UCF and

U04UEF in the NAG Fortran Library. These optimizers

use a sequential quadratic programming (SQP) approach

(see Gill et al. 1981, and references therein). They are

designed to solve problems of the form

min
v 2 <n F (v) subject to l �

8<
:

v

ALv

c(v)

9=
; � u; (7)

where F (v) is the objective function as a function of the

variables over which we are optimizing. Both steps of the

alternating algorithm can be formulated in this way. In

the variogram parameter estimation step of the alternat-

ing algorithm, v is the vector of variogram parameters.

In the D-plane step of the algorithm, v is a vectorized

form of the site coordinates. We have only upper and

lower bound constraints on the variables over which we

optimize, so AL and c(v) are set to zero. In the vari-

ogram parameter estimation step of the algorithm, the
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cation and the D-plane location for site 72 are indicated,

as are the minima for each of the weighted least squares

and bending energy penalty components. The D-plane

location is seen to be between the minima of the two in-

dividual components, with the weighting determined by

�, which equals 1 in this example.

linear constraints consist of bounds on the variogram pa-

rameters. For example the nugget e�ect a0 is constrained

to lie between 0 and 2. In the D-plane step of the algo-

rithm, the linear constraints are equality constraints on

the two site locations which are �xed.

We encountered a number of optimization problems

while implementing NPSOL. Several of these were re-

lated to it being a gradient based optimizer. When we

ran NPSOL without specifying analytical derivatives,

the D-plane coordinate solution was particularly poor

for large values of � in the bending energy penalty. This

may be due to the automatic choice of �nite di�erence

intervals in the approximation, possibly resulting in the

algorithm stepping over the minimum when evaluating

steps in the appropriate search direction. We thus speci-

�ed the gradients with respect to the coordinates analyt-

ically, and we usually specify the gradients with respect

to the variogram parameters analytically as well.

4 Alternative approaches

The concept of isotropy as a function of distance in a

deformation of the geographic space (allowing local cor-

relation structure as a function of location in the geo-

graphic space), is the most important idea in this het-

erogeneous spatial correlation modeling approach. We

have described an estimation approach using a penalized

weighted least squares criterion and two thin-plate spline

mappings. Other estimation approaches have been sug-

gested, and continued work is needed to investigate ap-

proaches which will be computationally feasible for mas-

sive data sets.

Our original computational approach used a non-

metric multidimensional scaling algorithm for the cal-

culation of D-plane coordinates, but this calculation,

followed by possible smoothing of the implied G-plane

to D-plane mapping, did not represent the optimiza-

tion of any objective criterion (Sampson and Guttorp,

1992). It would be natural to consider maximum likeli-

hood or Bayesian approaches. Smith (1996) proposes a

maximum likelihood approach calculating mappings us-

ing only subsets of the radial basis functions underlying

the thin-plate spline. Much work remains to be done

here.

5 Discussion

The exponential variogram models used in this paper

are monotonically increasing and tend to an asymptote

corresponding to zero correlation as the distances be-

tween sites increases. Atmospheric phenomena may ex-



hibit negative correlations between regions; for example

the surface pressure in a region in the eastern tropical

Paci�c is negatively correlated with that of Djakarta in

Indonesia (Wilks, 1995, page 59). These negative corre-

lation patterns are known as teleconnections. Hole func-

tion variograms are non-monotonic and allow negative

correlations. We have used hole function variograms in

Sampson et al. (1994). Further study is needed on prop-

erties and interpretation of the deformations when the

variogram is non-monotone.

We have considered mainly the situation where the

spatial correlation is an isotropic function of distance in

a two dimensional deformation of the two dimensional

geographic plane. There are instances where this may

not be reasonable. For example, sites on either side of

a pollutant plume may be more strongly correlated with

each other than they are with sites within the pollutant

plume. Two-dimensional plane deformations based on

monotone variograms may exhibit folding in these situ-

ations. We are considering the applicability and inter-

pretation of some extensions of our current methodology

for these problems. The simplest approach is to consider

non-monotonic variograms. Another approach is to use

<d ! <p mappings where p is larger than d. We expect

that these higher dimensional mappings will also prove

useful by allowing more local spatial structure in the de-

formation than is currently accommodated by the global

bending energy penalty when � is set su�ciently high to

eliminate any large scale folding of the mapping.

One of the most di�cult problems in geostatistics is

how to estimate the nugget e�ect if one doesn't have

collocated observations. This is also one of the most im-

portant problems, since the nugget is important when

estimating at spatial locations that are close to mon-

itoring sites. In the absence of collocated sites, there

is no information about the correlation of the spatial

process at distances smaller than the smallest intersite

distance. Small-scale variability and measurement error

cannot be distinguished without collocated observations.

In practice we still estimate the nugget, but sensitivity

to this estimate should be investigated. This is also an

essential consideration when considering the choice of

D-plane variogram, since di�erent classes of variograms

may give similar �ts over the range of the data, but yet

give very di�erent estimates of the nugget. This once

again highlights the need for statisticians to be involved

in monitoring network design.

Underlying any application of the deformation model

for spatial correlation structure is the implicit assump-

tion that the monitoring sites are su�ciently densely lo-

cated so as to represent the heterogeneity in the underly-

ing (\true") correlation structure as represented by the

nonlinear mapping. This model is motivated by the as-

sumption that factors such as predominant wind direc-

tions and topography inuence the empirical correlation

in measurements of environmental processes at di�erent

points in space. We do not currently know how best to

model these e�ects explicitly, but we expect that they

will be manifest in the nonlinear deformations. So it is

important that the monitoring sites adequately repre-

sent the spatial variation in these factors presumed to

underly the spatial covariance structure. Thus, for ex-

ample, if a mountain range is expected to inuence not

just the mean, but the spatial covariance structure of a

space-time process, then we should not extrapolate the

spatial covariance structure over the mountain from a

sample of monitoring sites on either side of the range.

Systematic biases due to monitoring network design

may be avoided by taking advantage of remote sensing

data|for those environmental parameters that can be

measured from space. Satellites are providing massive

data sets. They may alleviate some data sparsity prob-

lems (subject to consideration of the size of the \foot-

print" that satellite observations represent), but they

present many new computational challenges due to the

sheer volume of data and due to the fact that satellite

paths have particular distributions in time and space|

in contrast to the regular temporal sampling from �xed

monitoring networks. The development of methods for

�tting these spatial deformation models from satellite

data, and for some applications, the integration of satel-

lite data with surface monitoring data, pose challenging

research problems.

We have outlined our current estimation approach

and computational considerations in its implementa-

tion. Current challenges include the development of

better computational algorithms that will make cross-

validation exercises more feasible on a routine basis and

the development of tools to guide the optimization in

view of the multimodality of the objective surfaces for

this high-dimensional estimation problem. In addition,

development of procedures permitting the application of

the spatial deformation model to massive remote sensing

data sets would be extremely valuable.
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