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Abstract

We present an approach to estimate hourly grid-cell surface ozone concentrations

based on observations from point monitoring sites in space, for comparison with grid-

based results from the SARMAP photochemical air-quality model for a region of North-

ern California. Statistical estimation is carried out on a transformed (square root) scale,

followed by back-transforming to the original scale of ozone in parts per billion, adjust-

ing for bias and variance. We estimate a spatially-varying diurnal mean structure and a

non-separable space-time correlation structure on the transformed scale. Temporal pre-

whitening is followed by modeling of a spatially nonstationary, diurnally-varying spatial

correlation structure using a spatial deformation approach. Comparisons of SARMAP

model results with the estimated grid-cell ozone levels are presented.

Keywords: Kriging, Non-separable space-time correlation, Spatial scale, Transformation
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1 Introduction

Photochemical air-quality models have been developed to better understand atmospheric

pollutant levels and chemical reactions, and to predict the e�ects of regulated changes in

pollutant emissions. The operational evaluation of such models consists of comparing model

air quality predictions with any available observations. Observations may be obtained from

various sources, including �xed surface monitoring sites, balloon-based instruments, and

satellites. The results from the photochemical air-quality models are often on di�erent

spatial scales from the observations. Di�erent processes manifest at di�erent scales, as

highlighted by the National Research Council (1991, page 305), which states \The spatial

resolution of the concentrations predicted by a grid-based model corresponds to the size of

the grid cell. Thus, e�ects that have spatial scale smaller than those of the grid cell cannot

be resolved. Such e�ects include the depletion of ozone by reaction with nitric oxide (NO)

near strong sources of NOx like roadways and power plants." This quote highlights the

need to consider the spatial scales of the model and observations in the model evaluation

process. A grid-based numerical model has no information about variability on the subgrid

scale, which is present in data from monitoring sites that are point locations in space. In

this paper we present an approach to estimate hourly grid-cell surface ozone concentrations

based on monitoring site observations, for comparison with grid-based predictions from the

SARMAP photochemical air-quality model. We analyze data and model predictions from

the Sacramento region and Northern San Joaquin Valley of California.

SARMAP stands for SJVAQS/AUSPEX Regional Model Adaptation Project; where
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SJVAQS stands for San Joaquin Valley Air Quality Study; and AUSPEX stands for At-

mospheric Utility Signatures, Predictions, and Experiments. As described in Blumenthal

(1993), the SARMAP project aims included developing Eulerian models of atmospheric

ozone and other pollutants in the San Joaquin Valley of California, to further develop the

understanding of causes of ozone levels exceeding desirable limits, and to aid policy makers

in deciding on emission control regulations. Extensive pollutant and meteorological data

were collected at surface sites and for upper-air levels (including balloon-based and aircraft

measurements) during the period July 1 through August 31, 1990 (Solomon and Silver,

1994). Intensive sampling periods were chosen to correspond with forecasted episodes of

high ozone (Smith, 1994). Photochemical model results are available for the period Au-

gust 3 through 6, 1990; which corresponds with an episode of high ozone. The SARMAP

researchers have kindly provided us with the data and photochemical model output used

here. In this paper we present analyses using only surface ozone data.

In order to estimate the grid-cell ozone concentrations, we begin by transforming the

data to a scale where the residuals are approximately Gaussian. We then model a spatially

varying diurnal (24 hour) mean structure and a spatially varying temporal correlation of the

autoregressive type, which we use to pre-whiten the data. We use the spatial deformation

approach developed by Sampson and Guttorp (1992) and Guttorp and Sampson (1994)

to model the heterogeneous spatial correlation in the pre-whitened residuals, which also

varies diurnally (Guttorp et al., 1994 and 1997). This spatial correlation model provides

the basis for simple kriging estimates of the pre-whitened residuals at a regular sub-grid
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of points in each grid cell for which the model produces results. We post-color the kriged

residuals using autoregressive coe�cients interpolated to the sub-grid points, and add back

the diurnal mean �eld also interpolated to the sub-grid points. We then transform back to

the original scale correcting for bias and variance due to the square-root transformation.

This gives an estimate for the ozone level at each of the sub-grid points for each time point.

Finally, we average the back-transformed values over all sub-grid points within each grid

cell to give an estimate of the ozone concentration in parts per billion (ppb) for that grid

cell. We also estimate the variance of this grid-scale estimate. Aspects of this analysis,

namely the diurnal mean estimation, pre-whitening and spatial correlation estimation were

presented in Guttorp et al. (1994, 1997).

Our approach represents a non-separable space-time correlation structure, in that the

correlation cannot be expressed as a product of a spatial component and a temporal com-

ponent. It allows for spatially varying mean �elds, asymmetric estimates in space and time,

and for diurnal variability in the correlation of the residuals. Diurnal variation in the spa-

tial correlation structure has also been noted and attributed to geophysical processes by

Casado et al. (1994), although these authors did not model a non-stationary spatial correla-

tion structure. Non-stationarity and non-separability may be caused by complex in
uences

of meteorology, topography, and emissions patterns on ozone levels. We are also investigat-

ing other non-separable space-time models (not based on temporal pre-whitening). See, for

example, Sampson et al. (1994).

The approach we use for grid-cell estimation is essentially that described in section
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3.2.2 of Cressie (1991), but in a spatio-temporal context with temporal pre-whitening and

a diurnal mean structure. Cressie suggests transforming the data to a scale where they are

approximately Gaussian, performing kriging on the transformed scale, and then correcting

for bias when transforming back to the original scale. He gives details for the log transform,

and generalizes it for other transformations. The transformation and pre-whitening steps in

our approach make the usual block kriging calculations (c.f., Journel and Huijbregts, 1978;

Cressie, 1991, page 124) infeasible, which is why we estimate at a regular sub-grid of points

before averaging.

An outline of the remainder of the paper is as follows. In section 2, we present the

spatio-temporal modeling approach (Guttorp et al., 1994 and 1997). Section 3 provides

more details of the grid cell estimation, referring to Appendices A and B for expressions for

the moments of the spatio-temporal process as well as implementation of a forward recursion

estimation approach for grid cell ozone levels. Several other practical implementation issues

are discussed in section 4. In section 5, we present estimates of the surface ozone levels with

standard errors for several grid cells in the Sacramento region and Northern San Joaquin

Valley, under the assumption of known mean and covariance structure. We compare these

with results from the SARMAP photochemical air-quality model. We conclude with a

discussion indicating directions for future work.
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2 The data

Figure 1 shows a map of California with 32 of the SARMAP surface ozone sites indicated

by open circles. These are the 32 sites used in Guttorp et al. (1997). Site descriptions

of a subset of these sites are provided in Guttorp et al. (1994), which also discusses the

exclusion of one site in this region due to data quality problems. The enlarged subpanel

also indicates the centers of the SARMAP photochemical model grid cells. The positions

of a sub-grid of nine points in one grid cell are also shown, and will be discussed in section

5.

... Figure 1 about here ...

There is extreme heterogeneity of variance in the hourly ozone data, with means and

variances positively related. After considering several transformations of the data, we used

the square root transformation. Carroll et al. (1997) also chose a square root transform for

analyzing surface ozone data.

Figures in Guttorp et al. (1994, 1997) indicated a strong diurnal cycle in mean ozone

levels at each site, usually with a maximum in the afternoon in this region. Ozone is

a secondary pollutant produced in photochemical reactions (c.f., NRC, 1991). Diurnal

patterns in photochemical activity, primary pollutant emission and pollutant transport

explain the diurnal structure. Peaks in the diurnal cycle of surface ozone may occur at

di�erent hours at di�erent sites due to the transport of pollutants. We estimated and

subtracted site-speci�c hourly means on the square root scale. These were later interpolated

for grid cell estimation. Figure 2 contains contour maps of the site-speci�c means of the
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data at hours 2, 7, 15 and 20. These illustrate that the diurnal mean structure is spatially

varying.

... Figure 2 about here ...

2.1 Temporal correlation

Autocorrelation plots presented in Guttorp et al. (1994) showed very strong temporal

correlation in the residuals after removing a diurnal mean structure. As described there, we

used site-speci�c autoregressive �lters of order 2, AR(2) models, to temporally pre-whiten

the residuals after removing hourly means. Parameter estimation used Gaussian maximum

likelihood.

We chose AR(2) as parsimonious models �ltering out most of the short-range temporal

correlation. More complex models such as periodic autoregressive models and seasonal

ARIMA models could be used as pre-whitening �lters. Periodic autoregressive models

would allow a diurnally varying temporal correlation structure, explained by the diurnal

cycle in the production, accumulation and depletion of ozone (Tiao and Grupe, 1980).

Seasonal ARIMA models could better model residual 24 hour lag correlation (c.f., Box et

al., 1994, section 9.1). One could easily extend the grid cell level estimation approach

presented here to periodic autoregressive models (c.f., section 4). The extension to seasonal

ARIMA �lters would require substantially more complex cross-product moment estimates

than those presented in Appendix A.

Figure 3 indicates the relative magnitudes of the AR(2) coe�cients for each site. An

arrow originates at each of the site locations. The horizontal length of each arrow is pro-
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portional to the magnitude of the lag 1 coe�cient of the AR(2) model, while the vertical

length is proportional to the magnitude of the lag 2 coe�cient in the AR(2) model. The

arrows vary smoothly in space.

... Figure 3 about here ...

2.2 Spatial correlation in pre-whitened ozone residuals

Given data fzt (xi) j i = 1; : : :N; t = 1; : : : ; Tg, for N monitoring sites and T time points,

let vt (xi) =
p
zt (xi). Let ht (xi) denote the mean of the ozone levels on the square root

scale at site xi for the hour of day corresponding to time t, and let wt (xi) = vt (xi)�ht (xi).

We express

wt (xi) = �1 (xi)wt�1 (xi) + �2 (xi)wt�2 (xi) + yt (xi)

where yt (xi) is the pre-whitened residual at site xi.

We assume that yt (xi), i 2 f1; � � � ; Ng, t 2 f1; � � � ; Tg is a sample from a diurnally

varying space-time process fYt(x)g which is uncorrelated in time, but correlated in space.

We also assume that Yt(w) = Ut(w) + �t(w) where the spatial correlation between Ut(w)

and Ut(u) is a smooth function of geographic location for all sites w and u, and where

�t(x) represents spatially and temporally independent measurement error. We assume that

Dt(u; w), the spatial dispersion on the standardized scale between sites u and w at time t

satis�es

Dt(u; w)
def
= Variance

 
Yt(u)p
Yt(u)

�
Yt(w)p
Yt(w)

!
! at as k u� w k! 0
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where at is known as the nugget e�ect at time t. In practice we cannot distinguish between

small-scale variability and measurement error, since we do not have collocated monitoring

instruments. Both of these components are included in the estimated nugget e�ect. In this

analysis, we have estimated a constant variance �eld in space. The variance �eld varies

with hour of day.

Guttorp et al. (1994) indicated that the �tted spatial correlation structure of the pre-

whitened residuals for 17 sites in the Sacramento region varied with time of day, being

weaker and more homogeneous in the morning hours 0 through 4 am, than during the

afternoon hours noon through 4 pm. Guttorp et al. (1997) illustrated that the spatial

correlation of the prewhitened residuals also varies with hour of day for the larger region of

32 sites.

If time points t1 and t2 correspond to the same hour of day, then we assume that

Dt1
(u; w) = Dt2

(u; w) for any pair of sites u and w. We also assume that the time slices of

pre-whitened residuals from the same hour of day are independent spatial samples from the

process fYt(w)g at this hour of day, giving us replications to use in estimating the spatial

correlation for each hour. The heterogeneous spatial correlation estimation procedure devel-

oped by Sampson and Guttorp (1992) and Guttorp and Sampson (1994) makes use of such

replications, and we apply their estimation approach for each hour of the day. The sample

dispersion between monitoring sites xi and xj at hour k is estimated as dijk = 2 (1� rijk)

where rijk is the sample correlation between the observations at sites xi and xj at hour k.
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The spatial dispersion model between sites u and w at hour k is

Dk(u; w) = 
�k (k gk(u)� gk(w) k)

where 
�k is an isotropic variogram model with parameters �k , k : k denotes euclidean

distance, and gk is a bijective mapping from <
2 to <2. In other words the spatial dispersion

is modeled by an isotropic variogram as a function of distance in a deformed plane, known

as the D-plane. Each mapping gk consists of two <2
! < thin-plate spline mappings

as described in Sampson and Guttorp (1992) and Guttorp et al. (1994). The D-plane

variogram model 
�k must be chosen, and the parameters and the deformation must be

estimated. In this study we use an exponential variogram model for the isotropic D-plane

variogram. It is of the form


(ak;tk)(r) =

8>>><
>>>:

ak + (2� ak) f1� exp (�tkr)g if r > 0

0 otherwise

(1)

for hour k and sites a distance r apart. The parameter ak is the nugget e�ect (between

0 and 2), and tk controls the rate of increase of the variogram (tk > 0). This variogram

is monotonically increasing and approaches 2, corresponding to zero correlation, as the

distance between sites increases. Substitution of k gk(u) � gk(w) k for r in equation (1)

gives the model as a function of geographic location for sites u and w.

Once the isotropic D-plane variogram model has been chosen, the variogram parameters

and the D-plane locations corresponding to the monitoring sites are estimated by minimizing

a penalized weighted least squares criterion between the �tted and the sample dispersions.

The penalty is on the degree of bending of the mapping from the geographic plane to the
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D-plane. Speci�cally the criterion is

C�k;gk;�
=

NX
j=2

j�1X
i=1

"
dijk �

ddijkddijk
#2

+ � BEPk; (2)

where ddijk is the �tted dispersion between sites xi and xj at hour k, BEPk is the bending

energy penalty computed as the sum of the bending energies of the two thin-plate splines

for hour k, and � is a smoothness parameter. For small values of �, we may get over�tting

of the sample dispersions and a mapping that folds. The mapping will approach an a�ne

mapping for large �. Cross-validation may be used to choose the value of � (c.f., Meiring

et al., 1997). The D-plane coordinates resulting from minimization of (2) determine a pair

of interpolating thin-plate splines for the mappings of the geographic coordinates to the

deformed coordinates for each hour. These thin-plate spline mappings allow estimation

of the spatial correlation between any two geographic locations. Due to computational

magnitude, we did not use cross-validation in this study. Visual inspection of the �tted

variograms versus D-plane distances and deformation maps was used to choose a single

value of � for all hours.

3 Estimation of grid cell ozone levels

We now present details of the grid cell estimation approach. Let Zt(w) denote the ozone

level at location w and time t, and let Vt(w) =
p
Zt(w) denote the square root of the ozone

level. Let ht(x) denote the mean of the ozone levels on the square root scale at site x for

the hour of day corresponding to time t. The pre-whitening �lter is a function of time and
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spatial location:

Vt(w) = Wt(w) + ht(w) (3)

Wt(w) = �1(w)Wt�1(w) + �2(w)Wt�2(w) + Yt (w) (4)

where �1(w) and �2(w) are site-speci�c AR(2) coe�cients, and Yt(w) is the residual process

at location w and time t. For notational convenience, de�ne

Yt � fYt (x1) = yt (x1) ; : : : ; Yt (xN ) = yt (xN ) ; Yt�1g :

We assume that Yt(w) is independent of everything that happened prior to time t, for any

site w and time t. The estimation of the grid cell ozone levels and variability of these levels

is accomplished using a forward recursive estimation of moments given in Appendix A. The

forward recursion is described brie
y in Appendix B.

For simplicity we only describe here the estimation for one model grid cell, denoted A.

We choose M regularly spaced (sub-grid) points in A, denoted by w1; : : : ; wM . Using the

approach described in section 2.2, we evaluate the �tted covariances cov (Yt (wi) ; Yt (wj)),

cov (Yt (wi) ; Yt (xk)), and cov (Yt (xl) ; Yt (xk)) for all sub-grid points wi and wj in block A,

and all monitoring sites xk and xl. We interpolate the AR(2) pre-whitening coe�cients and

diurnal mean structure to each of the M points (c.f., section 4.1).

At each of the M sub-grid points, we estimate the simple kriging mean E [Yt(wi)j Yt]

and variance Var [Yt(wi)j Yt] of the pre-whitened residuals, assuming fYt(w)g is a zero

mean process. We also estimate other moments of the residuals, including cross-product

moments, which are needed when back-transforming to estimate ozone concentrations and
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assess variability on the original scale (ozone in ppb), as described in Appendix A. At

each grid point, we post-color the kriged pre-whitened residuals (c.f. Appendix A), using

the interpolated AR(2) coe�cients, and add the interpolated hourly mean corresponding

to each time point to the post-colored values. We back-transform to the original scale of

ozone in ppb, adjusting for bias, and estimate the grid cell level

1

j A j

Z
A

Vt(w)
2 dx by

1

M

MX
j=1

E
h
Vt(wj)

2
j Yt

i
; (5)

which is di�erent from the average of the squares of the estimates on the square root scale.

We estimate the variability of this grid cell estimate as

Var

2
4 1

M

MX
j=1

h
Vt (wj)

2
j Yt

i35 (6)

=
1

M2

0
@ MX
j=1

Var
h
Vt (wj)

2
j Yt

i
+ 2

X
i<j

Cov
h
Vt (wj)

2
; Vt (wi)

2
j Yt

i1A :

The estimates in equations (5) and (6) could be modi�ed to accommodate a spatially-varying

variance �eld, by including weights in the estimates. In this study we have estimated a

constant variance �eld for the entire region, although this could also easily be modi�ed.

This estimate of variability assumes that both the mean and covariance structure of the

random function in space and time are known, and thus underestimates the true variability.

It does not take into account variability from estimating the covariance or interpolating

the mean �eld and the AR(2) coe�cients. Extensions to more accurate estimates of the

variability are indicated in section 6.
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4 Implementation issues

In this section we discuss the interpolation of the AR(2) coe�cients and of the diurnal mean

structure, practical issues in the spatial correlation estimation approach, and the impact of

missing data on the estimation. The forward recursion estimation approach is described in

Appendices A (moment expressions) and B (computational implementation).

4.1 Interpolation of the autoregressive parameters and mean �eld

When interpolating the autoregressive parameters to the regular grid points for grid cell

estimation, we need to constrain the interpolation to give stationary autoregressive models,

i.e., we require

1� �1(w)� �2(w) > 0; 1� �2(w) + �1(w) > 0; and j�2(w)j < 1

for all monitoring sites and interpolation points w (c.f., Kendall and Ord, 1990, page 59).

Jones (1980) suggests a reparameterization approach for ensuring that the stationarity

constraints are satis�ed for ARMA(p; q) processes in a non-linear optimization problem.

This reparameterization allows us to interpolate subject to the stationarity constraints. For

our simple case of the AR(2) model, let �1(w) and �2(w) denote the partial autoregressive

coe�cients at site w, and de�ne

�i(w) = log

�
1 + �i(w)

1� �i(w)

�
: This gives �i(w) =

�
1� exp (��i(w))

1 + exp (��i(w))

�
;

so �i(w) 2 (�1; 1), for i = 1; 2. By interpolating f�i (xi) ; i 2 1; : : : ; Ng instead of the

autoregressive coe�cients directly, to each of w1; : : : ; wM , we ensure stationarity of the
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autoregressive coe�cients. The autoregressive coe�cients are then calculated as

�1 (wj) = �1 (wj) (1� �2 (wj)) and �2 (wj) = �2 (wj) :

We interpolated using the Splus function interp (Statistical Sciences, 1991) within the con-

vex hull of the monitoring sites. This function is based on the work of Akima (1978). We

also used this approach to interpolate the diurnal mean �eld.

The forward recursive moments presented in section 3 and Appendix A could easily

be modi�ed to use periodic autoregressive models as the prewhitening models. The only

change would be to replace �j(x) by �jk(x) for hour k where appropriate, taking care to use

the correct time lag in the pre-whitening coe�cients. The stationarity constraints would

be more complex however.

4.2 Spatial correlation estimation

Due to the short time series of two months of hourly observations, we actually base the

sample dispersion estimates for each hour and each pair of sites on a three hour window of

residuals centered at the speci�ed hour (i.e., 3� 62 = 186 residuals if there are no missing

data), weighted equally. We then model the spatial correlation of these pre-whitened resid-

uals separately for each three hour window of residuals. That is we estimate 24 deformation

and D-plane variogram models, each based on three hours of residuals, giving a smoothly

varying diurnal cycle in the spatial correlation structure. There is thus two hours of overlap

in the sample dispersion estimates for adjacent hours. Plots in Guttorp et al. (1997) indi-

cate that the large scale features of the spatial correlation in the afternoon hours remain
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relatively similar, even for the deformations based on non-overlapping sets of hours.

In the early morning the pairwise correlations are low, so the deformation structure

does not have a clear interpretation. Estimation of the deformation structure becomes very

di�cult in the morning hours, since the estimation procedure cannot distinguish between a

variogram with a high nugget and relatively 
at slope, or one with a very low nugget and

a steep rise before distances where data are available. The correlation structure becomes

stronger in the afternoon hours, and the deformation becomes more meaningful. Estimation

of the nugget is still di�cult, since we have no information at distances less than the smallest

inter-site distance. We �tted a relatively large nugget for each hour, so the estimated

measurement error and small scale variability is large. Figure 4 shows the deformation

mapping and �tted dispersions as a function of D-plane distance for 4 pm in the afternoon.

... Figure 4 about here ...

4.3 Missing values

At each time point t, all the prewhitened residuals that are available at that time point are

used in the estimation. The kriging weights vary with hour of day, and with the pattern of

non-missing observations. Missing values present no problem in iterating forward in time;

however, they may cause substantial biases in estimates of the diurnal mean structure, the

AR(2) coe�cients, and the spatial correlation. The observations are often not missing at

random, since sites were operational at di�erent times. A few sites in this region either

have no observations for hour 4, or for hour 5. If a site were missing all the observations at

one of these hours, the mean for that hour was estimated as the average of the means for
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the two neighboring hours. Further study is needed on the impact of missing values.

5 Application: Grid-cell estimation for a region of California

SARMAP photochemical air-quality model results were available for the period August 3

through August 6, 1990. We estimated hourly grid cell ozone levels for each of 76 grid

cells corresponding to grid cells of the photochemical air quality model in the region of

California indicated by �gure 1. The estimate in each grid cell is based on nine regularly

spaced locations in the grid cell, with four of them corresponding to the corners of the grid

cell.

The top plot of �gure 5 shows the estimated grid cell ozone concentration, � two stan-

dard errors, and the SARMAP photochemical air-quality model concentrations for a single

grid cell (i = 11, j = 36) on the days when we had photochemical model results. The nine

sub-grid points for this grid cell are shown by crosses in �gure 1. The lower plot of �gure 5

shows time series of ozone records at three monitoring sites which are in or nearby the grid

cell. These three sites are partially covered by the crosses in �gure 1.

The SARMAP model output shown here is more recent than that available for Meiring

(1995), and represents a substantial improvement in the model results for this grid cell, with

better representation of the diurnal cycle and peaks of the grid cell concentration. There

is overestimation of ozone levels during the night and early morning hours, but the peaks

agree quite well.

... Figure 5 about here ...
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Appendix A provides formulae for point and grid-cell estimation, as well as for back-

transforming to the original scale of ppb. Figure 6 shows the estimated variance of the

back-transformed point estimate at the central sub-grid point of this grid-cell (horizontal

axis), compared with the estimated variance of the grid-cell estimate in ppb (vertical axis).

The estimated variance of the grid-cell estimate is substantially smaller than that of the

point estimate.

... Figure 6 about here ...

Figures 7 and 8 contain image plots of the grid cell estimates and the estimated variances,

together with the photochemical air quality model results, and the di�erence between the air

quality model results and the estimated ozone levels, for each of hours 2 and 16 of August 4,

1990. Four of the planned 80 grid cells lack estimates due to extrapolation problems outside

the convex hull of the 32 sites. At hour 2 we observe that the photochemical model results

are higher than our estimated ozone levels. This is consistent with the patterns during the

early morning hours for the other days during this four day period. At hour 16 of August

4, some grid cell model results are higher than our estimates, while others are lower. Figure

8 shows regions where the model and grid cell estimates disagree substantially on this day

and time, including the south-western part of this region.

... Figure 7 about here ...

... Figure 8 about here ...

Due to space limitations, we can unfortunately not provide image plots for other dates

and times of day, or time series comparisons for more grid cells. A detailed evaluation of
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the model would require these.

6 Discussion

Carroll et al. (1997) present an alternative approach for estimating ozone levels and con-

ditional covariances at di�erent sites and times on the original scale, while doing their

modeling on a (shifted) square root scale. They use a stationary space-time covariance

structure in their estimation, and assume a known temporal trend. By contrast, we use a

temporal pre-whitening approach after removing a diurnal mean structure, and then use

heterogeneous spatial covariance estimates for the pre-whitened residuals as the covariance

in the kriging equations when estimating at an unmonitored site. We assumed the diurnal

mean structure to be known in this initial work, but some variability in a temporal \trend"

Kwt is still included through the moments of Kwt given in Appendix A.

Huang and Cressie (1996) developed a space-time Kalman �lter with AR(p) temporal

models with constant coe�cients in space. In many respects our space-time model on the

transformed scale is similar to that of Huang and Cressie (1996). Notable di�erences are

that we use a �xed diurnally varying spatial covariance structure whereas theirs is updated

in the Kalman �lter recursions. We have spatially varying autoregressive parameters and

we use simple kriging since we assume the mean of the residual process is zero. The space-

time Kalman �lter of Wikle and Cressie (1996) explicitly models space-time lags in the

correlation, which may help to statistically model transport of pollutants. We do not model

space-time lagged correlation through a single space-time correlation model, however the
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moments of the W process are not necessarily symmetric in space and time due to the

diurnal cycle in the spatial covariances and the spatial dependence of the autoregressive

coe�cients. Patterns of transport of ozone and of ozone precursors from one site to another

will mainly be captured through di�erences in the hourly mean ozone structure at di�erent

sites in our model. Peaks of the ozone cycle may occur at di�erent hours at di�erent sites.

Our spatial correlation structure varies with hour of day and the temporal correlation varies

in space, yielding a non-separable space-time correlation structure.

A non-parametric bootstrap could be used to assess the additional variability in the

block estimates due to estimation of the spatial covariances. This approach would involve

bootstrapping spatial realizations (time slices) from the prewhitened residuals, followed by

estimation of the spatial correlation structure based on each of these bootstrap samples

as described in Meiring (1995), and estimating grid cell levels using the spatial correlation

structure for each bootstrap sample. This approach is computationally intensive. We need

to work further on computational algorithms and methods to handle missing values to

make this bootstrap evaluation feasible in practice. A parametric bootstrap approach as

presented in Guttorp et al. (1993b), or kriging (see H�st et al., 1995), could be used to

assess additional variability due to estimation of the mean �eld and of the pre-whitening

coe�cients.

An alternative approach is through a Bayesian formulation which would allow uncer-

tainty in the parameters of the autoregressive models and diurnal mean structure. Prior

distributions could include spatial correlation amongst these parameters. We currently

20



take the spatial correlation into account through smoothing. Implementation of the het-

erogeneous spatial correlation estimation approach of section 2.2 in a Bayesian framework

remains as future work. One approach for directly integrating our empirical spatial corre-

lation estimates in a Bayesian framework has been demonstrated in Guttorp et al. (1993a)

and Brown et al. (1994). There are many other areas of future work for the spatial corre-

lation estimation approach, including how best to constrain the deformation mappings to

be bijective, since the thin-plate splines do not impose this constraint, although it may be

obtained by choosing � su�ciently large in (2).

It will be useful to view the evolution of the estimated grid-cell ozone levels in space

and time for comparison with the evolution of the model results in space and time. The

geophysical model is a numerical approximation to reality, based on simpli�ed physics,

so one would not expect the data and model results to agree exactly. Comparisons of

the type described in this paper may indicate systematic or large-scale deviations between

the geophysical model and data, and speci�c aspects of the model which require further

improvement.

A Appendix: Moments

We now describe the estimation of the terms in equations (5) and (6) in more detail. Let

Kwt = �1(w)Wt�1(w) + �2(w)Wt�2(w) + ht(w); (7)

with Wt(w), �1(w), �2(w) and ht(w) as de�ned in equations (3) and (4). It follows that

the expected ozone level at site location w, conditional on the monitoring site data up to
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and including time t, is given by

E [Zt(w) j Yt ] = E
h
Vt(w)

2
j Yt

i

= E
h
(Kwt + Yt(w))

2
j Yt

i

= E
h
K2

wt
j Yt

i
+ 2E [Kwtj Yt]E [Yt(w)j Yt] + E

h
Yt(w)

2
j Yt

i
:

We thus need to estimate the conditional moments of Yt(w) and Kwt up to order two for

estimation of ozone at each grid point location. In order to estimate the variance (equation

6) of the average of the point estimates (equation 5), we also need the conditional moments

and cross-product moments up to order four, since equations (3), (4) and (7) imply that

Vt(w)
4 = K4

wt
+ 4K3

wt
Yt(w) + 6K2

wt
Yt(w)

2 + 4Kwt Yt(w)
3 + Yt(w)

4

Vt(w)
2Vt(u)

2 =
�
K2

wt
+ 2Kwt Yt(w) + Yt(w)

2
��

K2
ut
+ 2Kut Yt(u) + Yt(u)

2
�

= K2
wt
K2

ut
+ 2K2

wt
Kut Yt(u) +K2

wt
Yt(u)

2 + 2KwtK
2
ut
Yt(w)

+ 4KwtKut Yt(w) Yt(u) + 2Kwt Yt(w) Yt(u)
2 +K2

ut
Yt(w)

2

+ 2Kut Yt(u) Yt(w)
2 + Yt(w)

2
Yt(u)

2

Expressions for the conditional moments in equations (5) and (6) as functions of conditional

moments and cross-product moments of the residual �eld follow by taking conditional ex-

pectations of the previous expressions. We discuss estimation of the residual �eld moments

in sections A.1 and A.2, and of moments involving Kwt in section A.3.
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A.1 Estimation of the residual �eld at any location

If Yt(w) is the pre-whitened residual at a spatial location w, and if we assume that

Yt(w); Yt (x1) ; : : : ; Yt (xN ) � NN+1

0
BBB@0;

2
6664
�ww(t) �w2(t)

�2w(t) �22(t)

3
7775
1
CCCA ;

where �w2(t) is 1�N , �2w(t) is N � 1 and �22(t) is N �N , then

Yt(w) j Yt � N1

�
�wt; �

2
wt

�

where

�wt = �w2(t)�22(t)
�1

2
66666664

yt (x1)

...

yt (xN )

3
77777775

and �2
wt

= �ww(t)� �w2(t)�22(t)
�1�2w(t);

and �ww(t); �w2(t) and �2w(t) depend on w and t. �wt and �2
wt

are simple kriging means

and variances. Simple kriging provides the best linear estimator of the value at a site con-

ditional on records from monitoring sites, assuming known mean and spatial covariance

structure. The estimator is `best' in terms of squared error loss. We can estimate the cor-

relation between any two sites using the deformation model, and hence (after interpolating

the variance �eld, since � is a covariance matrix) estimate �wt and �2
wt

at any location.

Equations (8), (9), and (10) follow from theory of the Gaussian distribution:

E
h
Yt(w)

2
j Yt

i
= �2

wt
+ �2

wt
(8)

E
h
Yt(w)

3
j Yt

i
= 3�wt�

2
wt

+ �3
wt

(9)

E
h
Yt(w)

4
j Yt

i
= 3�4

wt
+ 6�2

wt
�2
wt

+ �4
wt
: (10)
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A.2 Pairwise cross-product moments between residuals

Consider two locations, w and u, in a grid cell A. If we assume that

Yt(u); Yt(w); Yt (x1) ; : : : ; Yt (xN ) � NN+2

0
BBBBBBB@
0;

2
66666664

�uu(t) �uw(t) �u2(t)

�wu(t) �ww(t) �w2(t)

�2u(t) �2w(t) �22(t)

3
77777775

1
CCCCCCCA
;

then

Yt(u) j Yt(w); Yt (x1) ; : : : ; Yt (xN) � N
�
�ujw(t); �

2
ujw

(t)
�

where

�ujw(t) =

"
�wu(t)�2u(t)

# 26664
�ww(t) �w2(t)

�2w(t) �22(t)

3
7775
�1

2
6666666666664

Yt(w)

yt (x1)

...

yt (xN)

3
7777777777775

�2
ujw

(t) = �uu(t)�

"
�wu(t)�2u(t)

# 26664
�ww(t) �w2(t)

�2w(t) �22(t)

3
7775
�1 26664

�uw(t)

�u2(t)

3
7775 :

It follows that

E
h
Yt(u)

2
j Yt(w); Yt

i
= �2

ujw
(t) + �2

ujw
(t)

Both �ujw(t) and �ujw(t) depend on w and u through the covariance �wu(t), but only �ujw(t)

depends on Yt(w). �ujw(t) may be written as

�ujw(t) = aujw(t) Yt(w) + cujw(t);
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so �2
ujw

(t) = a2
ujw

(t)Yt(w)
2 + 2a

ujw
(t)c

ujw
(t) Yt(w) + c2

ujw
(t):

It follows that

E
h
Yt(w)

2 Yt(u)
2
j Yt

i
= E

�
Yt(w)

2 E
h
Yt(u)

2
j Yt(w); Yt

i
j Yt

�

=
�
�2
ujw

(t) + c2
ujw

(t)
�
E
h
Yt(w)

2
j Yt

i
+ a2

ujw
(t)E

h
Yt(w)

4
j Yt

i
+

2aujw(t)cujw(t)E
h
Yt(w)

3
j Yt

i
;

E [ Yt(w) Yt(u) j Yt] = E [ Yt(w)E [ Yt(u) jYt(w); Yt] j Yt]

= aujw(t)E
h
Yt(w)

2
j Yt

i
+ cujw(t)E [Yt(w)j Yt] ; and

E
h
Yt(u) Yt(w)

2
j Yt

i
= E

h
Yt(w)

2
E [ Yt(u) j Yt(w); Yt] j Yt

i

= aujw(t)E
h
Yt(w)

3
j Yt

i
+ cujw(t)E

h
Yt(w)

2
j Yt

i
:

A.3 Other Moments

The moments of Kwt involve recursive moments of Wt(w), which we estimate at each time

point, based on prior estimates. We present the formulae for Kwt, followed by the formulae

for the moments of Wt(w). It is immediate from equation 7 that

E [Kwtj Yt] = �1(w)E [Wt�1(w)j Yt] + �2(w)E [Wt�2(w)j Yt] + ht(w)

E
h
K2

wt
j Yt

i
= �1(w)

2
E
h
Wt�1(w)

2
j Yt

i
+ 2 �1(w) �2(w)E [Wt�1(w)Wt�2(w)j Yt] +

�2(w)
2
E
h
Wt�2(w)

2
j Yt

i
+ 2 ht(w)�1(w)E [Wt�1(w)j Yt] +

2 ht(w)�2(w)E [Wt�2(w)j Yt] + ht(w)
2:
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If we assume that Yt(w)j Yt is normally distributed, then Kwt is a linear combination of

normals, so follows a normal distribution. Hence

E
h
K3

wt
j Yt

i
= 3

�
E
h
K2

wt
j Yt

i
� E [Kwtj Yt]

2
�
E [Kwtj Yt] +E [Kwtj Yt]

3

E
h
K4

wt
j Yt

i
= 3

�
E
h
K2

wt
j Yt

i
� E [Kwtj Yt]

2
�2

+

6
�
E
h
K2

wt
j Yt

i
� E [Kwtj Yt]

2
�
E [Kwtj Yt]

2 +E [Kwtj Yt]
4
:

Now

E [KwtKutj Yt]

= E [( �1(w)Wt�1(w) + �2(w)Wt�2(w) + ht(w))

( �1(u)Wt�1(u) + �2(u)Wt�2(u) + ht(u)) j Yt]

= �1(w) �1(u)E [Wt�1(w)Wt�1(u)j Yt] + �2(w) �1(u)E [Wt�2(w)Wt�1(u)j Yt] +

ht(w) �1(u)E [Wt�1(u)j Yt] + �1(w) �2(u)E [Wt�1(w)Wt�2(u)j Yt] +

�2(w) �2(u)E [Wt�2(w)Wt�2(u)j Yt] + ht(w) �2(u)E [Wt�2(u)j Yt] +

�1(w)ht(u)E [Wt�1(w)j Yt] + �2(w)ht(u)E [Wt�2(w)j Yt] + ht(w)ht(u):

By bivariate normal distribution theory,

E
h
(Kwt � E [Kwtj Yt])

2 (Kut �E [Kutj Yt]) j Yt

i
= 0;

and

E
h
(Kwt � E [Kwtj Yt])

2 (Kut �E [Kutj Yt])
2
j Yt

i

=
�
Var (Kwtj Yt) Var (Kutj Yt) + 2Cov (Kwt; Kutj Yt)

2
�
:
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Hence

E
h
K2

wt
Kutj Yt

i

= 2E [Kwtj Yt]E [KwtKutj Yt]� 2E [Kwtj Yt]
2
E [Kutj Yt] + E

h
K2

wt
j Yt

i
E [Kutj Yt] ;

E
h
K2

wt
K2
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j Yt

i

=
�
Var (Kwtj Yt) Var (Kutj Yt) + 2Cov (Kwt; Kutj Yt)

2
�

+2E [Kwtj Yt]E
h
KwtK

2
ut
j Yt

i
�E [Kwtj Yt]

2
E
h
K2

ut
j Yt

i

+2E [Kutj Yt]E
h
K2

wt
Kutj Yt

i
� 4E [KwtKutj Yt]E [Kwtj Yt]E [Kutj Yt]

+3E [Kwtj Yt]
2
E [Kutj Yt]

2
� E

h
K2

wt
j Yt

i
E [Kutj Yt]

2
:

Moments of Wt(w) are contained in the expressions of moments of Kwt. Note that

E [Wt(w)j Yt]

= �1(w)E [Wt�1(w)j Yt] + �2(w)E [Wt�2(w)j Yt] +E [Yt(w)j Yt] (11)

E [Wt(w)Wt(u)j Yt]

= E [( �1(w)Wt�1(w) + �2(w)Wt�2(w) + Yt(w))Wt(u)j Yt]

= �1(w)E [Wt�1(w)Wt(u)j Yt] + �2(w)E [Wt�2(w)Wt(u)j Yt] +

E [Yt(w)Wt(u)j Yt] ; (12)

E [Wt(w)Wt�1(u)j Yt]
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= �1(w)E [Wt�1(w)Wt�1(u)j Yt] + �2(w)E [Wt�2(w)Wt�1(u)j Yt] +

E [Yt(w)j Yt]E [Wt�1(u)j Yt] ;

E [Wt�2(w)Wt(u)j Yt]

= �1(u)E [Wt�2(w)Wt�1(u)j Yt] + �2(u)E [Wt�2(w)Wt�2(u)j Yt] +

E [Wt�2(w)j Yt]E [Yt(u)j Yt] ;

E [Yt(w)Wt(u)j Yt]

= �1(u)E [Yt(w)j Yt]E [Wt�1(u)j Yt] +

�2(u)E [Yt(w)j Yt]E [Wt�2(u)j Yt] +E [Yt(w)Yt(u)j Yt] :

B Appendix: Forward recursion

The estimation procedure is recursive, starting at t = 3, and progressing iteratively forward

in time. The values of E [W3�l1(w)j Yt] and E [W3�l1(w)W3�l2(u)j Yt] are initialized to an

arbitrary value (positive for conditional expectation of squares) for all pairs of grid points

u and w (including u = w) and l1 = 1; 2; l2 = 1; 2. At each time point t, we estimate

the moments of Appendix A based on moments estimated at previous time points and on

observations from time t.

Due to the forward recursive nature of the algorithm, rounding errors were occasionally

compounded over time, especially when estimating at locations far from monitoring sites.
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We discovered that the estimates based on (12) expanding Wt(w) in terms of the AR(2)

process, occasionally diverged from the similar expression expanding Wt(u) as the AR(2)

process (i.e., switching u and w in the right hand side of the equation). The values were

identical to 8 decimal places for the �rst few iterations forward in time, but after a while

there was a small discrepancy in the last decimal place, which compounded over time

leading to instability of the estimation and variances occasionally growing to �1 over

time. In order to avoid this, we now average the estimates based on expanding in the two

ways at each iteration, and use this average value in the forward recursion. Errors of a

smaller magnitude are more di�cult to detect, but may still be compounded forward in

time. Further investigation of this is needed.
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. Centers of grid cells for photochemical model
 
Regular sub-grid of points within 1 grid cell

Figure 1: The locations of the 32 sites used in this study are indicated by open circles on

the map of California, and again in an enlargement of the region containing the 32 sites.

In the right subpanel, the centers of the grid cells corresponding to the SARMAP model

results are indicated by dots. The crosses indicate a regular sub-grid of points in one of

these grid cells. Similar sub-grids of points will be used for estimation of grid cell ozone

levels for each grid cell of the geophysical model in this region, based on monitoring site

observations. Locations are given in Lambert coordinates in the enlargement. The numbers

along the margins indicate the model indices for the SARMAP model grid cells.
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Figure 2: Contour plots of hourly means on the square root scale for four hours of the day,

as indicated in the top left of each plot. The axes are in Lambert coordinates. Monitoring

site locations are indicated by solid squares.
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Figure 3: Relative magnitudes of site-speci�c AR(2) coe�cients. An arrow originates at

each site. The horizontal length of each arrow is proportional to the magnitude of the lag 1

coe�cient in the AR(2) �lter, while the vertical length is proportional to the magnitude of

the lag 2 coe�cient. The lag 1 coe�cients range from 0.67 to 1.22, and the lag 2 coe�cients

range from -0.32 to 0.19.
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Figure 4: Deformation mapping and �tted variogram as a function of D-plane distance for

hour 16.
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Figure 6: The estimated variances on the original ppb scale (equation 6) for the estimated

grid cell ozone levels for one grid cell (i = 11, j = 36) at hour 16 are plotted against the

corresponding variances of the point estimates in ppb at the central sub-grid point in this

grid cell (one term in the �rst summation of the right hand of equation 6). Each point

corresponds to a day during July or August 1990.
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Figure 7: Image plots for hour 2 of August 4, 1990, showing the estimated grid cell averages

(top left), the standard error estimates for the estimated grid cell averages (lower left),

the model results for the grid cells (top right), and the model results minus the estimated

grid cell ozone levels (lower right). Monitoring site locations are indicated by dots. We

did not estimate for four grid cells, indicated by white outlined squares, due to problems

extrapolating outside the convex hull of the monitoring sites. The axis increments are in

kilometres derived from Lambert coordinate projections of latitude and longitude.
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Figure 8: Image plots for hour 16 of August 4, 1990, showing the estimated grid cell averages

(top left), the standard error estimates for the estimated grid cell averages (lower left), the

model results for the grid cells (top right), and the model results minus the estimated

grid cell ozone levels (lower right). Monitoring site locations are indicated by dots. We

did not estimate for four grid cells, indicated by white outlined squares, due to problems

extrapolating outside the convex hull of the monitoring sites. The axis increments are in

kilometres derived from Lambert coordinate projections of latitude and longitude.
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