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Abstract

Many environmental processes are heterogeneous in space (spatially non-stationary), due

to factors such as topography, local pollutant emissions, and meteorology. Much of the

commonly used spatial statistical methodology depends on simplifying assumptions such as

spatial isotropy. Violations of these assumptions can cause problems, including incorrect

error assessment of spatial estimates. This paper demonstrates important properties of the

spatial deformation model of Sampson and Guttorp (1992) and Guttorp and Sampson (1994)

for heterogeneous anisotropic spatial correlation structure.

The modeling approach utilizes a deformation of the geographic coordinate space into a

new coordinate system (known as the D-space, or D-plane in two dimensions) where isotropic

spatial correlation structure is modeled. We provide proofs of two fundamental properties

of the model: validity and invariance of the modeled correlations to translating, scaling and

rotating operations on a D-space representation. We also prove two identi�ability results.

We prove �rst that two non-trivial variograms, and two corresponding a�ne transformations

of the geographic coordinate system yield the same modeled dispersions between all pairs of

locations in a region if and only if the variogram models and a�ne mappings are identical.

Second we prove that two strictly increasing D-space variograms and corresponding bijective

transformations of the geographic coordinate system yield the same modeled dispersions

between all pairs of locations in a region if and only if the variogram models and deformation

mappings are identical.

Keywords: Anisotropy, Non-stationary environmental processes, Variogram
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1 Introduction

Spatial interpolation techniques are used widely in the geosciences to estimate values of a spatial

process at unmonitored locations, or to interpolate data onto a regular grid of points for use

in subsequent analyses. Several spatial interpolation techniques assume a known second-order

spatial structure. In practice, this structure generally is unknown, and must be estimated. Em-

pirical estimates of a �nite number of spatial correlations do not provide a means for estimating

the correlation between unmonitored sites, so spatial correlation models in continuous space are

needed for this purpose.

In order to model the second order spatial structure, simplifying assumptions are often made

(Cressie, 1993, chapter 2). These include the assumption of spatial stationarity or homogeneity,

where the second order association between pairs of sites is assumed to depend only on the spatial

di�erence, including direction, between these sites. In environmental applications, factors such as

topography, local pollutant emissions, and meteorological in
uences may cause such assumptions

to be violated. This has led to research into modeling heterogeneous (spatially non-stationary)

second order structure. Guttorp and Sampson (1994) reviews several approaches for modeling

such structure. These include an approach which was initially introduced in Sampson (1986),

further developed in Sampson and Guttorp (1992) and Guttorp and Sampson (1994), and for

which the estimation methodology continues to evolve. This approach models second order

spatial correlation structure as a function of Euclidean distance between sites in a bijective

deformation of the geographic space, as described in section 2.

Consider a spatio-temporal process with value Z (x; t) at site x and time t. We model spatial

association between any two geographic locations x and y in terms of the variance of the spatial
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increments Dv (x; y), which we call the spatial dispersion function,

Dv (x; y) = var [ Z(x; t) � Z(y; t) ] :

In most of the geostatistical literature, Dv (x; y) is known as the variogram when homogeneity

or intrinsic stationarity is assumed (see for example, Cressie, 1993, section 2.3.1, which includes

references to terminology used in other areas of study). In this paper we will use the terminology

variogram only when we are referring to isotropic dispersion models, which depend only on the

Euclidean distance between sites. For simplicity in this paper we assume that the observations at

monitoring sites are independent in time, but correlated in space, and that the spatial dispersion

does not vary in time. The case of strong temporal correlation, common in many environmental

applications, is discussed further in section 7.

The remainder of the paper proceeds as follows. We review the deformation modeling ap-

proach in section 2. A brief discussion of estimation is provided in section 3. Sections 4 and

5 concern validity of the dispersion models and the invariance of the modeled dispersions to

rotation, scale and location changes of the bijective deformation of the geographic space. (The

intuitive result of section 5 was previously noted, but no proof was published.) In section 6, we

prove two results about identi�ability of the variogram and deformation mappings. Section 7 is

a concluding discussion section.

2 Deformation-based heterogeneous spatial correlation model

We express the spatio-temporal process as

Z (x; t) = � (x; t) +E� (x) +E� (x; t) ;

where � (x; t) is a spatio-temporal mean (assumed known in this presentation), and E� (x)

is a zero mean component with no temporal correlation and with spatial correlation being a
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smooth function of geographic coordinates. E� (x; t) represents measurement error and small

scale variability, considered independent in space and time. We assume that

var [ E� (x)�E� (y) ]! 0; as x! y: Hence Dv (x; y) ! 2 var [ E� (x; t) ] = 2 �2� ;

as x ! y, where �
2
� is the nugget e�ect, which is a measure of the small scale variability

and measurement error (Cressie, 1993, section 2.3.1). In practice, we assume the existence of

covariances, and we model dispersions for the variance-standardized process. The dispersions

may then be written (dropping the subscript v on the standardized scale) asD (x; y) = 2 [1� �xy]

where �xy is the spatial correlation between sites x and y.

The deformation approach of Sampson and Guttorp (1992), models the spatial correlation

structure as a function of Euclidean distance between site locations in a bijective transformation

of the geographic coordinate system. The geographic coordinate system is referred to as the

G-space, and the transformed coordinate system is known as the D-space, where D stands for

dispersion. The G and D-spaces have most often be considered as two-dimensional, although

the D-space may have dimension p � 2 (Guttorp and Sampson, 1994). The model is of the form

D (x; y) = 
� (kf (x)� f (y)k) (1)

where f(:) is a bijective transformation of the G-space to the D-space, and 
� is a valid isotropic

variogram with parameters �. The transformation e�ectively stretches the G-space in regions

of relatively lower spatial correlation, while contracting it in regions of relatively higher spatial

correlation, so that an isotropic variogram can model the dispersions as functions of distance

in the D-space representation. The simplest non-trivial example is an a�ne transformation,

f(x) = Ax, where the principal axes of the matrix A determine the geographic directions of

greatest and weakest spatial correlation in this homogeneous (stationary) anisotropic model.

This is called the case of geometric or elliptical anisotropy in the geostatistics literature.
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3 Estimation

The deformation models are �tted to empirical estimates of the pairwise spatial dispersions.

Most of the applications to date have considered processes observed at T time points at each of N

point monitoring sites in space, since repeated observations in time at each of the N monitoring

sites clearly may be used to obtain empirical estimates dij for the dispersion D (xi; xj) between

each pair of monitoring sites xi and xj (c.f., Meiring et al., 1997b for references). Estimation

of spatial dispersions between pairs of sites is more di�cult if samples are available only from

a single realization of a spatial process, or if the process is irregularly sampled in space and

time. However, once empirical estimates have been obtained, the �tting of the models may be

addressed in the same way.

The sample dispersions are then modeled as

dij = 
� (kf (xi)� f (xj)k) + eij

where dij is the sample dispersion between geographic sites xi and xj, 
� and f(:) are as de�ned

in section 2, and eij is an error term. These errors are neither independent nor identically dis-

tributed. The form of 
� must be chosen | for example 
� might be an exponential or Gaussian

variogram model with nugget | and the variogram parameters � and the D-space coordinates

must be estimated. Cressie (1993, chapter 2) provides a discussion of valid variograms.

Once a particular isotropic variogram model 
� has been chosen, the D-space locations for

the monitoring sites and the parameters of the D-space variogram are estimated by minimizing

a goodness-of-�t criterion. We currently use a penalized weighted least squares procedure based

on a representation of f() in terms of thin-plate splines, although other approaches have been

suggested. The penalty is on the degree of bending of the deformation. Estimation is not the

topic of this paper, and the reader is referred to Guttorp et al. (1994), Meiring (1995), Smith
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(1996), and Meiring et al. (1997a, 1997b) for discussion of recent estimation approaches, as well

as the form of the G-space to D-space mappings and computational issues. The proofs provided

in this paper do not concern the optimization criterion or the form of the deformation mapping.

4 Validity of the dispersion model

Proposition 4.1 The deformation model (1) results in a positive de�nite spatial covariance

structure, assuming the existence of covariances.

Proof of proposition 4.1:

It follows from Bochner's Theorem (Bochner, 1955), that a function is a valid correlation model

i� it is positive de�nite. (See Cressie, 1993, section 2.5.1 for details.) Consider any geo-

graphic sites x1; : : : ; xM , and corresponding D-space coordinates f (x1) ; : : : ; f (xM ) for any M

2 f2; : : : ;1g. Let CG (xi; xj) denote the correlation between geographic sites xi and xj. Under

model (1) we can write CD (kf (xi)� f (xj)k) = CG (xi; xj) for the correlation in the D-space.

Then

MX
i=1

MX
j=1

aiajCG (xi; xj) =
MX
i=1

MX
j=1

aiajCD (kf (xi)� f (xj)k) � 0

for all fa1; : : : ; aM j ai 2 < g, since the deformation approach �ts a valid isotropic variogram

(and hence correlation structure, assuming the existence of covariances), as a function of the

D-space coordinates. Thus CG is valid as a function of the geographic coordinates. 2

The heuristic motivation of the deformation modeling approach suggests that the dispersions

should be a function of distance between points in a smooth, continuous, one-to-one (x 6= y i�.

f (x) 6= f (y)) deformation of the geographic coordinate system. The previous argument shows
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that we obtain a valid spatial correlation structure as a function of the G-space coordinates even

if the mapping is not one-to-one.

Validity is not the only question of interest though. We must also ask whether the correlation

model makes sense scienti�cally. In the simple case of <2 ! <2 mappings, a continuous mapping

that is not one-to-one, will fold. If the mapping folds, any two geographic sites that are mapped

onto the same D-plane location will have a modeled correlation of 1, which will not be reasonable

for most environmental monitoring applications. Due to local emissions and reactions, sites some

distance apart in certain environmental monitoring problems, may be more closely correlated

than sites which are geographically \in between" these sites. If one considers only strictly

increasing D-space variograms, the spatial correlation model may not be physically reasonable

for a non-folding map. In these applications it will be necessary to consider higher-dimensional

models mapping <p ! <d with d > p, or alternatively to use non-monotone D-space variograms.

We are investigating properties of the model for higher-dimensional mappings.

5 Location, scale and rotation of D-space representation

Guttorp et al. (1994) note that the same modeled dispersions may be obtained for any shifted,

scaled and rotated version of a D-space representation. No proof was included at that stage; it

is presented here for completeness.

The practical implications of this result are that we can �x the location, scale and rotation of

the D-space prior to estimating the D-space coordinates and associated variogram parameters.

For <2 ! <2 mappings, �xing four parameters in the optimization problem will �x the rotation,

scale and location up to re
ection of the plane. We commonly �x the D-plane locations of two

8



sites at their geographic locations. In higher dimensions, additional constraints are required.

For example, in <3, we �x two points and constrain a third point to lie in a �xed plane. The

following proposition shows that the dispersion model is invariant to the choice of the �xed

sites. However, numerical problems may be encountered in �tting the model when �xing certain

combinations of sites, as discussed brie
y in chapter 4 of Meiring (1995).

Proposition 5.1 Let 
 be an isotropic variogram model. Suppose that the dispersions between

geographic sites are modeled as D12 = 
 (kx�1 � x
�

2k) for each pair of geographic sites x1 and

x2, where x
�

1 = f (x1) and x
�

2 = f (x2) are the corresponding D-space coordinates in a particular

dispersion-space, denoted H. Then the same modeled dispersions between all pairs of geographic

locations, can be obtained using a rescaled (still valid) variogram de�ned for distances in any

dispersion space obtained by translation, rotation, or scaling of H.

Proof of Proposition 5.1:

Denote distances between any two geographic sites x1 and x2 by h
�

12 in H and h
0

12 in any

other dispersion space obtained by translating, rotating, or scaling H. Consider a similarity

transformation so that x01 = b G x
�

1 + c for every geographic site x1, for some constant b > 0,

rotation matrix G, and translation vector c. Then h
0

12 = b h
�

12: De�ne � (h012) = 
 (h012=b) =


 (h�12) : For each integer m, for all real numbers fa1; : : : ; amg, and for all spatial locations

fxi : i = 1; : : : ;mg,

mX
i=1

mX
j=1

aiaj

2
41� �

�
h
0

ij

�
2

3
5 =

mX
i=1

mX
j=1

aiaj

2
41� 


�
h
�

ij

�
2

3
5 � 0;

since (1� 
=2) is positive de�nite. This shows that (1� �=2) is positive de�nite, and � is a valid

variogram. 2
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6 Identi�ability of D-space variogram model

One of the fundamental issues in this modeling approach is the impact of the choice of D-space

variogram model 
� on the �nal dispersion model. In this section we present two proofs (under

di�erent assumptions) of identi�ability of the variogram model and deformation, assuming that

the dispersion �eld is known for all pairs of points in the geographic space.

The �rst result considers a�ne deformations and shows that two isotropic D-space variograms

give the same modeled dispersions for all pairs of locations if and only if the variograms and

a�ne deformations are identical. The second proposition is a similar result for the more general

case of bijective deformations, but restricting the class of D-space variograms to those that are

strictly increasing.

Proposition 6.1 If two isotropic variogram models 
 and �, which are not pure nugget vari-

ograms, and two a�ne G-space to D-space mappings h and b, give the same dispersions for the

entire G-space, i.e. if


 (kh (x1)� h (x2)k) = � (kb (x1)� b (x2)k) 8 geographic sites x1 and x2; (2)

then the variograms are identical, as are the deformation mappings (up to translation, scaling,

rotation | and re
ection of the whole D-plane in the two-dimensional case).

Proof of Proposition 6.1: For simplicity, we present the proof for <2 ! <2 mappings. The

proof for <p ! <p mappings with p > 2 may be obtained by �xing the required number of

coordinates in order to �x the scale, rotation and location of the D-space representations.

Suppose there exist two isotropic variogram models 
 and � and two a�ne mappings h and

b from <2 to <2 yielding D-space representations H and B, such that (2) holds. Assume that
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the location, rotation and scale of the mappings have been �xed by mapping two sites, say xs

and xt, to their geographic locations in both H and B. H and B are each a�ne transformations

of the geographic space G. Hence H is an a�ne transformation of B. It follows that points are

collinear in G i� their images are collinear in H and B.

Denote distances in planes H and B corresponding to each pair of geographic sites x1 and

x2 by h12 � kh (x1)� h (x2)k and b12 � kb (x1)� b (x2)k. For all points x1 and x2 that are

collinear with xs and xt, h12 = b12 by properties of a�ne transformations because we �xed

hst = bst (without loss of generality). By (2), 
 (h12) = � (b12) = � (h12). Hence, by isotropy of


 and �,


 (h) = � (h) 8 h; (3)

ie. the variograms 
 and � are identical.

Consider any two points x1 and x2 in G. As H and B are a�ne transformations, there exists

a constant a12 6= 0 such that h34 = a12b34 for all x3 and x4 collinear with x1 and x2. Hence


 (h34) = �

�
1

a12
h34

�
for all x3 and x4 collinear with x1 and x2: (4)

By (3), (4), and isotropy, 
 (h) = 


�
1
a12

h

�
for every h: Hence, either 
 is constant for h > 0

(a nugget variogram), or a12 = 1. If a12 = 1, then the D-planes H and B are identical up to

re
ection of the whole D-plane, since x1 and x2 may be any two sites in G. 2
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Proposition 6.2 If two strictly increasing isotropic variogram models 
 and �, and two corre-

sponding bijective G-space to D-space mappings h and b, give the same dispersions for the entire

G-space, i.e. if


 (kh (x1)� h (x2)k) = � (kb (x1)� b (x2)k) 8 geographic sites x1 and x2; (5)

then the variograms are identical, as are the deformation mappings (up to rotation, translation,

scaling | and re
ection of the whole D-plane in the two-dimensional case).

Proof of Proposition 6.2: For simplicity we present the proof for <2 ! <2 mappings.

The proof for <p ! <p mappings with p > 2 is analogous, replacing G-plane by G-space, D-

plane by D-space, circle by p-dimensional sphere, and without loss of generality by �xing the

required number of coordinates in order to �x the rotation, scale and location of the D-space

representation (proposition 5.1).

Consider two strictly increasing isotropic variogram models 
 and � and two bijective map-

pings h and b from <2 to <2 yielding D-plane representations H and B, such that (5) holds.

Denote distances between each pair of geographic sites x1 and x2 by h12 � kh (x1)� h (x2)k in

H and b12 � kb (x1)� b (x2)k in B. Assume that the location, rotation and scale of the mappings

have been determined by mapping two sites, say xs and xt, to their geographic locations in H

and B. Writing kxs � xtk = m; we have 
 (hst) = 
 (m) =M , say, and likewise � (bst) =M:

In Appendix A we show that the rank order of intersite distances in H is the same as the

rank order of the intersite distances in B (lemma A.1), and that points mapped onto a circle or

line in H also lie on a circle or a line, respectively, in B (lemma A.2). Let x1 and x2 be any two

geographic locations. We now show that h12 = b12.
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Consider the line in H from h (x1) to h (x2) of length h12 � c. There are three cases.

1. c < m:

Extend the line between h (x1) and h (x2) to a point h (x3) such that h13 = m, and h (x2)

is on the line joining h (x1) and h (x3). Divide the line from h (x1) to h (x2) into c (m� c)

line segments each of length 1
(m�c)

. Divide the line from h (x2) to h (x3) into (m� c)2 line

segments of length 1
(m�c)

.

The line of length m in H has now been divided into m (m� c) equal but disjoint (except

for endpoints where adjacent) line segments. Each of these line segments can be considered

as the diameter of a circle of diameter 1
(m�c)

, as shown in �gure 1.

... Figure 1 about here ...

Circles in H correspond to circles in B, and




�
1

m� c

�
= � (rl) 8 l 2 f1; : : : ;m (m� c)g; (6)

where rl is the diameter of the circle in B corresponding to the lth circle in H as one moves

along the line from h (x1) to h (x3). (By lemma A.1, the order of the sites on the line in

B is the same as that in H since the rank ordering of distances is the same.)

Since 
 and � are strictly increasing, (6) implies rl � r, for all l 2 f1; : : : ;m (m� c)g.

Lines in H are transformed to lines in B (lemma A.2), so the line from h (x1) to h (x3) in

H corresponds to a line from b (x1) to b (x3) in B. Now

m = kh (x1)� h (x3)k
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= m (m� c) � diameter of circles in H

= m (m� c)
1

(m� c)

and, since h13 = m i� b13 = m (shown in Lemma A.1),

m = kb (x1)� b (x3)k

= m (m� c) � diameter of circles in B

= m (m� c) r:

Hence r = 1
(m�c)

: It follows that the line between b (x1) and b (x2) is of length

b12 = c (m� c) � r = c = h12;

concluding the argument for the case c < m.

2. c > m:

Locate a point h (x3) on the line between h (x1) and h (x2) such that h13 = m.

Divide the line from h (x1) to h (x3) into mc line segments each of length 1
c
, and the line

from h (x3) to h (x2) into c (c�m) line segments each of length 1
c
. Use a similar argument

to that given for the case c < m to show that b12 = h12.

3. c = m:

By (5) and since h12 = m = hst = bst, it follows that � (b12) = 
 (h12) = � (bst). Hence, by

isotropy of �, b12 = bst = h12.

Since h12 = b12 for all geographic sites x1 and x2, and since sites xs and xt were �xed at their

geographic locations; it follows that the deformation maps are the same up to re
ection of the

entire D-plane.
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Finally, since 
 and � are both strictly increasing variograms, and h12 = b12 for all geographic

sites x1 and x2, by (5) we have 
 = �, concluding the proof. 2

7 Discussion

The previous section demonstrates identi�ability of the D-space variogram model and bijective

transformation when the dispersions between all pairs of geographic locations are known. This

suggests asymptotic identi�ability for an increasingly dense network of monitoring sites, but

leaves open practical questions of identi�ability for models �tted to data from �nite monitoring

networks. Currently we can not demonstrate theoretical results about identi�ability based on

�nite samples from spatial-temporal processes, although we have addressed questions regarding

the deformation models that we �t to these observations.

Indeed, even without consideration of deformation, it is well recognized that, for example,

a Gaussian variogram with nugget may give similar modeled dispersions between all pairs of

monitoring sites, to those provided by an exponential variogram with nugget for small networks

of monitoring sites not including pairs with \very small" intersite distances. Di�erences may

be substantial in the �tted nugget e�ect representing small scale variability and measurement

error. This may result in substantial di�erences in estimated variances at unmonitored sites for

di�erent D-space variograms. The results of this paper thus are relevant for monitoring network

design. When economically feasible, it is highly desirable to locate a few monitoring sites close

together geographically, in order to obtain a better estimate of the small scale variability and

measurement error (c.f. Laslett, 1994), and thus aid in the choice of D-space variogram model.

In this paper we made the simplifying assumption that the spatial realizations of the process
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were uncorrelated and identically distributed in time. This assumption is frequently violated

in atmospheric and hydrological processes. Guttorp et al. (1994) and Sampson et al. (1994)

use deformation modeling in a space-time framework. The �rst of these papers uses tempo-

ral pre-whitening followed by deformation modeling of non-stationary spatial correlation in the

residuals. The second paper extends the linear model of coregionalization of Rouhani and Wack-

ernagel (1990), applying the deformation on di�erent temporal scales. Estimation approaches

for deformation models of non-stationary and non-separable spatio-temporal correlation are cur-

rently under development for processes which are irregularly sampled in space and time. The

theorems of this paper hold for space-time correlation, considering time as an additional dimen-

sion. The type of deformation should take into account the unidirectional attributes of time,

and may build on time deformation results from econometrics (see for example Stock, 1988).

Theoretical questions related to bias and consistency remain to be answered in two and

higher dimensions. Simulation studies have proved useful in studying the variance-bias trade-

o� in speci�c applications (Meiring et al., 1997b). Perrin (1997) has recently addressed con-

sistency questions in one dimension, and also obtained a characterization of non-stationary

one-dimensional spatial correlation structures which can be reduced to stationarity through a

bijective one-dimensional deformation. A similar characterization has yet to be developed in

two and higher dimensions.
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A Appendix: Two Lemmas for proposition 6.2

The following two lemmas are part of proposition 6.2 and rely on the de�nitions of 
, �, H, B,

h12, b12, M , m, xs and xt provided there.

Lemma A.1 The rank order of intersite distances are the same in H and B.

Proof of Lemma A.1: Suppose there exist geographic sites x1 and x2 such that h12 < m � b12.

Then


 (h12) < 
 (m) =M = � (m) � � (b12) ;

since 
 and � are strictly increasing. This contradicts (5), so if h12 < m, then b12 < m. By this,

and analogous arguments,

h12 < m i� b12 < m; h12 = m i� b12 = m; and h12 > m i� b12 > m: (7)

Now consider sites x1; : : : ; x4 with h12 < h34. By (7), if h12 < m < h34, then b12 < m < b34,

Consider now the case where h12 < h34 < m, then (7) implies that b12 < m and b34 < m.

Suppose b34 � b12 < m: Since both 
 and � are strictly increasing, we must have

M � 
 (h12) > M � 
 (h34) and M � � (b12) �M � � (b34) : (8)

By (5),

M � 
 (h12) =M � � (b12) and M � 
 (h34) =M � � (b34) :

This contradicts (8), so h12 < h34 < m implies b12 < b34 < m: By analogous arguments

b12 < b34 < m implies h12 < h34 < m; and m < h12 < h34 i� m < b12 < b34: Thus, for

any four sites, the rank order of the intersite distances in H is the same as the rank order of the

intersite distances in B. 2
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Lemma A.2 Points mapped onto a circle or line in H also lie on a circle or a line, respectively,

in B.

Proof of Lemma A.2:

Consider any site x1 and distance �. By isotropy and (5), � (b1r) = 
 (h1r) = c1� for all

geographic sites xr such that h1r = �. Hence, since � is strictly increasing and isotropic,

b1r = b�, say. This shows that points mapped onto a circle in H are mapped also onto a circle

in B.

H and B are bijective mappings, thus for any three geographic sites x1, x2 and x3 such that

h (x2) lies on the line between h (x1) and h (x3) in H, b (x2) is the only point of intersection of

two circles centered at b (x1) and b (x3) in B of radius b12 and b23 respectively. Hence b (x1),

b (x2) and b (x3) are collinear in B. 2
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Figure Captions:

Figure 1: Division of line from h (x1) to h (x3) into line segments of equal length which are

disjoint except possibly for their endpoints, and which may be viewed as the diagonals of circles.
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