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Abstract:

The Pareto Optimal Model Assessment Cycle (POMAC), a multiple criteria model

assessment methodology, is described for exploring uncertainty in the relationships between

ecological theory, model structure, and assessment data. Model performance is optimized to

satisfy, simultaneously, each component of a vector of assessment criteria (model outputs),

rather than the usual procedure of optimizing performance with respect to a single criterion.

Pareto Optimality is used to define the vector optimization. The Pareto Optimal Set reveals

which combinations of assessment criteria the model can satisfy simultaneously. Binary

interval error measures, which classify whether a parameterization result is within an

acceptable range of values, are defined for each criterion. Their use masks small differences

in the performance of different parameterizations, allowing the Pareto Optimal Set to reveal

conflicts in ability to achieve simultaneously different collections of criteria.

POMAC improves the researcher’s ability to detect deficiencies and locate their sources. It

is more stringent and informative than traditional model assessment procedures because it

uses multiple criteria without weighting and aggregating them. The Pareto Optimal Set

reveals the presence of deficiencies through the model’s inability to satisfy simultaneously

all the criteria. POMAC then guides the researcher in locating deficiencies in: inadequate

selection of component ecological hypotheses underlying the model, inadequate

mathematical representations of these hypotheses, inadequate parameterization, poor

selection and formulation of the assessment criteria, or combinations of these.

In an example, POMAC is applied to the spatially explicit canopy competition model

WHORL using ten assessment criteria. Each was selected to provide information on

different aspects of WHORL’s functioning: three stand height distribution criteria, three
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crown morphology criteria, and four criteria focusing on stand competition's characteristic

differentiation of growth rates. The Pareto Optimal Set was generated using simulated

evolution optimization. POMAC revealed deficiencies in both the model structure and

assessment criteria, leading to an improved model and better understanding of its effective

domain.

KEY PHRASES: Process model assessment, Pareto Optimal Model Assessment Cycle,

model deficiency sources, models as means of investigating hypotheses, multi-criteria

optimization, assessment of canopy competition models.

KEY WORDS: Pareto Optimality, POMAC, model assessment, model verification, model

validation, multiple criteria, binary error measures, genetic algorithms, simulated evolution,

evolutionary computation, individual based models, canopy competition, model revision,

WHORL.
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INTRODUCTION

Complex simulation models of ecological processes are increasingly constructed for

use in both the development of ecological theory (e.g., Pacala and Deutschman,1995; Fitz et

al, 1996) and the analysis of environmental questions (e.g., Ågren et al, 1991; Landsberg et

al, 1991; McMurtie and Comins, 1996; Schimel et al, 1997). Such models can never be

validated due to the limited observation of system dynamics  (Oreskes et al, 1994; Rykiel,

1996). They can, however, be assessed to investigate deficiencies in the relationships they

define between ecological theory, model structure, and assessment data. We propose a

methodology for this assessment.

There are four potential deficiency sources in an ecological process model, each

associated with a different phase of the modeling activity: inadequate selection of the

component ecological hypotheses (an incorrect process structure), inadequate mathematical

representation of these hypotheses (an incorrect mathematical structure), inadequate fitting

procedure (a faulty parameterization), and inadequate selection and formulation of the

assessment  criteria (an insufficient model assessment context). An assessment methodology

must be capable of both detecting each type of deficiency and of guiding the researcher to

the source of each deficiency.

Assessments using only a single criterion have limited ability to detect deficiencies

because the criterion may be satisfied by many different model structures. This is the

problem of nonuniqueness: models with different hypotheses or different mathematical

representations of the same hypotheses can satisfy the same criterion equally well.

Nonuniqueness prevents the possibility of ultimate model validation (Oreskes et al, 1994).
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Single criterion assessments, however, are currently the most common type of assessment

applied to ecological process models. For example, the canopy competition models in a

recent review were each assessed using a single criterion (Ford & Sorrensen, 1992).

Using multiple criteria to assess a model increases the demands on model structure.

The model is required to get more right. Simultaneous multiple criteria assessments have a

higher capacity to detect model deficiencies than do any single criterion, or even sequential

multiple criteria, assessments. This benefit has been discussed in the context of individual-

based models (Gross et al, 1992; Murdoch et al, 1992; DeAngelis and Rose, 1992;

Sorrensen-Cothern et al, 1993), but no methodologies have been proposed to utilize these

models’ many outputs, i.e. potential criteria (Gross et al, 1992).

In ecological modeling, the most common method of multiple criteria assessment  is

to calculate error measures of different model outputs (criteria) and collapse those measures

into a single criterion (e.g., by weighting and summing) (e.g., Halfon, 1979; Gentil and

Blake, 1981; Beck, 1987; Sievanen et al, 1988; Sorrensen-Cothern et al, 1993). This single

criterion is then optimized by a parameter space search. While such an aggregated measure

of model performance simplifies the optimization task, it is exactly the model’s

simultaneous performance on these different measures (criteria) that needs to be observed in

order to locate deficiency sources. Aggregation into a single criterion can also limit the

detection of deficiencies by limiting direct observation of the model’s performance.

We introduce a multiple criteria assessment methodology, the Pareto Optimal Model

Assessment Cycle (POMAC), which retains the multiple criteria as a vector rather than

aggregating them into a single criterion. Model performance is assessed by first optimizing

the criteria vector using the Pareto Optimality definition of vector optimization (see PARETO
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OPTIMIZATION). This optimization reveals the combinations of criteria that the model can

simultaneously satisfy. The inability of the model to simultaneously satisfy all the criteria

directly reveals deficiencies. The Pareto Optimal Model Assessment Cycle then  proceeds

through four stages (see THE PARETO OPTIMAL MODEL ASSESSMENT CYCLE) to determine

the type of each deficiency and locate its source. Having located a deficiency, its source is

revised and then the assessment repeated to check for improvement and further model

deficiencies (Beck, 1985, 1987; Beck and Halfon, 1991) (Fig. 1).

We describe Pareto Optimization and discuss its use in deriving a multiple criteria

summary of model performance. The Pareto Optimal Model Assessment Cycle is then

described in six stages and demonstrated in application to the assessment of the canopy

competition model WHORL (Sorrensen-Cothern et al, 1993). The potential use of POMAC

in comparing different models and assessing aggregation of a large model is discussed.

PARETO OPTIMIZATION

The Pareto Optimality definition of vector optimization (Vincent and Grantham,

1981) was first developed in economics and is used mainly there and in engineering (e.g.

Taylor et al 1975, Olenik and Haimes 1979; Vincent, 1987). To select the optimum from a

collection of vectors of criteria results, each from a different model parameterization, one

compares the vectors and removes all dominated ones, where vector X dominates vector Y if

and only if:

X is at least as good as Y with respect to all criteria

and there is at least one criterion for which X is strictly better than Y.
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The Pareto Optimal Set consists of those vectors left after all dominated ones have been

removed. Most frequently, the Pareto Optimal Set is used as a basis for constructing

additional multiple criteria optimization techniques through various methods of weighting

and aggregating the criteria into a single criterion (see Steuer, 1986, or Yu, 1985). Here we

use it as a basis from which to build a model assessment methodology.

For example, assume three criteria have been selected to judge different aspects of  a

canopy competition model for trees: cumulative mortality in the stand, median live tree

height, and mean individual tree crown depth as proportion of tree height.  Each criterion is

calculated at the end of  a fixed simulation time span corresponding to a time for which data

are available. Each parameterization produces a vector having three components, one

component for each of the three criteria.  For each criterion a binary interval is defined

covering an acceptable range of expected results, so that a prediction falling within the

interval is considered acceptable with regard to this criterion and is labeled ‘good’;

otherwise it is labeled ‘bad’. For example, cumulative mortality predictions within the range

[77, 137] are ‘good’, predictions outside this range are ‘bad’. Suppose the simulations of

four different parameterizations result in the following Assessment Vectors:

 (Mortality, Median Height, Crown Depth)

Assessment Vector for parameterization 1 = (bad, good, bad)

Assessment Vector for parameterization 2 = (bad, good, good)

Assessment Vector for parameterization 3 = (good, bad, good)

Assessment Vector for parameterization 4 = (good, bad, good)

Parameterization 2 is as good as parameterization 1 with regard to Mortality and

Median height while actually doing better with regard to Crown Depth; thus,
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parameterization 2 dominates parameterization 1. Parameterizations 3 and 4 neither

dominate, nor are dominated by, parameterizations 2 or 1. No judgment can be made

regarding precedence among parameterization 2 and parameterizations (3, 4) without

resorting to weighting or preference among the criteria (e.g. Mortality is more important

than Median Height, so parameterizations 3 and 4 both dominate parameterization 2). The

Pareto Optimal Set is the set of undominated parameterizations, parameterizations {2, 3, 4}.

The binary interval error measures do not discriminate among parameterizations that

generate the same Assessment Vector. For example, while parameterizations 3 and 4

produce different criteria values, these values generate identical Assessment Vectors. The

Pareto Optimal Set is summarized by these parameterization groups rather than by the

individual parameterizations themselves. The Pareto Optimal Set above has two groups:

parameterization 2 and parameterizations (3, 4) (Table 1).

 In practice, the Pareto Optimal Set is achieved when sufficient parameterizations of

the model have been simulated to explore the parameter space and ensure no additional

combinations of assessment vectors can occur. Note that the Pareto Optimal Set need not

necessarily contain a parameterization achieving all criteria: not only may the model require

different parameterizations to satisfy different criteria (e.g., Table 1), it may never satisfy

specific individual or combinations of criteria.

Binary Interval Error Measures

Binary interval error measures ignore small differences between the simulations of

different parameterizations, treating results close to a criterion’s proposed target value

uniformly (Hornberger and Spear, 1981; Hornberger and Cosby, 1985; Jaffe et al, 1987).

This robustness to possible target value misspecification is essential when the criterion is
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designed to capture an ecological process whose specific target value is not certain. In

contrast, traditional error functions (e.g. least squares, etc.) are designed to be sensitive to a

criterion’s proposed target value, and misspecification can heavily influence the

optimization search. Similarly, these traditional error measures, when used in a multiple

criteria optimization that aggregates the criteria to a single measure, may restrict the

optimization search too quickly to parameter regions that produce near optimal results for a

specific criterion (Kursawe, 1991). This restriction may  prevent the search from locating

parameterizations achieving better overall satisfaction of the collected criteria -- exactly the

parameterizations of interest in model assessment. Binary error measures are robust to both

of these concerns.

Binary error measures have been employed in sensitivity analysis (Hornberger and

Cosby, 1985; Mäkelä, 1988), to investigate uncertainty in model forecasts (Rose et al, 1991;

van Straten and Keesman, 1991), and to predict the order of time series models (Keesman

and van Straten; 1989). To the best of our knowledge, they have not been employed with a

vector of criteria, nor used to aid the summary of a Pareto Optimal Set.

THE PARETO OPTIMAL MODEL ASSESSMENT CYCLE

The Pareto Optimal Model Assessment Cycle (POMAC) expands the general model

assessment cycle (Fig. 1) to include a stage of investigation specifically focusing on each of

the four potential sources of model performance  deficiency (Fig. 2): incorrect process

structure, incorrect mathematical structure, faulty parameterization, or insufficient model

assessment context.
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The initial stages of POMAC define the assessment criteria and the parameter space

search (Fig. 2, Stage 1), and generate the Pareto Optimal Set (Fig. 2, Stage 2). Assessment

then proceeds by first checking to insure that deficiencies revealed in the Pareto Optimal Set

are not arising from too limited a parameter search range (Fig. 2, Stage 3). Next the

simulation results of representative parameterizations from each group are investigated for

deficiencies in the model’s mathematical structure (Fig. 2, Stage 4) and in assessment

criteria formulations (Fig.2, Stage 5). Any remaining deficiencies can be attributed to the

model’s process structure (Fig. 2, Stage 6). Each stage is demonstrated in application to the

spatially explicit canopy competition model WHORL (Sorrensen-Cothern et al, 1993).

Initial Model Construction: The tree canopy competition model WHORL

WHORL is a spatially explicit model of inter-tree competition. Two stages are

reiterated annually: (i) resource (light) distribution within the stand and acquisition by

individuals, depending upon their amount and distribution of foliage, and (ii) growth and

resource allocation within individuals, producing new foliage (Sorrensen-Cothern et al,

1993). It simulates competition in Abies amabilis, a shade tolerant species, in clustered

natural regeneration at a density of 90,000 trees / hectare growing to a height of 7 m.

WHORL has two simulation modes: growth of a stand of competing trees and growth of a

single tree in a neighborless environment (open-grown). Trees are composed of modules,

i.e., branches that grow and die independently. The volume within which the stand grows

consists of “cells” (cubes 10 cm on a side). A branch’s resource acquisition occurs in those

cells it intersects in which it supports foliage.  Different branches may extend into the same

cell. A cell’s foliage density changes, branches grow, and trees increase in height according

to the amount of resource acquired. Physiological plasticity in resource acquisition and



03/11/98 11

allocation is represented by allowing differences in foliage characteristics, e.g. radiation

interception efficiency (Table 2), as a function of a tree’s relative height.

Stage 1: Selecting the Assessment Context.

Parameter Search Ranges. The parameter search ranges for WHORL were based on prior

calibrations of the model (Sorrensen-Cothern et al, 1993; Reynolds, 1997) (Table 2).

Criteria Selection.  Assessment criteria differ in their sensitivities to the model parameters.

Ten criteria were chosen so that both modes of model simulation, open-grown and crown

competition, were assessed for each parameterization. Six criteria measure general stand and

open grown crown characteristics (Table 3, Stand and Open-Grown Criteria), while the

remaining four focus on the specific differentiation in growth rates commonly observed in a

stand of trees competing for light (Table 3, Growth Rate Criteria). It was expected that the

more specific growth rate criteria would be harder for a model to satisfy than the more

general stand and open-grown tree criteria.

Error Measures. Binary interval error measures were selected for each criterion based on

data from a permanent plot (Table 3) (see Sorrensen-Cothern et al 1993 for plot details). The

goal was to investigate if the model could produce accurate simulations rather than precisely

recreate the exact values observed. Error intervals were constructed from either 95 or 99%

confidence intervals, centered on observed data, where possible. Researchers familiar with

the species provided binary error intervals for the three open grown criteria (Dr. T. Hinckley

and Dr. R. Brookes, pers. comm.).

Parameter Space Search Technique. An evolutionary simulation optimization routine

searched WHORL’s parameter space and generated its Pareto Optimal Set (see Stage 2).

Simulated evolution is a suite of optimization techniques that simulate natural selection in
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order to evolve optimal parameterizations (Michalewicz, 1992; Fogel, 1994). These include

Genetic Algorithms (Goldberg, 1989; Holland, 1992), Evolutionary Strategies (Bäck et al,

1991), Evolutionary Programming (Fogel, 1994), and their extensions (Michalewicz et al

1992). The terms used are borrowed from genetics. Each simulation from a ‘population’ of

parameterizations is assessed and  ‘parent parameterizations’ are then selected using a

‘fitness’ measure. The search’s next ‘generation’ of parameterizations are ‘bred’ from the

parents’ population either through parameter ‘mutation’, i.e., random selection and

adjustment of a specific setting, or ‘cross-over recombination’, i.e., the exchange of portions

of the settings of two parent parameterizations.

This technique is not required for generating the Pareto Optimal Set, but is more

efficient than a simple lattice search (Reynolds, 1997). The Pareto Optimal Set cannot be

generated using  ‘hill-climbing’ techniques (Yu, 1985), either deterministic or stochastic,

e.g., Simulated Annealing (Uhry, 1989), as these require a continuous univariate cost

function. Evolutionary optimization programs require only that a procedure be defined for

selecting parameter values for the next generation's parents using a measure based on criteria

achievement. Multiple criteria can be successfully used in a vector form, even with binary

error functions, by allowing membership in the Pareto Optimal Set to be used as the

optimization’s measure of achievement (Reynolds, 1997).

Stage 2: Generating the Pareto Optimal Set

The evolutionary optimization routine used both single parameter mutations (within

a given search range) and cross-over recombination of two parameterizations. A

parameterization was selected for breeding based on a fitness function incorporating both the
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number of criteria the parameterization satisfied and membership in the Pareto Optimal Set

(Reynolds, 1997). The optimization routine's initial population consisted of a Pareto Optimal

Set generated from a preliminary forward search, augmented with randomly selected

parameterizations for genetic diversity (see Reynolds, 1997).

Simulated evolution produces successive populations of model parameterizations.

The Pareto Optimal Set was updated after each population’s simulation by comparing

assessment criteria achievement relative to that of the previous Pareto Optimal

parameterizations.  The parent population, from which the next offspring parameterizations

were bred, consisted of all parameterizations in the current Pareto Optimal Set supplemented

with non-Pareto Optimal parameterizations from the last generation's offspring to ensure

‘genetic’ diversity. The parent population was of fluctuating size, though always larger than

75. Simulated evolution continued for 50 generations with an offspring population of 75

simulations each generation. At that point the Pareto Optimal Set was considered stable

because the Assessment Vectors had not changed for 13 generations. The Pareto Optimal Set

contained 181 different parameterizations, partitioned by their Assessment Vectors into 8

groups. For example, 65 parameterizations produced simulations classified (by the binary

error intervals) as achieving the first eight criteria listed in Table 3 but not the last two

(Group 1, Table 4).

This computationally intensive stage of the model assessment cycle may limit the

size of model to which POMAC can be applied when using simulated evolution.
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Stage 3: Assessing the Adequacy of the Parameter Search Ranges

WHORL's model structure could satisfy every criterion, but not all ten

simultaneously, indicating that deficiencies existed (Table 4). The first potential deficiency

source to be checked was the fitting procedure: perhaps the search ranges used in the

optimization had been too restricted and should be expanded? Each parameter’s search

range was examined by plotting the values of the Pareto Optimal parameterizations against

the search ranges selected in Stage 1 (Fig. 3).  If all parameterizations in the Pareto Optimal

Set use a value for a particular parameter at an extreme of its search range, then the range

may have been too limited. If so, the search range must be extended and a new Pareto

Optimal Set generated (Fig. 2). This was not the case here (Fig. 3), suggesting that

WHORL’s deficiencies arose from one of the other deficiency sources: its process structure,

mathematical structure, or the criteria formulations.

Stage 4: Investigating the Pareto Optimal Simulations for Mathematical Structure

Deficiencies

As the parameter search ranges appeared adequate, focus moved to WHORL’s

mathematical structure (Fig. 2) as a possible source of deficiencies (Table 4). The Pareto

Optimal Set had captured the most informative model parameterizations, reducing the

number of simulations needing investigation from 3750 (the number undertaken in the

optimization search) to 181. These were thoroughly investigated, with specific attention to

whether the criteria were satisfied in acceptable ways (Fig. 4).

In parameterization Groups 2, 3, 5, 7, 8, and, to a lesser degree, in Groups 4 and 6

(Table 4) simulated tree heights had clustered distributions not found in measured data (Fig.
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4). These clusters biased the regression used to determine the dominant tree slope and

dominant tree R2 criteria (for example, Fig. 4, Groups 3 or 7; criteria defined in Table 3). To

investigate this effect, regressions were recalculated with clusters removed. Then only

parameterizations from Groups 2 and 3 achieved the dominant tree slope criterion, and only

one parameterization from Group 3 satisfied the dominant R2 criterion . The membership in

the Pareto Optimal Set of the parameterizations in Groups 4 - 8 (Table 4) was the result of

bias in the regression introduced by the clusters.

The clustering occurred at the tree height class boundaries, which are set each year

based on the stand’s height distribution (as described in Table 2; see Sorrensen-Cothern et

al, 1993). The boundaries group trees into small, medium, and tall height classes. These

classes determine the physiological parameter values attributed to a tree for the ensuing

growth period (see legend, Table 2); they are unrelated to the height boundary the growth

rate criteria use to classify a tree as suppressed or dominant at year 28 (Growth Rate Criteria,

Table 3).

Clustering occurred when both parameters Dead and E changed markedly between

height classes. For example, consider a simulation with Dead parameter values (10,10,40)

for small, medium, and tall height classes, respectively, and E values (2.5, 2.0, 1.0). As the

stand grew, a tree slightly taller than the medium / tall height class boundary incurred high

branch maintenance costs, i.e. its Dead parameter value was 40 relative production units.

Due to competition, the tree fell back into the moderate height class, decreasing its branch

maintenance costs by a factor of 4, from 40 to10 relative production units, and doubling its

foliage’s conversion efficiency, from 1 to 2. These changes in the tree’s parameter values

increased its height increment to be larger than the smaller trees of the height class it had
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just left (Fig. 4, Group 5). Consequently, it was reclassified into the tall height class the

following year – albeit, again, as one of the shortest trees in the tall class. The cycle

repeated, “attracting” trees to heights around the class boundaries across which Dead or E

changed markedly. This inadequate representation of physiological plasticity by height class-

dependent parameter values had to be revised. After the revision, the Pareto Optimal

Assessment Cycle was re-initiated (Fig. 2).

We concluded that representing physiological plasticity on a tree-to-tree scale was

too restrictive, producing extreme changes in physiological characteristics year-to-year, even

if the tree’s local light environment did not change markedly (as the height of the tallest

trees determined the height class boundaries). Rather than assigning values for the foliage

property parameters (E, D, K) to a whole tree based on the tree’s relative height class in the

stand, these parameters would be assigned to each of the tree’s foliage cells (a cube 10 cm

on a side) according to their illumination level. Each foliage parameter took one of two

settings, a shade foliage setting or a sun foliage setting, with a third parameter determining

the light intensity at which the setting switched.  Foliage properties could differ within and

among branches in a tree. The branch maintenance cost parameter, Dead, was made to vary

as a simple linear function of branch length with a minimum cost threshold (Fig. 5). The

Branch and Height Increment rate parameters remained set at the level of the whole tree and

remained fixed for the stand. These changes in physiological plasticity representation were

incorporated to form a new model, WHORL2.

The Pareto Optimal Model Assessment Cycle was re-initiated with WHORL2 (Fig.

2). Its Pareto Optimal Set was generated using the simulated evolution optimization routine
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(Table 5). The Pareto Optimal parameter search ranges were sufficient (Reynolds, 1997),

and deficiencies did not appear in the model’s mathematical structure (Fig. 6).

WHORL2 performed better than WHORL. The parameterizations in Groups 2 and 3

of WHORL2’s Pareto Optimal Set (Table 5) simultaneously achieved the general stand

criteria (Median Live Height, Mortality) and the more specific dominant growth rate criteria.

This combination was not achieved by any parameterization  in WHORL’s Pareto Optimal

Set, represented by Groups 1 - 3 (Table 4) after removal of the clustering-induced bias.

The continued inability to satisfy all ten criteria simultaneously (Table 5) resulted

from deficiencies in either the model’s process structure or in the criteria formulations.

Achieving the stand height and open-grown criteria (columns 3 - 10, Table 5) still conflicted

with achieving the dominant tree growth rate criteria (columns 11, 12, Table 5). Assessment

progressed to investigating deficiencies in the criteria formulations and the model’s process

structure (Fig. 2).

Stage 5: Investigating the Pareto Optimal Simulations for Criteria Formulation Deficiencies

Stage 5 detects simulations achieving criteria in unacceptable ways due to poor

criteria selection or formulation. Formulation of a criterion may be too rigid, involving

hidden assumptions that produce biased results, or may fail to capture the intended

phenomenon.

For example, it was expected that achievement of the four growth rate criteria would

require more model refinement than achieving the six stand and open-grown criteria.

However, parameterizations in WHORL2’s Pareto Optimal Set (Table 5) achieved the more

specific dominant tree slope criterion only when failing to achieve all six less specific
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criteria (Groups 2 - 8), raising suspicions that the simulations had satisfied the dominant tree

slope criterion in an unacceptable manner. This could occur due to deficiencies in the

model’s mathematical structure, such as the clustering-induced bias in growth rate results

found in Stage 3, or in the criteria formulations themselves.

Suppressed and dominant tree classifications used in the growth rate criteria were

defined relative to suppressed and dominant tree height ranges in the observed data (Fig. 6):

suppressed trees have heights <= 2.8 m at 28 years of age, and dominants have heights >=

3.2 m. The impact of using these fixed height ranges to define dominant and suppressed

trees was investigated by refitting each Pareto Optimal simulation’s growth rate regressions

to the simulation’s own apparent suppressed and dominant tree height ranges. Under this

revision, the dominant tree R2 criterion was still not satisfied by any of the parameterizations

(results ranged from 0.79 to 0.93 vs. the a value of 0.07 for the observed data) (Reynolds,

1997). The dominant tree growth rate slope criterion was satisfied only by the Group 8

parameterization (slope = 0.081 m increment / m height), the slopes of all the other

parameterizations were too large (0.089 - 0.149 m increment / m height versus the observed

0.04 m incr. / m ht.).

The presence in WHORL2's Pareto Optimal Set of the parameterizations in Groups 2

- 7 was an artifact of the assumption in the growth rate criteria that the transitional height

between suppressed and dominant trees at year 28 would be the same as that in the observed

data, i.e. 3 m (Table 3). The dominant growth rate regression only used trees with heights >=

3.2 m. Hence only a subset of the dominant trees in each simulation in Pareto Optimal

Groups 2 -7 were used in calculating the criteria results, introducing a  bias (Fig. 6). Future



03/11/98 19

model assessments should use the simulation’s transitional height as an assessment criterion,

with the growth rate regressions defined relative to this predicted breakpoint.

The criteria formulations also assumed a linear growth rate response to tree height.

While this simplified the criteria calculations, it poorly captured the observed plateau in

height increments  (Fig. 6, Observed Height Increment plot). At this age, the data indicate

that height growth of large trees varies round a common mean rather than continuing to

increase with height; the model treats competition as the dominant process influencing

growth for all trees.

The assessment process also revealed the inadequacy of the dominant tree R2

criterion. Variability in dominant tree growth rates is likely due to a variety of factors not

included in the model: genotypic variability, microclimate effects, spatial and temporal

heterogeneity in soil properties, water, and possibly other factors. In fact, the domain of

WHORL2 is the competition process, and any achievement of this dominant tree growth rate

criterion should have generated skepticism. The dominant tree R2 criterion was only

satisfied as a result of WHORL's clustering or WHORL2's biased regressions,  and in

retrospect both it and the dominant tree slope criterion were inappropriate selections.

WHORL2 was designed as a competition model, and its ability to simultaneously

achieve all the criteria except those with deficient formulations showed it to be effective for

this goal (Group 1, Table 5). It effectively simulated the relative reduction in growth rates of

small trees, as well as the principal features of stand mortality, stand structure, and

individual crown structure. Modeling the absolute growth rate, particularly of dominant

trees, would  require research and modeling in a different domain.
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Binary Interval Error Measures. The binary intervals influenced the composition of the

Pareto Optimal Set by determining which parameterizations satisfied each criterion.

Investigating the impact on the Pareto Optimal Set of small decreases in the binary intervals’

widths revealed the sensitivity of the Pareto Optimal Set to particular criteria.

The changes from decreasing the width of binary intervals were explored by  plotting the

Pareto Optimal simulation results against each criterion's error interval (Fig. 7). Slight

reductions in the binary intervals of any of five criteria would eliminate two or more groups

of parameterizations from the Pareto Optimal Set (Table 6). This highlighted the tenuous

nature of membership in WHORL2's Pareto Optimal Set for many of the groups containing

small numbers of parameterizations (Table 5). In each case, the eliminated

parameterizations’ original membership in the Pareto Optimal Set had depended on their

achievement of the dominant tree slope criterion, (in most cases due solely to the biased

criterion formulation discovered above). Minor reduction in the dominant tree slope

criterion’s interval eliminated 6 of the Pareto Optimal Set's 8 parameterization groups (Table

6). This criterion’s role in determining WHORL2's Pareto Optimal Set illustrated that, in

addition to understanding how a model functions, it is equally important to learn how it can

best be assessed.

Investigating slight increases in the binary intervals’ widths would reveal whether

simultaneous satisfaction of all the criteria was narrowly missed. This would require

repeating the evolutionary optimization with the larger intervals. We did not take this next

step as WHORL2 had already demonstrated the ability to satisfy all criteria in the domain of

focus.
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Revising the collection of criteria and their error measures, either by redefining them

or  by adding or removing criteria, is cause to re-initiate the Pareto Optimal Model

Assessment Cycle (Fig. 2). Knowing the inadequacies in the criteria formulations revealed

in Stage 5, we continued to Stage 6 to investigate deficiencies in the model’s process

structure.

Stage 6: Investigating the Pareto Optimal Groups for Process Structure Deficiencies

Deficiencies not due to the parameter search process (Stage 3), the model's

mathematical structure (Stage 4), or the criteria selection and formulation (Stage 5), must

arise from the model's process structure (Fig. 2). Insight into WHORL2’s process structure

deficiencies was provided by examining how the parameterizations in each group of the

Pareto Optimal Set failed to satisfy their unachieved criteria. Following Stage 5, the

dominant tree R2 criteria was discounted, as was the importance of  parameterizations in

Groups 2 - 7 because they only appeared in the Pareto Optimal Set due to bias in the

dominant tree growth rate criterion.

Group 8 failed to achieve the general stand and crown angle criteria because of an

extremely high height increment parameter setting (Reynolds, 1997), i.e., the simulated

stand was too tall (Fig. 6, Group 8). Group 1 failed to achieve the dominant tree growth rate

criterion, which was actually outside the domain of competition, because its tallest trees

grew too fast (Fig. 6 Group 1 Height Increment plot, Fig. 7 Dominant Growth Rate). This

result suggested that WHORL2’s process structure was missing a limit, or control, to keep

the growth rate of the tallest trees within the range observed in the permanent plot data. This

effect could  have resulted from a lack of mainstem maintenance costs, foliage age, or other
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factors that would progressively diminish the resource capture and utilization capacities of

the foliage. If further research were conducted into factors controlling the growth rate of

large trees, and additional functions were incorporated into WHORL2, then the assessment

cycle should be reiterated, employing new criteria to assess the revised model structure (Fig.

2).

DISCUSSION

Each iteration of the Pareto Optimal Model Assessment Cycle increased insight into

the model’s capabilities and limitations, increasing the model’s value as a heuristic.

Deficiencies in the model structure or criteria formulations were deficiencies in our

understanding of the phenomenon being modeled. In revealing these deficiencies, POMAC

guided and directed further research and data collection.

The application demonstrates that WHORL2 is successful in simulating competition

for light as measured by its ability (Table 5) to satisfy simultaneously the first eight criteria

in Table 3, and that it is an improvement over WHORL. WHORL2’s domain limits are

revealed by its inadequate representation of the processes controlling the dominant tree

growth rate (Table 5).

Multiple criteria assessment using Pareto Optimization is a stringent technique for

detecting deficiencies.  For example, note that none of the deficiencies detected by POMAC

would have been revealed by using any single assessment criterion (Table 5), or even any

collection of  the general stand and open-grown criteria (the first eight criteria).  The key

feature in application of POMAC is selecting a set of informative and well-formulated

criteria. These will be determined partly by the context of the model’s application and partly
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by current understanding of the modeled phenomenon.  In this sense, individual-based

models are extraordinarily amenable to assessment using POMAC as their many outputs

provide a wealth of criteria. Criteria selection and formulation decisions are themselves

assessed in the cycle (Fig. 2) and can be revised. For example, more data will be gathered to

reformulate WHORL2’s growth rate criteria and interval limits.

The insights obtained from using POMAC are due to considering a number of

criteria simultaneously. Reducing the optimization problem by disaggregating the criteria

set, or working on clusters of criteria sequentially, would undermine the very purpose of

calculating the Pareto Optimal Set.  For this reason, the only requirements for POMAC are

computational facilities sufficient to generate the Pareto Optimal Set. While WHORL(2)’s

moderate size and well documented process structure (Sorrensen-Cothern et al, 1993) aided

assessment, they are not requirements of the technique.

 For larger models composed of more independently functioning components than

those in WHORL, it may be best first to apply POMAC to the individual components. Each

assessment should utilize criteria specifically focusing on the adequacy of that component's

dynamics. Once each component is deemed `adequate', a more comprehensive criteria set

should be chosen for applying POMAC to the complete model structure.

The Pareto Optimal Set can also be used as a tool for comparing model structures. In

model construction, especially with large models, one is often faced with choosing from

competing mathematical representations: e.g., should a simpler representation of

photosynthesis be used in a model of forest productivity or a more complex one, containing

more parameters for estimation and having greater computational demand? Such decisions

of adequate representation tend to be overshadowed by a focus on sensitivity analysis and
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whether the parameters of a given formulation can be inferred from the available data,

perhaps as a result of the tendency for single criterion model assessment. A more direct

assessment of the representations is to construct models with each formulation, generate

their Pareto Optimal Sets with respect to the same criteria set, and then compare the Pareto

Optimal Sets. Are both structures able to satisfy the same criteria in the same ways?

Similarly, the Pareto Optimal Set can be used to compare the capabilities of wholly

different model structures in satisfying a common set of criteria. For example, in model

aggregation, (constructing a simplified model that adequately captures a more complex

model’s dynamics), characteristics considered essential can be selected as the criteria and the

simplified model revised until it simultaneously satisfies the complete set.
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Table  1: Example Pareto Optimal Set derived from the four hypothetical canopy

competition model parameterizations discussed in the text. Three criteria are used:

cumulative stand mortality, median live tree height, and mean individual tree crown depth as

proportion of tree height (see text). Each row presents a group of parameterizations which

produced a common Assessment Vector (columns 3 - 5). The parameterizations in each

group are listed in column 2. A shaded cell in columns 3 - 5 denotes that each

parameterization in the group adequately simulates the criterion; an unshaded cell denotes

that no parameterization in the group satisfied the criterion.

Group

1 2

2 3, 4
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Table 2: Parameter Search Ranges for WHORL. See Sorrensen-Cothern et al (1993) for a

more detailed description of the parameters. Scale refers to the parameter-specific minimum

step size used in the optimization search. Relative production is production per unit foliage,

an index of production in excess of maintenance respiration of leaves (Sorrensen-Cothern et

al, 1993). Physiological plasticity is represented by varying the values of a tree’s

physiological parameters (Dead, E, D, K) as a function of the tree’s height class. Height

classes are defined relative to the fifth tallest live tree: Short, height < .55*reference tree

height; Medium, .55*reference height < height < .75* reference height; Tall, height >

.75*reference height. This requires a Short, Medium, and Tall parameter setting for Dead, E,

D, and K, for each simulation.

Parameters Description Minimum Maximum Scale

Branch

Increment

Branch Growth rate, m per unit of

relative production.

0.0001 0.0007 0.0001

Height Increment Tree Height Increment rate, m per

unit of relative production.

0.00002 0.00010 0.00001

Dead Minimum production required to

sustain a branch, in units of relative

production.

0.0 1.0 0.05

E Efficiency of converting intercepted

irradiation to production, relative

1.0 3.0 0.5
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scale of production units per

irradiation flux.

D Minimum relative irradiation level

required to sustain living foliage, as

% of full irradiation level.

0 12 1

K Exponent controlling nonlinear

decline in foliage response to

irradiation decay, dimensionless.

0.1 0.5 0.1
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Table 3: Criteria chosen for WHORL’s assessment focus  on 3 different aspects of the

simulation: stand height and mortality, morphological characteristics of open-grown tree

crowns, and the differentiation in growth rates observed to stands competing for light. The

binary error interval associated with each criterion displays the range of results considered to

have adequately simulated the characteristic (see text). For example., the mortality criterion

is satisfied by any simulation producing a total mortality of between 77 and 137 trees in the

first 30 years of stand development. Where available, the value of the criterion observed at

the permanent plot is given in parentheses below the binary error interval. The interval for

Median Live Tree Height is a 95% confidence interval for the observed median height; the

intervals for the growth rate criteria are approximate 99% confidence intervals constructed

from the observed regression estimates +/- 3*standard error of estimate.

General

Focus

Criterion Description Binary Error

Interval

(Observed)

Mortality Cumulative Mortality, year 30

(number of dead trees).

[77, 137]

(107)

Stand

Criteria

Stand Height

Frequency

Distribution

p-value of the Kolmogorov-

Smirnov two-sample test

comparing predicted and

observed live height frequency

distributions.

[.01,1]
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Median Live

Tree Height

A robust measure of tree height

central tendency.

[2.82, 3.35]

(3.08 m)

Number of

Live Whorls

The number of living whorls on

a 30 year old open grown tree.

[9, 17]

(13)

Open

Grown

Criteria

Crown Angle Angle formed between the

mainstem of the tree and the tips

of live branches.

[10, 15] degrees

Crown Length

Ratio

Ratio of live crown length to

tree height.

[.90, 1]

Suppressed

Tree Growth

Rate

Slope estimate from linearly

regressing two-year height

increment on height, at year 28,

of trees < 2.8 m (Fig. 4).

[0.014, 0.046]

(0.03 m/m)

Growth

Rate

Criteria

Suppressed

Tree R2

The variability in suppressed

tree height increment rates,

measured by the coefficient of

determination from the

regression above (Fig. 4).

[0.04, 0.44]

(0.24)

Dominant

Tree Slope

Slope estimate from linearly

regressing two-year height

[-0.005, 0.085]

(0.04 m/m)
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increment on height, at year 28,

of trees > 3.2 m.

Dominant

Tree R2

The variability in suppressed

tree height increment rates,

measured by the coefficient of

determination from the

regression above

[0.0, 0.27]

(0.07)
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Table 4: WHORL's Pareto Optimal Set. The 181 different parameterizations are partitioned

into eight groups (column 1), each parameterization in a group producing the same

Assessment Vector (columns 3 - 12). A shaded cell in columns 3 - 12 denotes that every

parameterization in the group adequately simulates the assessment criterion; an unshaded

cell denotes that no parameterization in the group adequately simulates the criterion. The

number of parameterizations in a group depends on the sensitivity of the model to different

parameters, the width of the criteria error bounds, and the stochastic nature of the simulated

evolution optimization search.

Group

1 65

2 18

3 1

4 39

5 1

6 53

7 2

8 2
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Table 5: WHORL2's Pareto Optimal Set. The 274 different parameterizations are partitioned

into eight groups (column 1), each parameterization in a group producing the same

Assessment Vector (columns 3 - 12). A shaded cell in columns 3 - 12 denotes that every

parameterization in the group adequately simulates the assessment criterion; an unshaded

cell denotes that no parameterization in the group adequately simulates the criterion. The

number of parameterizations in a group depends on the sensitivity of the model to different

parameters, the width of the criteria error bounds, and the stochastic nature of the simulated

evolution optimization search.

Group

1 260

2 1

3 2

4 4

5 2

6 1

7 3

8 1
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Table 6:  Effect on WHORL2's Pareto Optimal Set of reducing the binary error intervals of

specific criteria. `Group A > Group B' means the parameterizations in Group A dominate the

parameterizations in Group B under the interval reduction proposed in the left column.

Criterion Error Interval Reduction Change in Pareto Optimal Set

Increase Mortality Lower Bound Group 8 > Groups 6 and 7

Increase Crown Ratio Lower Bound Group 6 > Groups 7 and 8

Decrease # Live Whorls Upper Bound Group 7 > Groups 4 and 8

Decrease Suppressed Slope Upper Bound Group 5 > Groups 4 and 6

Decrease Dominant Slope Upper Bound Group 1 > Groups 2, 3, 4, 6, 7, 8
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Figures

1. General model assessment cycle. Having completed initial model construction (center

box), the assessment cycle begins with the selection and formulation of the criteria, their

error measures, and the parameter space search. Model performance is optimized with

respect to the selected criteria in order to reveal deficiencies in either the model structure

(black dashed arrow) or the criteria formulations (gray dashed arrow). Either type of

deficiency requires revision (dashed lines). If no deficiencies are detected,  the criteria and

error measures may be refined for a more stringent assessment. The assessment cycle is then

repeated to investigate the revisions.

2. The Pareto Optimal Model Assessment Cycle, a refinement of the process illustrated in

Fig. 1. Having completed initial model construction (center box), the assessment context is

defined (Stage 1). The model’s Pareto Optimal Set is generated by an optimization search

over the selected parameter space (Stage 2).  Deficiencies located in Stages 3 through 6

require revision and reinitiation of the cycle (dashed arrows), otherwise assessment proceeds

to the next stage (solid arrows). Deficiencies located in Stages 3 or 5 require revision of the

assessment context (gray dashed arrows); deficiencies located in Stages 4 or 6 require

revision of the model structure (black dashed arrows). If no deficiencies are located by the

end of Stage 6, the binary error intervals can be made more restrictive or more refined

criteria selected and the cycle reinitiated.

3. Parameter values of WHORL's Pareto Optimal parameterizations (Table 4), plotted

relative to each parameter's search range (Table 2). Plots (b) - (e) show the parameter value

for each height class. If the values of the Pareto Optimal parameterizations were all at an

extreme of a particular parameter’s search range, it would suggest the need to expand the
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search range and rerun the optimization (Stage 2, Fig. 2). E is forced to have a lower bound

of 1 by definition (see Sorrensen-Cothern et al, 1993).

4. Simulation results from a representative parameterization from each of the eight groups in

WHORL’s Pareto Optimal Set (Table 4): tree height frequency distribution at year 30 (left

column) and relationship of tree height at year 28 to subsequent two year height increment

(right column). The permanent plot data are shown in the first row of graphs. The left

column of each histogram represents cumulative mortality at year 30. Two year height

increment plots display the suppressed and dominant tree growth rate regressions for the

simulation (solid lines) (Table 3) and, for reference, a locally weighted least squares smooth

(Cleveland, 1979) of the observed data (broken line). Note the clustering of tree heights in

Groups 2 - 8.

5. Revised branch maintenance cost function in relative production units, defined by three

parameters: minimum maintenance cost, slope, and intercept.

6. Simulation results from a representative parameterization from each of the eight groups in

WHORL2’s Pareto Optimal Set (Table 5): tree height frequency distribution at year 30 (left

column) and relationship of tree height at year 28 to subsequent two year height increment

(right column). The permanent plot data are shown in the first row of graphs. The left

column of each histogram displays cumulative mortality at year 30. The two year height

increment plots display the suppressed and dominant tree growth rate regressions for the

simulation (solid lines) and, for reference, a locally weighted least squares smooth

(Cleveland, 1979) of the observed data (broken line).

7.  Lower and Upper limits of simulation results in each of the parameterization groups in

WHORL2's Pareto Optimal Set (Table 5), for each criterion. Binary error interval limits
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(Table 2) are marked by vertical lines labeled "Lower" and "Upper" on the x-axis of each

plot. Limits beyond the graph range are not shown. Example: Group 8’s simulation

under predicts Mortality and over predicts Median Live Height.
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Fig. 1. General Model Assessment Cycle.
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Fig. 2 The Pareto Optimal Model Assessment Cycle
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Fig. 3 Parameter Settings in WHORL’s Pareto Optimal Set.
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Fig. 4.
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Fig. 4 continued.
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Fig. 5.
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Fig. 6.
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Fig. 6 continued.
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Fig. 7.
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