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Summary

Receptor models aim to identify the pollution sources based on air pollution data.  This

article is concerned with estimation of the source profiles (pollution recipes) and their

contributions (amounts of pollution).  We take a constrained nonlinear least squares

approach.  To avoid having infinitely many solutions, we present new sets of model

identifiability conditions, which are often reasonable in practice.  The resulting estimators

are shown to be consistent and asymptotically normal under appropriate identifiability

conditions.  Simulations and an application to real air pollution data illustrate the results.

Key words:  Receptor model;  Model identifiability; Constrained nonlinear least squares;

Consistency;   Asymptotic normality;  VERTEX.
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1 . Introduction

Receptor modeling is a collection of methods used to model air pollution data.  Air quality

data typically consists of concentrations on fifty or sixty compounds of airborne gases or

particles measured over time. The basic assumptions in receptor modeling is conservation

of mass and chemical mass balance (see, e.g., Hopke, 1985, 1991).   If there are q

pollution sources, the ith measurement from the receptor, yi = ( yi1, yi2, ... ,yip ),
  can be

represented as

  
y P i ni ik

k

q

k i= + =
=

∑α ε
1

1, , ,L        (1)

where Pk = ( pk1, pk2, ... , pkp) is the kth source profile which consists of the fractional

amount of each species in the emissions from the kth source, α ik is the contribution from the

kth source on the i th day, and εi= ( εi1, εi2, ... , εip) is the measurement error on the i th

observation.  For example, a profile for a refinery might look like Propane, 21%; n-

Butane, 18%; i-Pentane, 17%; n-Pentane, 7%; 2-Methylpentane, 7%; other chemical

species, 30%.   The objectives in receptor modeling are to identify pollution sources and

assess the contribution of each source based on this data.  There have been two traditional

approaches to receptor modeling, which are the chemical mass balance (CMB) receptor

model and multivariate receptor model (Hopke, 1991).  In CMB, the number of sources, q,

and the source profiles, Pk’s, are assumed known, and the main objective is to estimate the

source contributions, α ik’s.  In that case, the problem reduces to the ordinary linear least

squares regression.  Several examples of CMB methods such as tracer element method,

linear programming method, ordinary linear least squares method, efficient variance least-

squares method, principal component regression method, and ridge regression method can

be found in Henry et al. (1984) and Hopke (1985).   The CMB methods are performed on

one observation at a time.  The CMB assumptions, however, on the known number of

sources and the known profiles are often not useful in practice.  Such limitations of CMB
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leads to the use of multivariate analysis in receptor modeling.   In matrix terms, the model

(1) can be written as

Y = AP + E (2)

where

A: n×q source contribution matrix

P: q×p source composition matrix

 E: n×p error matrix.

Examples of those multivariate models include principal component analysis, factor

analysis, target transformation factor analysis, self-modeling curve resolution, and so on

(see, e.g., Henry 1991).  The advantage of multivariate receptor modeling is that it does

not require a priori knowledge of the source characteristics.  Multivariate receptor modeling

tries to get the estimates for the number of sources, q, their profiles, P, and contributions,

A, all together from data.  However, this goal cannot be easily achieved since there could

be infinitely many solutions for A and P even with the known number of sources.  There

have been some attempts to avoid this problem by placing the constraints on the parameters

(see Henry and Kim 1990; Yang 1994).  Those constraints can be obtained from prior

knowledge of the problem under study or from the data itself.  This issue will be addressed

in terms of model identifiability in more general in Section 2.

The first method developed by a statistician in receptor modeling field was Source

Apportionment with one Source Unknown (SASU) by Bandeen-Roche and Ruppert

(1991).  They supposed that q = 2 and one source profile is known and one is unknown.   

They treated the source contributions as random quantities having a Dirichlet (Beta in the

case of q = 2) distribution, and tried to estimate the unknown source profile and the

parameters of the distribution of source contributions by assuming that in the limit the

unknown source is observed.   Spiegelman and Dattner (1993) tried a related estimate.

They wrote each Pk  = (s1k, ..., spk)  as p two dimensional probability mass functions, (sjk,
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1-sjk), j=1,...,p.  Then the ratio of probability masses given to a species on two different

days is calculated.  If that ratio is extreme (either big or small) then a candidate for a two

dimensional source profile is found.  Either the methods found in Bandeen-Roache and

Ruppert (1991) or those found in Spiegelman and Dattner (1993) are examples of tracer

methods looking for single species that is indicative of a single pollution source. The

assumption of having tracer element for each source makes any possible source rotation or

transformation impossible, and identifiability of model parameters is automatically

achieved.   Unfortunately, this assumption could be unrealistic in practice since big cities

have a number of pollution species that do not occur by themselves. Yang (1994) tried

confirmatory factor analysis model (see, e.g., Anderson 1984, sec. 14.2.2) under the

assumptions that the number and types of contributing sources are known a priori.   He

treated the source contributions as the random vectors having a distribution with some

unknown mean vector γ and covariance matrix Φ, and showed the estimators obtained by

maximizing an objective function are consistent and asymptotically normal.  His objective

function is actually the log-likelihood function of the observations when they follow a

multivariate normal distribution although he makes no normality assumptions about the

observations.  As a matter of fact, many environmental engineers want to view the source

contributions as fixed parameters not random variables, and the assumption of prior

knowledge of the types of all sources in the model is not a comfortable assumption.

2 . Idenfifiability of the model parameters

The number of sources, q, needs to be determined.  We are concerned with the number of

major pollution sources not the number of all pollution sources since there could be

millions of sources in nature, and it would be impossible or meaningless if we try to

identify all of those sources.   Therefore, q means the number of major pollution sources

hereafter.   Many air pollution datasets typically consist of the measurements on fifty or
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sixty variables (VOC chemical species).  The data set is often too large to handle all at once.

Furthermore, not all of the species are helpful in finding the major pollution products.  In

many environmental applications some species have a few common major sources and

some have many more minuscule sources.  If the species used in estimating q come from

different sets of sources each with different number of sources the estimated number of

sources is not likely to be interpretable.  It is crucial to select an appropriate set of species to

estimate the number of major sources, q.  It could be done by environmental expert’s

judgements or in the lack of such source, by species selection algorithms such as

SPECIESA or SPECIESB (see Park 1997).   

In this section we assume that an appropriate set of species is selected and the number

of major pollution sources, q, is correctly estimated.   We also assume that in model (2)

each row of matrix E has mean vector 0 and variance-covariance matrix Σ, and A and P are

unknown constant matrices.  We place physical constraints on A and P.  The elements of A

and the elements of P are nonnegative, and the row sum of P is 1.  That is,

α ik kj kj
j

p

p p≥ ≥ =
=

∑0 0 1
1

, , ,        (3)

where   i n k q j p= = =1 1 1, , , , , , , ,L L L .  The constraint 
  

pkj
j

p

=
=

∑ 1
1

 indicates that

only the relative amount of each species in a source is of our interest.  Our sources have

fixed ratios of the chemical species.  As long as the relative amounts of species are given,

we consider the source identified.

We first need to introduce the definition of the model identification.

Definition        1       Let Y be a matrix of the observable random variables, θ be a matrix of the

parameters of interest, and let FY(C;θ) be the distribution function of Y for parameter θ

evaluated at Y = C.  The parameter θ is identified if, for any θ1 and θ2 in the parameter

space,
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FY(C;θ1) = FY(C;θ2) for all C

implies that

θ1 = θ2.

If the the parameter θ is identified, we also say that the model is identified.

Under the model (2), the distribution of Y is determined by AP and Σ (in the normal

error case).  That is, FY(C; A1P1,Σ1) = FY(C; A2P2,Σ2) implies that A1P1 = A2P2 and Σ1=  Σ2

and vice versa   It does not, however, imply that (P1, A1) = (P2, A2) which are the

parameters of our interest.  Thus, in our case, the definition 1 can be reduced to the

following:

Definition        2.      The parameter (P, A) is identified if, for any (P1, A1) and (P2, A2) in the

parameter space,

A1P1 = A2P2

implies that

P1 = P2 and A1 = A2.

We also define near identifiability of the model parameters.

Definition        3.       The parameter (P, A) is nearly identified if, for any (P1, A1) and (P2, A2) in

the parameter space,

A1P1 = A2P2

implies that

P1 ≈ P2 and A1 ≈ A2.

Proposition 1.   Assume rank(A) = q and rank(P) = q.  Then A*P* = AP implies that

A* =  AR and P* =  R-1P  for a nonsingular matrix R = (AtA)-1AtA*.



7

Since both A and P are unkown, our model (2) suffers from nonidentifiability of

model parameters even without the error matrix, i.e., Y = AP = ARR-1P for any nonsigular

matrix R.  Even the reasonable constraints that we put, (3), do not remove this

nonidentifiability.  This type of nonidentifiability is often referred to as “factor

indeterminacy” in the context of factor analysis.  Since there are q2 elements in the matrix

R, we need to put q2 independent conditions on P or A to rule out this indeterminacy.  

Preassigning zeros in specified positions of P is usually done in the confirmatory factor

analysis.  But, it requires some prior knowledge about the source profiles to be estimated.

If information about the types of all the sources is available (as assumed in Yang 1994) one

can get the idea of where to assign 0’s in the matrix P and this indeterminacy would be

taken out.  Since in our case the source profiles are normalized to sum to 1, this puts q

independent conditions on P.  Thus the number of free parameters in R reduces to q(q-1),

and so we need only q(q-1) more independent conditions.  One set of such conditions are

C1.  there are at least q-1 zero elements in each row of P,

C2.  the rank of P(k) is q-1, where P(k) is the matrix composed of the columns containing the

assigned 0’s in the kth row with those assigned 0’s deleted.

These conditions can be easily found in usual multivariate analysis textbook (see, e.g.

Anderson 1984).  Note that C1 and C2 are automatically satisfied if we have tracer element

for each source.

A similar set of conditions can also be applied to the source contribution matrix A.  

D1.  There are at least q-1 zero elements in each column of A.

D2.  The rank of A(k) is q-1, where A(k) is the matrix composed of the rows containing the

assigned 0’s in the ith column with those assigned 0’s deleted.

These conditions are closely related to Henry’s assumption that the data contains some

points such that each source is missing (Henry 1997).  He argued that if there are at least

(q-1) edge points (points that have one source missing) for each source and the edge points

do not have any multicollinearities of dimension less than q-1 then the solution to the
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general mixture problem is unique.  In no error case these conditions can be converted to

model identifiability conditions.  The condition D2 implies that no two sources have the

same set of q-1 edge points and the edge points (at least q-1 of them) are linearly

independent.

To help solve factor indeterminacy problem, here, we also present two new sets of

assumptions for identifiability or near identifiability of A and P by modifying Henry’s edge

point assumption.  We need only one set of assumptions to hold for A and P to be

identifiable.

The first set of our basic assumptions are:

A1.  Each source is missing on some days and we know when a source is missing.

A2.  The average contribution of jth source when kth (k≠j) source is missing is equal to the

average contribution of jth source for all days.

A3.  The source contribution matrix A is of full column rank and the source composition

matrix P is of full row rank, i.e., rank(A) = q and rank(P) = q.

The second set of our basic assumptions are:

B1.  Each source is missing on some days and we know when a source is missing.

B2.  The difference between the average contribution of j th source when kth (k≠j) source is

missing and the average contribution of jth source for all days is small.

B3.  The source contribution matrix A is of full column rank and the source composition

matrix P is of full row rank, i.e., rank(A) = q and rank(P) = q.

Remark 1.   The assumption A1 (or B1) is equivalent to preassigning zeros in a

specified position of the source contribution matrix.  This usually requires less prior

information than the conditions based on the source composition matrix.  Although Henry
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(1997) assumed the existence of at least q-1 edge points for each of q sources, here, A1 (or

B1) allows having less than q-1 edge points as long as the other assumptions are satisfied.

Defining α j
k( )  as the average contribution of jth source when the kth source is missing

and α j  as the average contribution of jth source for all days, we can reexpress the above

assumptions as follows.  Of course we require that j ≠ k.

For A1-A3,

A1.  α ik = 0   when i ∈  Ik,   k = 1,..., q.

Here Ik is defined to be a subset of {1, 2, ..., n} for which the kth source is missing.

A2.  α j
k( )=α j ,      j =1,..., q,       j ≠ k.

A3.  rank(A) = q, rank(P) = q.

For B1-B3,

B1.  α ik = 0   when i ∈  Ik, k = 1,..., q.

Here Ik is defined to be a subset of {1, 2, ..., n} for which the kth source is missing.

B2.  |α j -α j
k( ) | ≤ ε,      j =1,..., q.

B3.  rank(A) = q, rank(P) = q.

The following results show that under each set of assumptions, A1-A3 and B1-B3,

nonidentifiability of the model parameters can be removed.  That is, A*
 = A and P*=P (or

A*
 ≈ A  and P*≈ P).  The proofs are found in Appendix B.

Result 1.   Let Assumptions A1-A3 hold.  Then

R = I
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where I is the q×q Identity matrix and R is any nonsingular matrix satisfying A*= AR and

P* = R-1P.

Result 2.   Let Assumptions B1-B3 hold.  Define B
pq q

k q

= + −





ε

α λ
1

12 ( )
 where

λq is the smallest eigenvalues of P P t∗ ∗ .  If B is small enough then the diagonal elements of

R are close to 1, and the off-diagonal elements of R are close to 0.

Remark 2.   We emphasize that all the conditions cited in this paper are sufficient

conditions but not necessary conditions for model identifiability.  On closer inspection if

we knew that entries of the A matrix satisfy a aij i j= ′  we could difference the corresponding

observations and create zeros.  Thus by doing typical time series differencing we may

create data that satisfies the identifiability conditions when the original data does not.

3 . Estimation of source profiles and contributions

The number of parameters in model (1) increases to infinity as the sample size increases.

Kiefer and Wolfowitz (1956) addressed the issue of estimating the structural parameter

consistently when there are infinitely many incidental parameters.  They assumed that the

incidental parameters were independently distributed chance variables with a common

unknown distribution function.  This assumption was made in Bandeen-Roche and

Ruppert (1991) and Yang (1994).   We do not make such assumption for our incidental

parameters, the rows of A.  Instead of treating them as chance variables, we just leave them

as unknown parameters, which is the way that many scientists and in this application most

environmental engineers want to view them.  To achieve a consistent sequence of

estimators we need to further restrict a parameter space for A, as well as utilizing the

identifiability conditions in the fitting procedure.  Two models, Quasi Random Functional

Model (which is a generalization of the model used in Kiefer and Wolfowitz (1956)) and
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Replicated Functional Model, are considered, and a set of algorithms, VERTEX, to find the

least squares solution is introduced.  Each of these algorithms can be selectively

implemented according to the sets of identifiability conditions used.  The resulting

estimators are shown to be consistent, and also the uncertainties associated with them are

provided.

3 . 1 . Quasi random functional model

To overcome the difficulty of having infinitely many parameters we first restrict the

parameter space of A by assuming that the first and the second sample moments of the

rows of A converge to some fixed vector and matrix, respectively.  This model is referred

to as “quasi-random functional model” in Gleser (1983).   We assume 

yi = α0iP0 + εi,

where the εi are independent identically distributed p-dimensional random row vectors with

zero mean vector, positive definite covariance matrix Σ0, and {α0i} is a fixed sequence

satisfying

α α α0
1

0
1

0=  →−

=

→∞∑n i
i

n
n

and

K K0
1

0 0 0 0
1

0= − −  →−

=

→∞∑n i
t

i
i

n
n( ) ( )α α α α .

where α0 is a q-dimensional vector and K0 is a q×q positive definite matrix.

We choose the estimators of A and P so as to minimize the sum of least squares,

Qn(P, A) = n−1tr[(Y - AP)t(Y-AP)] =  n−1
y Pi ik k

k

q

i

n

−
==

∑∑ α
11

2

                      (4)

subject to the constraints, (3), and identifiability conditions.
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VERTEX 1

Since both of A and P are unknown parameters, our estimation procedure,    VERTEX

1, consists of two steps:

1)  Given P, A can be estimated by Ã  =YPt(PPt)-1.

2)  Find P̂  which minimizes

Q P A n tr Y AP Y APn
t( , ˜ ) ( ˜ ) ( ˜ )= − −[ ]−1

               

= − −[ ]
= − −[ ]
= −[ ]
= + −

− − −

− − −

− −

−

n tr Y YP PP P Y YP PP P

n tr I P PP P Y Y I P PP P

n tr Y Y I P PP P

tr S y y I P PP

t t t t t

p
t t t t

p
t t

t
p

t t

t
p

t t

1 1 1

1 1 1

1 1

( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

( ( ) )

( )( ( ) 11 P)[ ]

where the vector y n Y n yt
i

i

n

= =− −

=
∑1 1

1

1  and the matrix

S n Y y Y y n y y y yt
i

t

i

n

i= − − = − −− −

=
∑1 1

1

1 1( ) ( ) ( ) ( )

     where 1is an n-dimensional column vector consisting of 1’s

over the feasible set Ω for which the constraints on P and the identifiability conditions C1

and C2 are satisfied.

The consistency and the asymptotic normality of ̂P  can be proven by adapting the

properties of least squares estimators in Fuller (1987).  We state the asymptotic results for

P̂  in Theorem 1 and Theorem 2.  The proofs of all our theorems are found in the appendix

B.

Theorem 1  (Consistency of ̂P ).   Let A0, P0 and Σ0 be the true values of A, P, and Σ

respectively.   Assume α α α0
1

0
1

0=  →−

=

→∞∑n i
i

n
n  where α0i is the ith row of A0 and α0 is a

q-dimensional row vector and K K0
1

0 0 0 0
1

0= − −  →−

=

→∞∑n i
t

i
i

n
n( ) ( )α α α α  where K 0 is a
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full rank matrix.  Let the identifiability conditions C1-C2 hold.  Let W be the subset of

p+p(p+1)/2-dimensional Euclidean space and ω α0 0 0 0 0 0 0= +( , ( ) )P vech P Pt t tΣ K .  Assume

ω0  is in the interior of W and Σ0 =σ 2Ip .  Then , when n→∞,

vec P vec Pp( ˆ) ( ) → 0 .

Remark 3.   Note that 
g w

p q
n( ; ˆ)θ
−

 is a consistent estimator of σ 2 , and that

˜( ˆ) ˆ ( ˆ ˆ )A P YP PPt t= −1 converges to usual least squares estimate of A when P is known.

Remark 4.   The sample mean of the estimated daily source contributions, n i
i

n
−

=
∑1

1

α̂ ,

where α̂ i  is the i th row of ˜ ( ˆ) ˆ ( ˆ ˆ )A P YP PPt t= −1, can be shown to be consistent;

n i
i

n
p−

=
∑  →1

1
0α̂ α .

Theorem 2 (Asymptotic Normality of P̂ ).   Let the assumptions for Theorem 1 hold.

Let r be the number of free parameters in P and θ be the r-dimensional vector consisting of

those free parameters.  Assume that the true parameter value θ0 ∈  int(Θ), where Θ, the

parameter space for θ, is a convex compact subset of r-dimensional Euclidean space.

Assume the error covariance matrix Σ0
2= σ Ip  and the errors have finite fourth moments.   

Let θ̂  be the value of θ that minimizes

g y vechS tr S y y I P PP Pt
p

t t( , ; ) ( )( ( ) )θ = + −[ ]−1 .

Then

n Nd( ˆ ) ( , )θ θ−  → − −
0 0 H BGB H1 t 1 ,

where
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G is the limiting covariance matrix of y vechS t t
,( )[ ] ,  B = (B2, B1),

B1= L I P P P P P P Pt
p

t t t−( ) ⊗{ }[ − −
0 0 0

1
0 0 0

1
0( ) ( ) + ⊗ −( ){ }]− −M P P P I P P P Pt t

p
t t

p( ) ( )0 0
1

0 0 0 0
1

0 Φ ,

B2 = − −( ) ⊗[ ]−2 0 0 0
1

0 0L I P P P Pt
p

t t t( ) α ,

H  = 2 20 0 0
1

0 0 0 0
1

0 0 0L I P P P P L L I P P P P Lt
p

t t t
p

t t t( ( ) ) ( )− ⊗( ) + −( ) ⊗[ ]− −K0 α α ,

L
vecP

t
= ∂

∂θ
0  is the matrix of partial derivatives of P with respect to θ evaluated at θ = θ0,

M
vecPt

t
= ∂

∂θ
0  is the matrix of partial derivatives of Pt with respect to θ evaluated at θ = θ0,

and Φ p  is the p p p2 1
2 1× +( ) matrix such that vecA vechAp= Φ  for any p×p symmetric

matrix A.

Remark 5.    Note σij  = 0 for i ≠ j  under our assumption that Σ0
2= σ Ip .

Remark 6.   If θ0 is on the boundary of Θ, i.e., some of the elements of θ0 is zero,

then the limiting distribution of θ̂  would not be a normal distribution.   It would be a

mixture of point mass at zero and a normal distribution.

3 . 2 . Replicated functional model

Consisder the model

Y UAP E= + , (5)

where 

  

U

m

m

mn

=



















1 0 0

0 1 0

0 0 1

1

2

L

L

M M O M

L

, m Ni
i

n

=
∑ =

1

, 1mi
 is an mi -dimensional column vector

consisting of 1’s, A is the n×q source contribution matrix, P is the q×p source composition
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matrix, and E is a N×p error matrix.  The ith observation in the jth replication, y
ij
 with

double script notation, is represented by

y P
ij i ij= +α ε ,   i n= 1, ,L ,    j mi= 1, ,L

where α i  is the q-dimensional row vector corresponding to the i th source contribution, and

ε ij  is a random error corresponding to the i th observation in the j th replication.  We assume

ε ij ’s are independent and identically distributed with mean vector 0 and variance-covariance

matrix Σ, and α i ’s and P are unknown paramters.  This model is recognizable as an

“replicated functional model” (see, e.g., Gleser 1983).  We have

E Y UAP( ) =

and

Var Y N( ) = ⊗I Σ .

Note that U is a known N×n matrix.  Under the identifiability conditions, A1-A3 or B1-

B3, described in section 2, this model is identified (or nearly identified).    That is, UA1P1

= UA2P2 implies that A1 = A2 and P1 = P2 ( or A1 ≈ A2 and P1 ≈ P2).

Let m Ni
i

n

=
∑ =

1

.  Here, N is the total number of observations in the data.

The least squares estimators of A and P are obtained by minimizing the sum of squares,

 QN(P, A) = N tr Y UAP Y UAPt− − −[ ]1 ( ) ( ) (6)
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= − + − − + −[ ]
= − −[ ] + − −[ ]
= − −[ ] + − −[ ]
=

−

− −

− −

−

N tr Y UY UY UAP Y UY UY UAP

N tr Y UY Y UY N tr UY UAP UY UAP

N tr Y UY Y UY N tr Y AP U U Y AP

N tr

t

t t

t t t

1

1 1

1 1

1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(( ) ( ) ( )( )Y UY Y UY N tr M Y AP Y APt t− −[ ] + − −[ ]−1

over the feasible set Θ , where

  

Θ ΙΑ= ( ) ≥ ≥ = = = =










=
∑P A p p i n k q j pik kj kj
j

p

, , , , , , , , , , , , ,α 0 0 1 1 1 1
1

L L L

where IA (= A1-A3 or B1-B3) is a set of the identifiability conditions defined in section 2.  

Since N tr Y UY Y UYt− − −[ ]1 ( ) ( )  does not depend on A or P, minimizing QN(P, A) is

equavelent to minimizing QN
*(P, A)  = N tr M Y AP Y AP t− − −[ ]1 ( )( )  w.r.t. A and P.

A fitting algorithm for estimating A and P under this model is given below:

VERTEX 2

1)  Given A, P can be estimated by

P̃ UA UA UA UY A MA A MYt t t t= ( ) ( )[ ] ( ) = ( )− −1 1

 where 

  

M

m

m

mn

=



















1

2

0

0

O
 and 

  

Y

m y

m y

m y

j
j

m

j
j

m

n nj
j

mn

=



























−

=

−

=

−

=

∑

∑

∑

1
1

1
1

2
1

2
1

1

1

1

2

M

.

2)  Find Â  which minimizes

   QN
*(P, A)  = N tr M Y AP Y AP t− − −[ ]1 ( ˜ )( ˜ )
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= − ( )( ) − ( )( )





= − ( )( ) − ( )( )





= − ( )( )

− − −

− − −

− −

N tr M Y A A MA A MY Y A A MA A MY

N tr M I A A MA A M YY I A A MA A M

N tr M I A A MA A M YY

t t t t
t

n
t t t

n
t t

t

n
t t

1 1 1

1 1 1

1 1 tt
n

t t
t

t
n

t t

I A A MA A M

N tr Y M I A A MA A M Y

− ( )( )





= − ( )( )[ ]
−

− −

1

1 1

over the feasible set ΩA  where

ΩA  =
  

A i n k qikα ≥ = ={ }0 1 1, , , , , , ,L L ΙΑ

where IA (= A1-A3 or B1-B3) is a set of the identifiability conditions defined in section 2.

Definition        4    .   Let An be a sequence of random matrices and A0 be a constant matrix.  Then

A An
p → 0  means P A An( )− > →0 0ε  as n → ∞  for each ε > 0, where A aij= ∑∑ 2 .

The asymptotic results for P̂  are stated in Theorem 3 and Theorem 4, which are

established based on the asymptotic results for  Â .   In the following propositions we first

state the asymptotics for Â .

Proposition 2  (Consistency of ̂A).   Let A0, P0 and Σ0 be the true values of A, P, and

Σ respectively. Let the parameter space for A, ΩA  be a compact subset of n×q-dimensional

Euclidean space containing A0.  Assume the identifiability conditions A1-A3 in Section 2

are satisfied.  Also assume A0P0 is in the interior of a subset of n×p-dimensional Euclidean

space.  Then, when mi→∞, lim
m

N
ci

i= > 0, i = 1, ..., n,

Â Ap → 0
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Remark 7.   Under the identifiability conditions B1-B3 in Section 2, we get the

approximate consistency of Â , i.e., P A An( )− > →0 0ε  as n → ∞  for practically small

(not arbitrary) ε > 0.

Let ˆ ˆ ˆ ˆP A MA A MYt t= ( )−1

.  As an immediate consequence of Proposition 2 and the fact

that Y A Pp → 0 0 , and by using the continuous mapping theorem, we obtain the

consistency of ̂P  as follows.

Theorem 3 (Consistency of P̂ ).   Under the definitions and the assumptions of

Proposition 2, when mi→∞, lim
m

N
ci

i= > 0, i = 1, ..., n,

P̂ Pp → 0.

We now establish the asymptotic normality of Â.

Proposition 3  (Asymptotic Normality of Â).   Let the assumptions for Proposition 2

hold.  Let r be the number of free parameters in A and θ be the r-dimensional vector

consisting of those free parameters.  Assume that the true parameter value θ0 ∈  int(Θ),

where Θ, the parameter space for θ, is a convex compact subset of r-dimensional Euclidean

space.  Assume the errors have finite fourth moments.    Let θ̂  be the value of θ that

minimizes

g Y N M A( , ; )−1  = −[ ]− − − −tr Y N M A A N MA A N M Yt t t1 1 1 1( ( ) ) .In

Then

m N Cd
p

∗ − ∗ −−  → ⊗( )( ˆ ) ,θ θ0 0 H B( )B H1 t 1Σ ,

where m m
i n i

∗

≤ ≤
= { }min

1
, Σp is error covariance matrix,   
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B =2 0 0 0
1

0 0Q C I A A CA A C Pt
n

t t−( ) ⊗[ ]−( ) , H  = Q C I A A CA A C P P Qt
n

t t t−( ) ⊗[ ]−
0 0 0

1
0 0 0( ) ,

  

C

c

c

cn

=



















1

2

0

0

O
 where c

m

Ni
m

i

i

=
→∞

lim , 

  

C

c

c
c

c

c

cn

∗

∗

∗

∗

=



























1

2

0

0

O

 where c m

Nm

∗

→∞

∗

=
∗
lim , and

Q
vecAt

t
=

∂
∂θ

0  is the matrix of partial derivatives of A with respect to θ evaluated at θ = θ0.

Remark 8.   The same comment as Remark 5 can be made here if θ0 is on the

boundary of Θ.

Remark 9. The asymptotic normality of ̂ ˆ ˆ ˆP A MA A MYt t= ( )−1

 can also be established

by standard arguments for nonlinear least squares estimators.  However, the resulting

distrubution has an extremely complicated covariance matrix.  Thus, we employ Bootstrap

method to obtain the approximate covariance matrix.  The estimates are aymptotically

unbiased by theorem 3.

Under the replicated functional model (5), resampling can be done in two ways, Case

resampling and Model based resampling.  We adapt the algorithms in Davison and Hinkley

(1997) for our model:

For   h H= 1, ,L  (H: bootstrap size),

A) Case resampling

1.  For each source contribution α i  (  i n= 1, ,L ), choose   y yi imi1
∗ ∗, ,L  by randomly sampling

with replacement from   y yi imi1, ,L .

2.  Combining   y yi imi1
∗ ∗, ,L ,     i n=1, ,L , leads to a bootstrap sample, Y ∗ .
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B) Model based resampling

1.  Find Â  and P̂  based on the original data.

2.  Compute residuals by R = I DH Y UAP−( ) −( )− 1
2 ˆ ˆ  where DH is a diagonal matrix

consisting of the diagonal elements of H UA UA UA UA
t t

= ( ) ( ) ( )



 ( )

−
ˆ ˆ ˆ ˆ

1

.

3.  Randomly sample ε j
∗ from   r r r rN1 − −, ,L  where ri  (  i N= 1, ,L ) is the i th row of the

matrix R and r  is the residual mean vector, i.e., 
  
r N r ri

i

N

ip
i

N

= 





−

= =
∑ ∑1

1
1 1

, ,L .

4.  Set Y UAP E∗ ∗= +ˆ ˆ  where   E N

t∗ ∗ ∗= ( )ε ε1 , ,L .

Bootstrap estimators ̂P∗ are obtained for H bootstrap samples, and the sample covariance

matrix of those ̂P∗ is used as approximate covariance matrix of P̂ .

Remark 10.  It has been observed from the simulation study that case resampling leads

to more stable bootstrap estimators than model based resampling.  Accuracy of bootstrap

estimators ̂P∗ from model based resampling depends heavily on how good the estimate ̂A

from the original data is since Â  is treated as A0  in model based resampling.

4 . Simulations

In this section we consider simulated examples to illustrate the proposed methods. For

VERTEX 1, the data is generated by the model (2) where n = 200, p = 9, and q = 3.   The

errors are independently generated from the centered lognormal distribution so that they

have mean 0 and variance-covariance matrix σ2I p.  The source composition matrix P

(actually, Pt) is given in Table 1.  The value of σ was chosen so that the proportions of the
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error standard deviations to the model standard deviations are mostly between 10~30%.

The elements of source contribution matrix A are taken from the uniform random numbers

(uniform(0,2)).  The true mean source contributions are given in Table 2.  The resulting

data matrix Y consists of nonnegative numbers.

Table 1.  True source composition profiles (Pt
0 )

Species Source 1 Source 2 Source 3
1
2
3
4
5
6
7
8
9

    0.2242
    0
    0.1932
    0
    0.0708
    0.0337
    0.2266
    0.1452
    0.1063

    0.2264
    0.1678
    0.1981
    0.1316
    0
    0.0387
    0
    0.1996
    0.0378

    0
    0.1369
    0.0438
    0.0385
    0.2067
    0.0089
    0.2237
    0.3414
    0

Table 2.  True mean source contributions

Source 1 Source 2 Source 3
α0

0.9919 1.0037 1.0158

To apply VERTEX 1, we assume that it is known beforehand that species 2 and 4 are

missing in source 1, species 5 and 7 are missing in source 2, and species 1 and 9 are

missing in source 3, i.e., some of the elements of the source composition matrix are

prespecified.  Table 3 shows the resulting estimates of the source compositions from

VERTEX 1, and Table 4 shows the asymptotic standard deviations of the estimators.

Table 3.  Estimated source composition profiles (P̂VERTEX
t

1)

Species Source 1 Source 2 Source 3
1
2
3
4
5
6
7
8
9

    0.2224
    0
    0.1953
    0
    0.0703
    0.0332
    0.2304
    0.1449
    0.1035

    0.2293
    0.1637
    0.2011
    0.1280
    0
    0.0368
    0
    0.2020
    0.0392

    0
    0.1446
    0.0392
    0.0456
    0.2045
    0.0118
    0.2136
    0.3406
    0
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Table 4.  Asymptotic standard deviations of P̂VERTEX
t

1

Species Source 1 Source 2 Source 3
1
2
3
4
5
6
7
8
9

0.0257
0
0.0134
0
0.0183
0.0013
0.0162
0.0144
0.0071

0.0013
0.0012
0.0007
0.0016
0
0.0006
0
0.0009
0.0062

0
0.0072
0.0015
0.0047
0.0024
0.0010
0.0153
0.0012
0

The VERTEX 1 provides the estimates for all of n source contributions, but only the

sample mean of those estimated source contributions is reported here.  The estimated mean

source contributions is given in Table 5.

Table 5.  Estimated mean source contributions

Source 1 Source 2 Source 3

α̂VERTEX1
1.0129 0.9774 1.0211

Note that the numbers in Table 5 are the estimates of the absolute source contributions in

this case since the true source profiles are generated so that the sum of species in each

profile is 1.  In real situations, the sum could be any positive number, say ck, k=1, 2, 3. 

In that case, ˆ , ˆ , ˆα α αi i i1 2 3( ) will be the estimate of c c ci i i1 0 1 2 0 2 3 0 3α α α, ,( ),   i n= 1, ,L , and

ˆ , ˆ , ˆα α α1 2 3( ) will be the estimate of c c c1 01 2 02 3 03α α α, ,( ).

Fig. 1 shows the princial component plot of the data, the estimated source profiles,

and the true source profiles.  It can be seen that the source profiles obtained from VERTEX

1 give very good approximation to the true source profiles.
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Fig. 1.  Principal component plots of the data (o), the true sources (+), and

the fitted sources by VERTEX 1 (*)

To illustrate VERTEX 2, the data is generated based on the model (5) where N = 720,

n = 24 (assuming the source contributions are repeated every 24 hour), p = 7, and q = 3.

Although the number of replications mi need not be equal, for the sake of brevity, the same

number of replications are used for the source contributions.   Thus, m1 = m2 = ... = m24 =

30 .

The source profiles normalized to sum to 1 are given in Table 6.  The source

contribution matrix A is generated to satisfy the conditions A1-A3 in section 2.  It is

assumed that source 1 is missing on 8th hour, source 2 is missing on 7th hour, and source

3 is missing on 6th hour, and when each source is missing, the average source

contributions of the other sources stay the same.  The errors associated with N

observations are independently generated from the centered lognormal distribution so that

the proportions of the error standard deviations to the model standard deviations (which can

be defined as the squarerooted diagonal elements of P0
tK0P0 in this case) are about

10~30%.



24

Table 6.  True source composition profiles (Pt
0 )

Species Source 1 Source 2 Source 3
1
2
3
4
5
6
7

    0.0852
    0.2124
    0.1155
    0.0305
    0.1981
    0.1681
    0.1902

    0.2252
    0.0417
    0.1597
    0.0185
    0.1312
    0.2132
    0.2104

    0.1627
    0.0638
    0.1902
    0.0657
    0.2486
    0.1852
    0.0838

Note that, in VERTEX 2, the constrained minimization is done with A.  Once we get the

estimated source contributions, ̂AVERTEX2 , the source compositions are estimated by

ordinary least squares, i.e., ̂ ˆ ˆ ˆP A A A YVERTEX VERTEX
t

VERTEX VERTEX2 2 2

1

2= ( )−
.  Table 7 shows the

estimated source profiles normalized to sum to 1.  Although the nonnegativity constraints

for the compositions were not used, the estimates of source profiles are all nonnegative.  It

is observed from the simulation that only when the true source composition matrix contains

zeros, the corresponding estimates (of zeros) are negative.  In that case, it would be a

natural choice to replace the negative estimates with 0 and renormaliz each source profile.

Fig. 2 shows the principal component plot of the data, the true source profiles, and

P̂VERTEX
t

2.  It can be seen that P̂VERTEX
t

2 gives a very good approximation to the true source

composition matrix.

Table 7.  Estimated source composition profiles (P̂VERTEX
t

2)

Species Source 1 Source 2 Source 3
1
2
3
4
5
6
7

    0.0868
    0.2107
    0.1142
    0.0315
    0.1972
    0.1680
    0.1915

    0.2265
    0.0373
    0.1627
    0.0177
    0.1339
    0.2150
    0.2070

    0.1631
    0.0617
    0.1925
    0.0688
    0.2501
    0.1852
    0.0786
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Fig. 2.  Principal component plots of the data (o), the true sources (+),

and the fitted sources by VERTEX 2 (*)

Table 8 and Table 9 show the bootstrap standard deviations of P̂VERTEX
t

2 based on 200

bootstrap samples from Case resampling and Model based resampling, respectively.

Table 8.  Estimated standard deviations of P̂VERTEX
t

2

from Case resampling

Species Source 1 Source 2 Source 3
1
2
3
4
5
6
7

    0.0022
    0.0033
    0.0019
    0.0016
    0.0015
    0.0014
    0.0019

    0.0037
    0.0053
    0.0023
    0.0014
    0.0020
    0.0017
    0.0025

    0.0019
    0.0031
    0.0015
    0.0011
    0.0015
    0.0012
    0.0017
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Table 9.  Estimated standard deviations of P̂VERTEX
t

2

from Model based resampling

Species Source 1 Source 2 Source 3
1
2
3
4
5
6
7

    0.0022
    0.0025
    0.0014
    0.0010
    0.0019
    0.0013
    0.0021

    0.0020
    0.0022
    0.0015
    0.0012
    0.0021
    0.0012
    0.0023

    0.0019
    0.0021
    0.0013
    0.0010
    0.0016
    0.0012
    0.0018

5 . Applications

In this section we present some applications of our methods to real air pollution datasets.

5.1   Example 1 (Air pollution composition)

As part of a large air quality study, hourly concentrations of hydrocarbon gases were

determined by automated gas chromatography at two sites in Houston Texas from June to

November 1993.  The original data consists of 2,541 hourly observations (after initial

screening of the outliers) on 54 volatile organic compounds (VOC) and total nonmethane

organic carbon (TNMOC).  The wind data consisting of hourly average wind direction,

standard deviation of the wind direction, and resultant wind direction and speed were also

provided.  These data were used in Henry, Spiegleman, Collins, and Park (1997).  The 12

important species were selected by examination of the scatterplots, the correlation matrix,

and environmental engineer’s judgement for further analysis in Henry et al. (1997).  We

use the same set of species.  According to Henry et al. (1997) Industrial 2 and Industrial 3

show especially high emissions for the wind direction 180o to 190o.  To the dataset

consisting of 183 observations with the 180-190 wind direction, VERTEX 1 is applied

again with q̂  = 3.  Here, information needed for prespecification of zero element is

obtained from the SAFER result in Herny et al. (1997).  Table 10 shows the estimated

source profiles.  The fitted sources are very close in their compositions to Industrial 2,
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Industrial 3, and Industrial 5 from SAFER.  The R2 (r2) values are given in Table 11.  Fig.

3 shows the principal component plot of the data and the fitted sources by VERTEX 1.

Table 10.  Estimated source composition profiles (    P̂VERTEX1)

Species Source 1 Source 2 Source 3
Ethane

N_prop
Acetyl

T2pene
Bu23dm
Pena2m
Pen23m
Hexa3m

Etbz
Mp_xyl
Bz135m
Bz124m

    0.0173
    0.0000
    0.0074
    0.0422
    0.1093
    0.6316
    0.0000
    0.1127
    0.0598
    0.0000
    0.0000
    0.0195

    0.0106
    0.0000
    0.0000
    0.0000
    0.0033
    0.0000
    0.0297
    0.0385
    0.2330
    0.6421
    0.0234
    0.0194

    0.5152
    0.3254
    0.0362
    0.0000
    0.0115
    0.0000
    0.0378
    0.0496
    0.0003
    0.0000
    0.0000
    0.0242

Table 11.  R2  values between     P̂VERTEX1 and     P̂SAFER

Source 1 Source 2 Source 3

Industrial 2 0.9880 0.0271 0.0435

Industrial 3 0.0268 0.8925 0.0179

Industrial 5 0.0425 0.0097 0.9269
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Fig. 3.  Principal component plots of the data (o)

and the fitted sources by VERTEX 2 (*)
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5.2   Example 2 (Air pollution spatial)

As the second example we consider measurements on sulfur dioxide gas collected from 11

receptor sites in the nearby Grand Canyon National Park (Henry, 1992).  The resulting

data set consists of 53 observations on 11 variables (here receptor sites).  The number of

sources, q, is estimated to be 3 by the NUMFACT algorithm (Henry, Park, and

Spiegelman, 1997).  Physically, there are three known source regions of sulfur dioxide

gases in the region.  These sources are believed to correspond to pollution sources in

southern California, copper smelters in southern Arizona and northern Mexico, and electric

power plants.  Not all the source profiles have the required number of zeros to apply

VERTEX 1, so we apply VERTEX 2 with identifiability conditions A1-A3.  Source 1 is

assumed to be missing on Day 1, Source 2 is missing on Day 12, and Source 3 is assumed

to be missing on Day 44.  These edge points (obs. 1, 12, and 44) are taken by the principal

component plots of the data and the SAFER fit results (Henry and Kim, 1990).  The

estimated source profiles normalized to sum to 1 and standard errors based on 8 bootstrap

samples from Model based resampling appear in Table 12.  Fig. 4 shows the principal

component plot of the data and the fitted sources.  From the plot it can be seen that the

estimated source profiles give a reasonable fit to the data.

Table 12.  Estimated source composition profiles (P̂VERTEX
t

2)
+

Variables Source 1 Source 2 Source 3
1
2
3
4
5
6
7
8
9
10
11

   0.1295 (0.0030)
   0.0521 (0.0024)
   0.1235 (0.0032)
   0.0886 (0.0064)
   0.0635 (0.0060)
   0.1272 (0.0042)
   0.0586 (0.0037)
   0.0278 (0.0044)
   0.0857 (0.0035)
   0.1346 (0.0065)
   0.1090 (0.0021)

   0.0707 (0.0044)
   0.1138 (0.0051)
   0.0684 (0.0042)
   0.0476 (0.0086)
   0.1100 (0.0119)
   0.0686 (0.0042)
   0.1064 (0.0056)
   0.1270 (0.0043)
   0.1010 (0.0082)
   0.0994 (0.0071)
   0.0872 (0.0067)

   0.0686 (0.0046)
   0.0299 (0.0029)
   0.0708 (0.0041)
   0.1275 (0.0078)
   0.2178 (0.0098)
   0.0686 (0.0059)
   0.0427 (0.0046)
   0.0317 (0.0029)
   0.2167 (0.0077)
   0.0731 (0.0038)
   0.0525 (0.0060)

+ Standard errors are given in parentheses.
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Fig. 4.  Principal component plots of the data (o)

and the fitted sources by VERTEX 2 (*)

6.  Conclusions

This article has been concerned with consistent estimation of source profiles and

uncertainty estimation.  To eliminate model nonidentifiability problem, new sets of

identifiability conditions based on the source contribution matrix were proposed in addition

to a set of traditional identification conditions that use preassigned 0’s in the source

composition matrix.  These new conditions usually require less prior information than the

conditions based on the source composition matrix.  As a method of estimating the source

compositions and the contributions, simultaneously, the constrained nonlinear least squares

approach was suggested.  Two algorithms to find the least squares solution, VERTEX 1

and VERTEX 2 were presented.  Each of these can selectively be implemented according to

the identifiability conditions that can be achieved in the problem under study.  The

estimators from VERTEX were shown to be consistent and asymptotically normal under

appropriate identifiability conditions.
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Appendix A: Notations

A : n×q source contribution matrix

P : q×p source composition matrix

E : N×p error matrix

mi : # of replications for ith source contribution

m Ni
i

n

=
∑ =

1

: total number of observations

1mi
: mi -dimensional column vector consisting of 1’s
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Σp : variance-covariance matrix of error vectors, i.e., Var(ε ij) = Σp
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Appendix B:  Proofs

B . 1 . Proof of proposition 1

Let’s call a new source contribution matrix and a new source composition matrix obtained

by a linear transformation A* and P*, respectively.  And, assume A*P* = AP.

By postmultiplying A*P* = AP  by Pt, we get

A*P*Pt = APPt

A*P*Pt(PPt)-1 = A

since PPt
  is of full rank by the assumption.  Letting S = P*Pt(PPt)-1,

 A = A*S .      (A.1)

Similarly, premultiplying A*P* = AP  by At, we get

AtA*P* = AtAP

(AtA)-1AtA*P* = P

since AtA  is of full rank by the assumption.  Letting R = (AtA)-1AtA*,

P = RP*          (A.2)

By (A.1), (A.2), and the assumption that A*P* = AP, we have

AP = A*S RP * = A*P*.

Since A* is of full column rank and P* is of full row rank, we get from (A.2),

(A*tA*)-1A*A*S RP *P*t(P*P*t)-1* = (A*tA*)-1A*tA*P*P*t(P*P*t)-1

and hence

SR = I.

Note that both of S and R are q×q full rank matrices.  Hence,

S = R-1.

Using this and (A.1), we get

A* =  AR ,

and from (A.2),

P* =  R-1P .

Thus, if A*P* = AP, then A* =  AR and P* =  R-1P  for a nonsingular matrix
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R = (AtA)-1AtA*.  Note that R can have different expressions.

B . 2 . Proof of result 1.

We need the following lemmas to prove result 1 and result 2.  Assume the physical

constraints for the source composition matrix and the source contribution matrix, (3), hold

throughout.

Lemma A1.   Let rkj denote the (k,j)th element of R where   k q= 1, ,L ,   j q= 1, ,L .

Then

rkj
j

q

=
∑ =

1

1,   k q= 1, ,L .

Proof.     We have P = R P*  from P* = R-1P .  Thus, (k,j)th element of the matrix P can be

expressed as

r p pki ij
i

q

kj
∗

=
∑ =

1

.

Due to the constraint that row sum of P is 1,

r p pki ij
i

q

j

p

kj
j

p
∗

== =
∑∑ ∑= =

11 1

1,

and by interchanging the summations,

r pki ij
j

p

i

q
∗

==
∑∑ =

11

1.

It follows from the constraint pij
j

p
∗

=
∑ =

1

1 that

rki
i

q

=
∑ =

1

1.

Lemma A2.    Under the assumptions A1-A3,

rkj = 0,      k q= 1,L ,    j q= 1, ,L ,  j k≠ .

Proof.     From A* = AR , the (i,j) th element of the matrix A* can be expressed as
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  α α α αi j i j iq qj ijr r r1 1 2 2+ + + = ∗L ,       i n= 1, ,L ,       j q= 1, ,L

and hence

  α α α α1 1 2 2r r rj j q qj j+ + + = ∗L .    (A.3)

Say kth (  k q= 1, ,L  ) source is missing on some days.   Then

  α α α α1 1 1 1 1 1
( ) ( )

,
( )

,
( )k

j k
k

k j k
k

k j q
k

qjr r r r+ + + + +− − + +L L =α j
k∗( ) ,    (A.4)

  j q= 1, ,L  since α k
k( ) = 0.  Here α j

k∗( )  is defined in the similar way as α j
k( ) .

Substracting (A.4) from (A.3),

  ( ) ( ) ( ) ( )( ) ( )
,

( )
,

( )α α α α α α α α α1 1 1 1 1 1 1 1 1 1− + + − + + − + + −− − − + + +
k

j k k
k

k j k kj k k
k

k j q
k

qjr r r r rL L

=α αj j
k∗ ∗− ( ),    (A.5)

By applying A2, we have

αk kjr = 0

for j ≠ k.

This implies rkj = 0 since αk  ≠ 0 by A3.

Proof of resutl.    From lemma A2,

rkj = 0,      k q= 1,L ,    j q= 1, ,L ,  j k≠ .

Using this and lemma A1 together, we get

r rkj
j

q

kk
=

∑ = =
1

1,      k q= 1,L .

This completes the proof.

B . 3 . Proof of result 2.

We need the following lemmas additionaly to prove result 2.

Lemma A3.    Under the assumptions B1 and B3, for   k q= 1, ,L ,   j q= 1, ,L ,

r
pq

kj
q

≤
2

λ
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where λq is the smallest eigenvalue of P P t∗ ∗ .

Proof.    Recall that P RP= ∗.  Postmultiplying this by P P Pt t∗ ∗ ∗ −( ) 1, we get

R PP P Pt t= ∗ ∗ ∗ −( ) 1.

Let C PP t= ∗  and D P P t= ( )∗ ∗ −1
.  The (k,j)th element of C can be expressed by

c p pkj ki ji
i

p

= ∗

=
∑

1

.

Each summand, p pki ji
∗ , in the above equation is bounded by 1 due to the constraints that

0 1≤ ≤pki  and 0 1≤ ≤∗pji .  Hence,

   0
1

≤ = ≤∗

=
∑c p p pkj ki ji
i

p

,       (A.6)

  k q= 1, ,L ,   j q= 1, ,L .  Note that the matrix P P t∗ ∗  is symmetric.  By the diagonability of

symmetric matrices (see, e.g., Searle 1982, sec. 11.6b), we have the expression that

P P U Ut t∗ ∗ = Λ

where Λ is the diagonal matrix of the eigenvalues of P P t∗ ∗  and U is the orthogonal matrix

consisting of the eigenvectors of P P t∗ ∗ , and hence

D P P U U U Ut t t= ( ) = ( ) =∗ ∗ − − −1 1 1Λ Λ    (A.7)

Using (A.7), the (i,j)th element of D can be expressed by

d u uij
ss

q

is js=
=

∑ 1

1 λ
,   i q j q= =1 1, , , , ,L L .

Note that uis ≤ 1, ujs ≤ 1 since U is a orthogonal matrix.  Letting λq be the smallest

eigenvalue of P P t∗ ∗ , we obtain for   k q= 1, ,L ,   j q= 1, ,L ,

d u u u u
q

ij
ss

q

is js
ss

q

is js
q

= ≤ ≤
= =

∑ ∑1 1

1 1λ λ λ
   (A.8)
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by the triangle inequality and the nonnegativity of the eigenvalues of a nonnegative definite

matrix.  Note that λq > 0 due to the assumption B3.

The (k,j)th element of the matrix R = CD is written by

r c dkj ki ij
i

q

=
=
∑

1

.

By the triangle inequality, (A.6), and (A.8),

r c d c d
q

c
pq

kj ki ij
i

q

ki ij
i

q

q
ki

i

q

q

= ≤ ≤ ≤
= = =
∑ ∑ ∑

1 1 1

2

λ λ
,

  k q= 1, ,L ,   j q= 1, ,L .

Lemma A4.    Under the assumptions B1 - B3, for   k q= 1, ,L ,   j q= 1, ,L , k ≠ j,

r Bkj ≤

where B is defined by B
pq q

k q

= + −


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
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12 ( )
.

Proof.     From (A.5) in the proof of lemma A2, we get
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−ε ε

λ
ε

λ
ε ε

λ
pq pq pq

q
q q q

2 2 2
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by the triangle inequality, B2, and lemma A3.

Thus

α ε
λk kj

q

r
pq q≤ + −











1

12( )
.

It follows from B3 that

r
pq q

Bkj
k q

≤ + −










=ε

α λ
1

12( )
,

where   k q= 1, ,L ,   j q= 1, ,L , k ≠ j.

Proof of result.    From lemma A4, r Bkj ≤ ,    k q= 1,L ,    j q= 1, ,L ,  k ≠ j.   Using this

and lemma A1 and by the assumption that B is small enough, we get

1
1

= ≈
=

∑r rkj
j

q

kk ,     k q= 1,L .

This completes the proof.

B . 4 . Proof of theorem 1.

We need the following lemmas to prove the theorem.

Lemma A5.   Let yi = α0iP0 + εi, where the εi are independent identically distributed p-

dimensional random row vectors with zero mean vector, positive definite covariance matrix

Σ0.  Let{α0i} be a fixed sequence satisfying

α α α0
1

0
1

0=  →−

=

→∞∑n i
i

n
n

and

K K0
1

0 0 0 0
1

0= − −  →−

=

→∞∑n i
t

i
i

n
n( ) ( )α α α α .
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Then, when n→∞,

y n y Pi
i

n
p=  →−

=
∑1

1
0 0α ,

and

S n y y y y P Pi
t

i
p

i

n
t= − −  → +−

=
∑1

1
0 0 0 0( ) ( ) Σ K .

Proof.   This result follows from WLLN.  A detailed proof can be found in Park (1997).

Lemma A6.   Let g(x,y) be a continuous real valued function defined on the Cartesian

product A× B, where A is a subset of p-dimensional Euclidean space and B is a compact

subset of q-dimensional Euclidean space.  Let x0 be an interior point of A.  Assume that the

point y0 is the unique point for which Min g x yy B∈ ( , )0  is attained.  Let ym (x) be a point in B

such that

g x y x Min g x ym y B( , ( )) ( , )= ∈ .

Then ym(x) is a continuous function of x at x = x0.

Proof.   Appendix 4.B of Fuller (1987).

Proof of theorem.  Let w y vech Sn
t t= ( , ( ) ) , and θ = vec P( ).  Let Θ  be the compact subset

of pq-dimensional Euclidean space.  Define g wn( ; )θ = tr S y y I P PP Pt
p

t t( ) ( )+ −{ }[ ]−1 .

Note that g wn( ; )θ  is a continuous real valued function defined on W×Θ.  By lemma A5, as

n→∞,

wn
p → ω0

We show that Ming
θ

ω θ
∈Θ

( ; )0 = Mintr P P P P I P PP Pt t t
p

t t

θ
α α

∈

−+ + −{ }[ ]Θ
Σ( ) ( )0 0 0 0 0 0 0 0

1K  is

uniquely attained at θ θ= 0 if Σ0
2= σ Ip .  Assuming Σ0

2= σ Ip ,

g tr I P P P P I P PP Pp
t t t

p
t t( , ) ( ) ( )ω θ σ α α= + + −{ }[ ]−2

0 0 0 0 0 0 0
1K
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= − + −{ }[ ] + −

− −

−

−

σ

α α

σ α

2 1
0 0

1
0

0 0
1

0 0

2
0 0

1
0 0 0

tr I P PP P tr P I P PP P P

tr P I P PP P P

p q tr P I P PP P P tr P I P PP

p
t t

p
t t t

p
t t t t

p
t t t

p
t

( ) ( )

( )

( ) ( ) (

K

K tt t tP P) .−{ }[ ]1
0 0α

Note that I P PP Pp
t t− −( ) 1  is a projection matrix and so columns of I P PP Pp

t t− −( ) 1  are

orthogonal to and linearly independent of columns of Pt (rows of P).  Since K0 is of full

rank, K0P0 also span the row space of P0.  Since the projection matrix is unique (see, e.g.,

Rao 1973, sec 1c.4), tr K P I P PP P Pp
t t t

0 0
1

0−{ }[ ]−( )  has a unique minimum when

P PP P P P P Pt t t t( ) ( )− −=1
0 0 0

1
0 , which is true for P =RP0 for any q×q nonsingular matrix R .

By the identifiability conditions on P, C1-C2, R should be an identity matrix, and hence,

tr K P I P PP P P Kp
t t t t

0 0
1

0 0−{ }[ ]−( )  has a unique minimum 0 at P = P0.  Thus,

Ming
θ

ω θ
∈Θ

( ; )0

 =σ 2 ( )p q− + Mintr P I P PP P P tr P I P PP P Pp
t t t

p
t t t t

θ
α α

∈

− −−( ){ } + −( ){ }
Θ

K0 0
1

0 0 0
1

0 0( ) ( )

   =σ 2 ( )p q− + tr P I P P P P P tr P I P P P P Pp
t t t t

p
t t t t tK0 0 0 0 0

1
0 0 0 0 0 0 0

1
0 0 0−{ }[ ] + −{ }[ ]− −( ) ( )α α

   =σ 2 ( )p q−

is uniquely attained at P = P0, i.e., θ θ= 0.  By lemma A6, vec P( ˆ) which is the value of

vec(P) such that g w vec P Ming w vec Pn n( ; ( ˆ)) ( ; ( ))=
∈θ Θ

 is a continuous function of wn  and the

result follows from the continuous mapping theorem.

B . 5 . Proof of theorem 2

We will need the following lemmas in the sequel to prove theorem 2.

Lemma A7.  Let yi = α0iP0 + εi, where the εi are independent identically distributed p-

dimensional random row vectors with zero mean vector, positive definite covariance matrix

Σ0, and finite fourth moments.  Let {α0i} be a fixed sequence satisfying
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α α α0
1

0
1

0=  →−

=

→∞∑n i
i

n
n

and

K K0
1

0 0 0 0
1

0= − −  →−
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→∞∑n i
t

i
i

n
n( ) ( )α α α α .

Let ˆ ,γ = ( )[ ]y vechS t t
 and γ αn

t t

P vech vech= +( )[ ]0 0 0, m Σ  where m K= P Pt
0 0 0.  Then

G 0,In n
d N− −( )  →1 2 ˆ ( )γ γ ,

where the elements of Gn are the covariances of the elements of γ̂ ,

Cov y y n

Cov y S
n

n

C S S
n

n
m m m m O n

E

i j ij

i jk ijk

ij kl ik jl il jk jk il jl ik ij kl

ij kl i j ij k l kl

, ,

, ,

, ( ),,

,

( ) =

( ) = −

( ) = − + + + +( ) +

= −( ) −( ){ }

−

−

1

2

2
2

1

1

σ

τ

σ σ σ σ κ

κ ε ε σ ε ε σ

σ ε εij i jE= ( ), and τ ε ε εijk i j kE= ( ).
Proof.   It is a direct adaptation of theorem 1.C.2 of Fuller (1987).

Lemma A8.   Under the definitions and the assumptions of lemma A7,

n Nn
dˆ ( )γ γ−( )  → 0,G ,

where the elements of G are the limiting values of the elements of nGn,

lim , ,

lim ,

lim , ,,

n
i j ij

n
i jk ijk

n
ij kl ik jl il jk jk il jl ik ij kl

nCov y y

nCov y S

nCov S S m m m m

→∞

→∞

→∞

( ) =

( ) =

( ) = + + + +( )

σ

τ

σ σ σ σ κ

and mij’s are the elements of m K= P Pt
0 0 0 .

Proof. It follows from the fact that n n
nG G1 2 1 2→∞ →  in probability and Slutsky

theorem.

Lemma A9.   Let g vechS tr S I P PP Pp
t t

1
1( , ) ( )θ = −{ }[ ]− .   Then
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0
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p p p2 1
2 1× +( ) matrix such that vec S I P K Pp

t− +( )( )0 0 0  = Φp vech S I P K Pp
t− +( )( )0 0 0 .

(b)  
∂

∂θ∂θ
θ

2

1 0t
g vechS( , ) = −{ } ⊗[ ] +−2 10 0 0

1
0L I P P P P L ot

p
t t

p( ) ( )K0

where L
vecP vecP

t t
P P

= =
=

∂
∂θ

∂
∂θ

0

0

.

Proof.   A detailed proof can be found in Park (1997).

Lemma A10.    Let g y y I P PP P yp
t t t

2
1( , ) ( ( ) ) .θ = − −   Then,

(a) 
∂ θ

∂θ
α αg y

L I P P P P y P o nt
p

t t t
p

2 0
0 0 0

1
0 0 0 02

1
2

( , )
( ) ( )= − −{ } ⊗[ ] −( ) +− − .

 (b) 
∂ θ

∂θ∂θ
α α

2
2 0

0 0 0
1

0 0 02
1
2

g y
L I P P P P L O nt

t
p

t t t
p

( , )
( ) ( )= −{ } ⊗[ ] +− − .

Proof.   A detailed proof can be found in Park (1997).

Proof of theorem.    Let Θ = {0 ≤ θi ≤ 1, i=1,...,r}.  First, we show with probability

approaching one ̂θ  is in the interior of the parameter space.  That is, we need to show that

there is an open r-ball with center ̂θ , all of whose points belong to Θ.  Let’s denote the set

of all points θ in Rr such that θ − <a d , which is an open r-ball of radius d and center a,

by B a d( ; ) .  By the assumption, θ0 ∈  Int (Θ), and hence there exists a δ0 > 0 such that

B(θ0; δ0) ⊂  Θ.  By theorem 1 θ̂  is consistent for θ0.  Therefore, with probability

approaching one as n increases, ||̂θ -θ0 || < ε.  Setting ε  = δ0/2, we have
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B(θ̂ ; δ0/2) ⊂   B(θ0; δ0) ⊂   Θ

with probability approaching one as n increases.  Thus θ̂  ∈  Int(Θ) with probability

approaching one as n increases.

The rest of proof is based on Taylor’s theorem and the asymptotic normality of y  and

S.  The same argument in the proof of theorem 4.B.2 in Fuller (1987) can be used for our

case too.  We only need to calculate the first and second derivatives of the objective

function g y S( , ; )θ  with respect to θ since the objective function which we minimize is

different from that of Fuller.  From (4.B.19) in Fuller (1987), we obtain with probability

approaching one as n→∞,

ˆ ( , ; ) ( , ; )θ θ ∂ θ
∂θ∂θ

∂ θ
∂θ

− = −







∗ −2 1

0g y vechS g y vechS
t    (A.9)

where the elements of θ* are evaluated at points on the line segment joiningθ0
  and θ̂ .   

Note that our objective function g y vechS( , ; )θ  can be reexpressed as follows:

g y vechS tr S y y I P PP Pt
p

t t( , ; ) ( ) ( )θ = + −{ }[ ]−1

       = −{ }[ ] + −{ }− −tr S I P PP P y I P PP P yp
t t

p
t t t( ) ( ) .1 1

Let g vechS tr S I P PP Pp
t t

1
1, ( )θ( ) = −{ }[ ]−  and g y y I P PP P yp

t t t
2

1, ( )θ( ) = −{ }− .  Then,

∂ θ
∂θ

∂
∂θ

θ θg y vechS
g vechS g y

( , ; )
( , ) ( , )= +{ }1 2

   =
∂

∂θ
θ ∂

∂θ
θg vechS g y1 2( , ) ( , )+ .  (A.10)

By lemma A9 (a),

    
∂

∂θ
θg vechS1 0( , )= − −( ) ⊗{ }[ − −L I P P P P P P Pt

p
t t t

0 0 0
1

0 0 0
1

0( ) ( )

       +M P P P I P P P P vech S P K Pt t
p

t t
p

t( ) ( )0 0
1

0 0 0 0
1

0 0 0 0 0
− −⊗ −( ){ }] − +( )[ ]Φ Σ .
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By lemma A10 (a),

∂ θ
∂θ

α αg y
L I P P P P y P o nt

p
t t t

p
2 0

0 0 0
1

0 0 0 02
1
2

( , )
( ) ( )= − −{ } ⊗[ ] −( ) +− − .

Let

B1= L I P P P P P P Pt
p

t t t−( ) ⊗{ }[ − −
0 0 0

1
0 0 0

1
0( ) ( ) + ⊗ −( ){ }]− −M P P P I P P P Pt t

p
t t

p( ) ( )0 0
1

0 0 0 0
1

0 Φ

and

B2 = 2 0 0 0
1

0 0L I P P P Pt
p

t t t−{ } ⊗[ ]−( ) α .

Then it follows from (A.10) that

∂ θ
∂θ

g y S( , ; )0 = − − +( )[ ] − −( ) + −
B B1 0 0 0 0 2 0 0

1
2vech S P K P y P o nt t

pΣ α ( ). (A.11)

Note that

∂ θ
∂θ∂θ

∂
∂θ∂θ

θ ∂
∂θ∂θ

θ
2 2

1

2

2

g y vechS
g vechS g y

t t t

( , ; )
( , ) ( , )= + .  (A.12)

By lemma A9 (b),

∂
∂θ∂θ

θ
2

1 0t
g vechS( , ) = −{ } ⊗[ ] +−2 10 0 0

1
0L I P P P P L ot

p
t t

p( ) ( ).K0

By lemma A10 (b),

∂ θ
∂θ∂θ

2
2 0g y

t

( , ) = −{ } ⊗[ ] +− −2 0 0 0
1

0 0 0

1
2L I P P P P L O nt

p
t t t

p( ) ( ).α α

Let H1= 2 0 0 0
1

0L I P P P P Lt
p

t t−{ } ⊗[ ]−( ) K0  and H2= 2 0 0 0
1

0 0 0L I P P P P Lt
p

t t t−{ } ⊗[ ]−( ) α α .

Then it follows from (A.12) that

∂ θ
∂θ∂θ

2
1 0 1

g vechS
o

t p

( , )
( )= + +H H1 2

.  (A.13)

By theorem 1,

θ̂ θp → 0 as n → ∞ ,

and so θ∗  also converges to θ0 since θ∗  is between ̂θ  and θ0.   Because the partial

derivatives are continuous,
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∂ θ
∂θ∂θ

∂ θ
∂θ∂θ

2 2
0 1

g y vechS g y vechS
o

t t p

( , ; ) ( , ; )
( )

∗

= +

         = H H1 2+ + op( )1  

(A.14)

where we have used (A.13).   Letting H  = H H1 2+  and B = (B2 , B1), we obtain that

ˆ , ( )θ θ α− = − − +( ){ }[ ] +− −
0 0 0 0 0 0 0

1
2H B S1 y P vech vech P K P o nt t t

pΣ ,           (A.15)

where we have used (A.9), (A.11), and (A.14).

Let B2 = − −{ } ⊗[ ]−2 0 0 0
1

0 0L I P P P Pt
p

t t t( ) α , B = (B2 , B1) and

H  =2 20 0 0
1

0 0 0 0
1

0 0 0L I P P P P L L I P P P P Lt
p

t t t
p

t t t−{ } ⊗[ ] + −{ } ⊗[ ]− −( ) ( )K0 α α .  Then, by the

assumptions α α0 0
n→∞ → , K K0 0

n→∞ → , and hence by the continuous mapping

theorem,

    B n→∞ → B ,    H Hn→∞ → .  (A.16)

It follows from (A.15), (A.16), lemma A8, and the continuous mapping theorem that

n Nd( ˆ )θ θ−  → ( )− −
0 0,H BGB H1 t 1

where G is defined in lemma A8.

B . 6 . Proof of proposition 2

By the WLLN, as mi→∞, i = 1, ..., n,

Y A Pp → 0 0 .

Let g Y N M A( , ; )−1  = −{ }[ ]−1 1

N
tr Y M A A MA A M Yt t tIn ( ) .   Then by the continuous mapping

theorem,

g Y N M A g A P C Ap( , ; ) ( , ; )−  →1
0 0
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where 

  

C

c

c

cn

=



















1

2

0

0

O
 and c

m

Ni m

i

i

=
→∞

lim  > 0.

Note that

Min g A P C A
θ ∈Θ

( , ; )0 0  = Min tr P A C A A CA A C A Pt t t t

θ ∈

−−( ){ }[ ]Θ 0 0
1

0 0In ( )

 = Min tr P A C C A A CA A C C A Pt t t t

θ ∈

−−( ){ }[ ]Θ 0 0
1

0 0

1
2

1
2

1
2

1
2In ( )

is uniquely attained when C A A CA A C C A A CA A Ct t t t1
2

1
2

1
2

1
21

0 0 0
1

0( ) ( )− −=  since the projection

matrix is unique.   By the identifiability of the model parameters discussed in section 2, this

implies that A = A0.  Thus, Min g A P C A
θ ∈Θ

( , ; )0 0  is uniquely attained at A = A0.  By lemma A6,

Â  which is the value of A such that g Y N M A Min g Y N M A
A

( , ; ˆ ) ( , ; )− −=1 1  is a continuous

function of Y N M, −( )1  and the result follows from the continuous mapping theorem.

B . 7 . Proof of proposition 3.

We need the following lemmas in the sequel to prove the proposition.

Lemma A11.  Let 

  

M

m

m

mn

=



















1

2

0

0

O
 and m m

i n i
∗

≤ ≤
= { }min

1
.  Then

(a) vec M Y A P N
t

d
p

1

2

0 0( ) ,−( )  → ⊗( )0 Inp n Σ

(b) vec m Y A P N C
t

d
p

∗ ∗−( )  → ⊗( )( ) ,0 0 0np Σ

where 

  

C

c

c
c

c

c

cn

∗

∗

∗

∗

=



























1

2

0

0

O

, c
m

Nm

∗

→∞

∗

=
∗
lim , and c m

Ni
m

i

i

=
→∞

lim .
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Proof.  (a) 

  

M Y A P

m y a P

m y a P

m y a P

p

p

n n n p

1
2

0 0

1 1 01

2 2 02

0

( )− =

−( )
−( )

−( )





















•

•

•

M
.

By the multivariate CLT, 
  

m y a P Ni i i

t
d

p• −( )  → ( )0 0 00pp,Σ ,      i n= 1, ,L .    The conclusion

follows because     y yn1• •, ,L  are independent.

(b) The conclusion is immediate because   m Y A P m M M Y A P∗ ∗ −− = −( ) ( )0 0 0 0

1
2

1
2  and

  

m M

m

m
m

m

m

m

c

c
c

c

c

c

C

n

m i n

n

i∗ −

∗

∗

∗

→∞ =

∗

∗

∗

∗=



























 →



























=
1
2

1
2

1

2

1

2

1

1

2

1

2

0

0

0

0

O O

L, , , .

Lemma A12.  Let M be an n×n diagonal matrix and A be an n×q matrix, and θ = vecA.

Then

(a) M I A A MA A M A M I A A MA A M
A

i
n

t t
n

t t

i

∂
∂θ

∂
∂θ

−{ } = − −{ }− −( ) ( )1 1 .

(b) A M I A A MA A M
A

M I A A MA A Mt

i
n

t t
t

i
n

t t∂
∂θ

∂
∂θ

−{ } = − −{ }− −( ) ( )1 1 .

(c) A M I A A MA A M At

i
n

t t∂
∂θ

−{ } =−
×( ) 1 0q q.

(d) A M I A A MA A M At

i j
n

t t∂
∂θ ∂θ

2
1−{ }−( )

=
∂
∂θ

∂
∂θ

∂
∂θ

∂
∂θ

A
M I A A MA A M

A A
M I A A MA A M

At

j
n

t t

i

t

i
n

t t

j

−{ } + −{ }− −( ) ( )1 1 .

Proof.  (a) For an element θ i  of θ ,

∂
∂θi

n
t tI A A MA A M−{ }−( ) 1
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= 
∂
∂

−
∂

∂
−

∂
∂

( ) ( ) ( )−

−

−A
A MA A M A

AtMA
AtM A AtMA

A
M

i

t t

i

t

iθ θ θ
1

1

1
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∂
∂

−( )A

i

AtMA AtM
θ

1
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∂ ( )








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− −

A A MA
A MA

A MA A Mt
t

i

t t1 1

θ
−

− ∂
∂( )A AtMA
At

i

M
1

θ

=
∂
∂ ( ) − ( ) ∂

∂
+ ∂

∂







( ) − ( ) ∂

∂
− − − −A

A MA A M A A MA
A

MA A M
A

A MA A M A A MA
A

M
i

t t t
t

i

t

i
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t

iθ θ θ θ
1 1 1 1

= 
∂
∂

( )−A
A MA A M

i

t t

θ
1

− A A MAt( )−1 ∂
∂
A

MA
t

iθ
A MAt( )−1

A Mt

−A A MAt( )−1
A M

At

i

∂
∂θ

A MAt( )−1
A Mt −

− ∂
∂( )A AtMA
At

i

M
1

θ

= − −{ } − −{ }− − − −I A A MA A M
A

A MA A M A A MA
A

M I A A MA A Mn
t t

i

t t t
t

i
n

t t( ) ( ) ( ) ( )1 1 1 1∂
∂θ

∂
∂θ

(A.17)

Postmultiplying both sides of the above equation by A, we get

M I A A MA A M A
i

n
t t∂

∂θ
−{ }−( ) 1

= − −{ } − −{ }− − − −M I A A MA A M
A

A MA A MA MA A MA
A

M I A A MA A M An
t t

i

t t t
t

i
n

t t( ) ( ) ( ) ( )1 1 1 1∂
∂θ

∂
∂θ

= − −{ } − −( )− −M I A A MA A M
A

MA A MA
A

MA MAn
t t

i

t
t

i

( ) ( )1 1∂
∂θ

∂
∂θ

= − −{ }−M I A A MA A M
A

n
t t

i

( ) 1 ∂
∂θ

.

(b) Premultiplying both sides of the equation (A.17) by At, we get

A M I A A MA A Mt

i
n

t t∂
∂θ

−{ }−( ) 1

= − −{ } − −{ }− − − −A M I A A MA A M
A

A MA A M A MA A MA
A

M I A A MA A Mt
n

t t

i

t t t t
t

i
n

t t( ) ( ) ( ) ( )1 1 1 1∂
∂θ

∂
∂θ
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= − −( ) − −{ }− −A M A M
A

A MA A M
A

M I A A MA A Mt t

i

t t
t

i
n

t t∂
∂θ

∂
∂θ

( ) ( )1 1

= − −{ }−∂
∂θ
A

M I A A MA A M
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i
n
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(c) Postmultiplying both sides of (b) by A

A M I A A MA A M A
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M I A A MA A M A
A
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t t
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i
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t t
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i

∂
∂θ

∂
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∂
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−{ } = − −{ } = − −( ) =− −
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(d) Differentiating both sides of (a) by θ j , we get

M I A A MA A M A M I A A MA A M
A
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i
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j

∂
∂θ ∂θ
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i
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∂
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Premultiplying both sides of the above equation by At, we get

A M I A A MA A M A A M I A A MA A M
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It follows that

A M I A A MA A M At
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where we have used (b).

Lemma A13.  Let  g Y N M A( , ; )−1 = −{ }[ ]− − − −tr Y N M A A N MA A N M Yt t t1 1 1 1In ( )  and

  
Q

vecA
t

=
∂

∂θ
0 .  Assume that m

N
c o mi

i− = ∗−
( )

1 ,   i n= 1, ,L .  Then
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∂θ
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n
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p

( , , )
( ) ( )
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1
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1

0 0 0 02
1
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(b) 
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Proof.    (a) For an element θ i  of θ ,
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.  (A.18)

By the property of trace, we have
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i
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By lemma A11 (b), vec Y A P O mt
p( ) ( )*− = −

0 0

1

2 .   Since I A A CA A Cn
t t− −( ) 1  is the projection

matrix, we have

N tr Y A P M I A A MA A M Y A P O mt

i
n

t t
p

− − −− −{ } −








 =1

0 0
1

0 0

1
( ) ( ) ( ) ( )*∂

∂θ
.

Thus the first term of the equation (A.18) is negligible.  For the remaining terms of the

equation (A.18) when θ θ= 0 , we get
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Using the property of trace, we get for the first term of (A.19),
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and for the second term of (A.19),
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Note that 
∂

∂θ ∂θ

2
1

i j
n

t tI A A CA A C−{ }−( )  is bounded over Θ  since I A A CA A Cn
t t− −( ) 1  is the
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where we have used lemma A12 (d) and the properties of trace.  It follows that
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Proof of proposition.    By the same argument as that in theorem 2, it can be shown that

θ̂  ∈  Int(Θ) with probability approaching one as m*  increases. The rest of proof is based

on Taylor’s theorem and the asymptotic normality of Y .

The same argument in the proof of theorem 4.B.2 in Fuller (1987) can be used for our

case too.  We only need to calculate the first and second derivatives of the objective

function g Y N M( , ; )−1 θ   with respect to θ since the objective function which we minimize is

different from that of Fuller.  From (4.B.19) in Fuller (1987), we obtain with probability

approaching one as m*→∞,
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By lemma A13 (b),
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By proposition 2,

θ̂ θp → 0 as m* → ∞ ,

and so θ∗  also converges to θ0 since θ∗  is between ̂θ  and θ0.   Because the partial

derivatives are continuous,
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It follows from (A.21), lemma A11 (b), and the continuous mapping theorem that

m N Cd
p

∗ − ∗ −−  → ⊗( )( ˆ ) ,θ θ0 0 H B( )B H1 t 1Σ .


