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Summary

Receptor modelaim toidentify the pollutionsources based aair pollutiondata. This
article is concerned with estimation dhe source profiles (pollution recipes) atieir
contributions (amounts of pollution). Wake aconstrained nonlinear leasjuares
approach. Taavoid having infinitely manysolutions, wepresent new sets ahodel
identifiability conditions, which are often reasonable in practice. The resulting estimators
are shown to beconsistent and asymptotically normalder appropriatedentifiability

conditions. Simulations and an application to real air pollution data illustrate the results.

Key words Receptor model; Model identifiabilit@zonstrained nonlinear leastuares;
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1. Introduction

Receptor modeling is a collection of methaded tomodel air pollutiondata. Air quality
data typicallyconsists ofconcentrations on fifty or sixty compounds of airbogases or
particles measured over timEhe basicassumptions imeceptor modeling is conservation
of mass andchemicalmassbalance(see,e.g., Hopke, 1985, 1991). there areq
pollution sources, thé" measurement frorthe receptory, = (y,;, Y, .- .Y, ), can be

represented as

q
yi:ZaikPk"'gi’ =1L ,n (1)
=1
whereP, = ( Py, P -+ Ry is thek™ source profile whicttonsists ofthe fractional

amount of each species in the emissions fronktlseurce g, is the contribution from the

k™" source orthei" day, and &= ( &,, &,, ... , &,) is the measurememtrror onthe i"

observation. For example, profile for a refinery might look like Propane, 21%; n-
Butane, 18%; i-Pentane, 17%; n-Pentane, 7%; 2-Methylpentane,offfr; chemical
species, 30%. The objectives in receptor modeling are to identify pollusonrrces and
assess the contribution of each source based on this Ta¢ee have beetwo traditional
approaches to receptor modeling, whatrke the chemicamnassbalance (CMB) receptor
model and multivariate receptor model (Hopke, 1991). In CMB, the number of sayrces,

and the source profileB,’s, are assumed known, and tim@in objective is to estimate the

source contributionsy,’s. In thatcase,the problem reduces to tledinary linear least

squares regressiorSeveral examples of CMBiethods such asacer elementnethod,
linear programmingnethod, ordinarjinear leassquares methoefficient variance least-
squares method, principal component regression methodjdgedregressiomethod can
be found in Henret al.(1984) and Hopke (1985).The CMB methods are performed on
one observation at a timeThe CMB assumptions, however, dhe known number of

sources and the known profilage often nouseful in practice. Sudmitations of CMB



leads to the use of multivariate analysis in receptor modelingmatnx terms,the model
(1) can be written as
Y=AP+E (2)

where

A: nxq source contribution matrix
P: gxp source composition matrix

E: nxp error matrix.

Examples of thosemultivariate models include principal componemtnalysis, factor
analysis,target transformation fact@nalysis,self-modeling curveesolution, and so on
(see,e.g., Henry 1991). The advantage of multivariate receptor modeling is thdbds
not require a priori knowledge of the source characteriskitigitivariate receptor modeling
tries to get the estimates for the numbesaiircesq, their profiles, P, and contributions,
A, all together from dataHowever,this goal cannot be easily achieved since there could
be infinitely manysolutions forA andP even withthe known number ofsources. There
have been some attempts to avoid this problem by placing the constraihés garameters
(see Henry and Kim 1990¢ang 1994). Thoseconstraintscan be obtainedrom prior
knowledge of the problem under study or from the data itself. This issue veitldressed
in terms of model identifiability in more general in Section 2.

The first method developed by statistician in receptor modeling fieldas Source
Apportionment with oneSource Unknown (SASU) byandeen-Roche and Ruppert
(1991). They supposed that= 2 and one source profile khown and one isunknown.
They treated theource contributions as random quantities haviigriahlet (Beta in the
case ofq = 2) distribution, andtried to estimate theinknown sourceprofile and the
parameters of the distribution eburce contributions by assumitigat in the limit the
unknown source is observed.Spiegelman andattner (1993) tried a related estimate.

They wrote eacl?, =(s, ..., $) asp two dimensional probabilitynass functions(s;,



1-s,), j=1,...,p. Then the ratio of probabilittnassegjiven to a species awo different
days iscalculated. If that ratio is extreme (eithmg or small) then a candidater a two
dimensional source profile i®und. Either the method$ound in Bandeen-Roache and
Ruppert (1991) or those found 8piegelman andattner (1993) are examples of tracer
methods looking for single speciést is indicative of asingle pollutionsource. The
assumption of having tracer element for each source makes any possiblecatioreor
transformation impossible, andlentifiability of model parameters is automatically
achieved. Unfortunately, this assumption couldibeealistic in practice sinceig cities
have a number of pollution specittgat donot occur by themselve¥.ang (1994) tried
confirmatory factor analysis modéee, e.g., Anderson1984, sec. 14.2.2under the
assumptionghat thenumber and types of contributispurcesare known a priori. He

treated thesource contributions athe random vectors having a distributianith some

unknown mean vector and covariance maitrige, andshowedthe estimators obtained by

maximizing an objective function amensistent and asymptoticalhormal. Hisobjective
function is actually the log-likelihoodunction of theobservations wherthey follow a
multivariate normaldistribution although he makes no normalggsumptions about the
observations. As matter offact, many environmental engineers want to viée source
contributions as fixed parameters not randeaniables, andthe assumption of prior

knowledge of the types of all sources in the model is not a comfortable assumption.

2. ldenfifiability of the model parameters

The number of sourceg, needs to be determined. & concernewith the number of
major pollution sources nothe number ofall pollution sourcessince there could be
millions of sources in nature, and it would be impossible or meaningless if we try to
identify all of those sources. Therefogmeans the number of major pollutisaurces

hereafter. Many air pollutiondatasets typicallyonsist ofthe measurements on fifty or



sixty variables (VOC chemical species). The data set is often too large to handbmed.at
Furthermore, not all ahe species are helpful in finding the major pollugoducts. In
many environmental applications some species halevacommon majorsources and
some have many more minuscsleurces. Ithe speciesised inestimatingg comefrom
different sets of sourcesachwith different number okourcesthe estimated number of
sources is not likely to be interpretable. It is crucial to select an appropriate set of species to
estimate thenumber of majorsources,q. It could be done by environmental expert's
judgements or in the lack auch source, byspecies selection algorithmsuch as
SPECIESA or SPECIESB (see Park 1997).

In this section we assume that an appropriate set of species is selected and the number

of major pollutionsourcesq, is correctly estimated. We alassumethat in model (2)

each row of matrie has mean vectd@rand variance-covariance matéixand A andP are

unknown constant matrices. We place physical constrairdsaodP. Theelements oA

and the elements &f are nonnegative, and the row sunPa§ 1. That is,

p
a, 20, p;=20, Zpkal, (3)

=1
p
where i =1L ,n, k=1L ,q, j=1L,p. The constrainthq. =1 indicates that
=1

only the relative amount of eadpecies in a source is of our intereQur sourceshave
fixed ratios of the chemicalpecies. As long abe relativeamounts of species agidven,
we consider the source identified.

We first need to introduce the definition of the model identification.

Definition 1 LetY be a matrix of the observable randeariables,f be a matrix of the
parameters ointerest, andet F,(C;6) be the distribution function of for parameter@

evaluated a¥ = C. The parametef is identifiedif, for any 8, and 6, in the parameter

space,



F(C;6) =F/(C;8,) for allC

implies that

If the the parametédf is identified, we also say that the model is identified.
Under the mode{2), the distribution ofY is determined byAP and X (in the normal

error case) That is,F(C; AP,,2)) = F/(C; AP,,2,) implies thatA P,= AP, and 2= %,

andvice versa It does not, howeverimply that (P,, A) = (P,, A) which are the
parameters obur interest. Thus, in our casthe definition 1 can be reduced to the
following:
Definition 2. The parameteP( A) is identifiedif, for any (P,, A)) and(P,, A)) in the
parameter space,

AP, =AP,
implies that

P, =P,andA = A,.

We also define near identifiability of the model parameters.
Definition 3. The parameteP( A) is nearly identified if, for anyP,, A)) and(P,, A,) in
the parameter space,
AP,= AP,
implies that

P,= P, andA = A,.

Proposition 1. Assumerank(A) = qandrank(P) = q. ThenA'P" = AP implies that
A" = ARandP = R'P for a nonsingular matrik = (AA)'A'A’.



Since bothA and P are unkown, ourmodel (2) suffers fromnonidentifiability of
model parameters even without the error matrix,Y.es, AP = ARRP for any nonsigular
matrix R. Even the reasonableonstraintsthat we put, (3), do not remove this
nonidentifiability.  This type of nonidentifiability is often referred to dactor
indeterminacy” in the context of factanalysis. Since there arg® elements in the matrix
R, we need to putf’ independent conditions d® or A to rule out this indeterminacy.
Preassigning zeros in specified positiondPois usually done irthe confirmatory factor
analysis. But, it requires some prior knowledge altio@isource profiles to be estimated.
If information about the types of all the sources is available (as assuMadgrni994) one
can get the idea aflhere to assign 0’s ithe matrixP and this indeterminacwould be
takenout. Since inour case thesource profilesaare normalized teum to 1, this putg
independent conditions ¢h Thusthe number of free parametersRireduces t@(g-1),
and so we need ontyg-1) more independent conditions. One set of such conditions are
C1l. there are at leagtl zero elements in each rowf
C2. the rank oPY is g-1, whereP¥ is the matrix composed ¢iie columns containing the
assigned 0’s in thkth row with those assigned 0’s deleted.

These conditions can be easibund in usualmultivariate analysis textbook'see, e.g.
Anderson 1984). Note that C1 and C2 are automatically satisfied if we havectenoent
for each source.

A similar set of conditions can also be applied to the source contribution fatrix
D1. There are at leagtl zero elements in each columnAof
D2. The rank ofA¥ is g-1, whereA¥ is the matrixcomposed othe rows containing the
assigned 0’s in thigh column with those assigned 0’s deleted.

These conditions are closely related to Henry’s assumption thdatheontains some
points such thae¢achsource is missing (Henry 1997). ldeguedthat if there are at least
(g-1) edge points (points that have one source missing) for each sourthe autjgpoints

do not have any multicollinearities of dimensi@ssthan g-1 then thesolution to the



general mixture problem snique. In no errocase these conditions can be converted to
model identifiabilityconditions. The condition D2 implies that ntwo sourceshave the
same set ofy-1 edge points andhe edgepoints (at leastg-1 of them) are linearly
independent.

To help solve factoindeterminacyproblem, here, we also present two new sets of
assumptions for identifiability or near identifiability AfandP by modifyingHenry’s edge
point assumption. We need only one set afssumptions to hold foA and P to be

identifiable.

The first set of our basic assumptions are:

Al. Each source is missing on some days and we know when a source is missing.

A2. The average contribution gfsource wherk™ (k#j) source is missing isqual to the

average contribution gf source for all days.
A3. Thesource contributiomatrix A is of full column rank andhe source composition

matrix P is of full row rankj.e.,rank(A) = gandrank(P) = q.

The second set of our basic assumptions are:

B1l. Each source is missing on some days and we know when a source is missing.

B2. The difference between the average contributigl eburce wherk" (k%) source is

missing and the average contributioj*v$ource for all days is small.
B3. Thesource contributiomatrix A is of full column rank andhe source composition

matrix P is of full row rank,i.e.,rank(A) = gandrank(P) = q.

Remark 1. Theassumption Al (or B1l) igquivalent topreassigning zeros in a
specified position ofthe source contribution matrix. This usually requiless prior

information than the conditions based the source composition matrix. Althoudtenry



(1997) assumed the existence of at lgakedge points for each gfsources, here, Al (or

B1) allows having less thagp1 edge points as long as the other assumptions are satisfied.

Defining a ¥’ as the average contributionjBfsource when the" source is missing
anda; as the average contributionjBfsource for all days, we can reexpress the above
assumptions as follows. Of course we requirejtidt.

For A1-A3,

Al. a,=0 wheni JI,, k=1,..,Q.

Herel, is defined to be a subset df,{2, ..., i for which thek™ source is missing.
A2. a¥=a;,, j=1..,4q, % k.

A3. rank(A) = q, rank(P) = q.

For B1-B3,

Bl a,=0 wheni Jl,k=1,.., Q.

Herel, is defined to be a subset df,{2, ..., i for which thek™ source is missing.
B2. |o;-a¥|<e, j=1,..,q

B3. rank(A) = q, rank(P) = q.

The following results showhat undereachset of assumptionsA1-A3 and B1-B3,

nonidentifiability of the model parameters canremoved. Thatis, A" = A andP =P (or
A" = A andP’=P). The proofs are found in Appendix B.

Result 1. Let Assumptions A1-A3 hold. Then

R=1
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wherel is thegxq Identity matrix andR is any nonsingulamatrix satisfyingA'= AR and

P =RP.

- o a_ €4 pi@@-nu
Result 2. Let Assumptions B1-B3 hold.Define B = TH'-F—H where

a, A,

A, is the smallest eigenvalues BfP™. If Bis small enough thethe diagonal elements of

Rare close to 1, and the off-diagonal elemen® afe close to O.

Remark 2. We emphasize thall the conditionscited in this paperare sufficient
conditions but not necessary conditions favdel identifiability. On closer inspection if

we knew that entries of tematrix satisfya; = a, we could difference theorresponding

observations andreatezeros. Thus by doingypical time series differencing we may

create data that satisfies the identifiability conditions when the original data does not.

3. Estimation of source profiles and contributions

The number of parameters in mod&) increases tmfinity as the sample sizecreases.
Kiefer and Wolfowitz(1956) addressethe issue ofestimating the structural parameter
consistently whenhere are infinitely many incidentpprameters. They assumtut the
incidental parametersiere independently distributechance variablesvith a common
unknown distribution function. This assumptiowas made in Bandeen-Roche and
Ruppert (1991) andang (1994). We daot make such assumption for ouncidental
parameters, the rows Af Instead of treating them as chance variables, wégag them
as unknown parameters, which is the way that many scientists and apghcation most
environmental engineers want to viedlvem. To achieve aconsistent sequence of
estimators we need to further restrict a parameter dpacad, as well as utilizing the
identifiability conditions in the fittingorocedure. Two modelQuasi Random Functional

Model (which is ageneralization of the modeked in Kiefer andVolfowitz (1956)) and
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Replicated Functional Model, are considered, and a set of algorithms, VERTEX, to find the
least squares solution is introduced.Each of these algorithms can be selectively
implemented according to theets of identifiability conditionsused. The resulting
estimators arshown to be consisterand alsathe uncertainties associatedith them are

provided.

3.1. Quasi random functional model

To overcome the difficulty of having infinitely many parameters fivst restrict the
parameter space @& by assuminghat thefirst and the second sample moments of the
rows ofA converge to some fixedector and matrix, respectively. Thisodel is referred

to as “guasi-random functional model” in Gleser (1983). We assume

Yi = 0P * &,
where theg are independent identically distributedimensional randomow vectorswith

zero mearvector, positivedefinite covariance matrix,, and {a,} is a fixed sequence

satisfying

and

Ko = n_lZ(am —0,) (ag — ) 0T - K.

1=1

whereq, is ag-dimensional vector and, is agxq positive definite matrix.

We chooséhe estimators oA andP so as to minimize the sum of least squares,

q 2

Yi ~ ;%F’k

subject to the constraints, (3), and identifiability conditions.

Q.(P, A) = n"tr[(Y - AP)(Y-AP)] = n-li (4)
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VERTEX 1
Since both oA andP are unknown parameters, our estimation procedu#RTEX

1, consists of two steps:
1) GivenP, A can be estimated b =YP(PP)™.
2) Find P which minimizes
Q(P,A) = ntr[(Y - AP)!(Y - AP)]
= ntr[(Y = YPY(PP) ' P) (Y - YP'(PP') " P)]
= (1, - P(PP)P)'Y'Y(1, - P'(PP') P)]
= n‘ltr[Y‘Y(I .- P'(PPY) P)]
=u(S+y'y)(1, - P'(PP")*P)|

where the vectoy = n™1'Y = n‘lz y, and the matrix
1=1

S=n(Y-1y)'(Y-1)=n"Y (% -9)'(% )
1=1
wherelis ann-dimensional column vector consisting of 1's
over the feasible s& for which the constraints or® and the identifiability conditions C1

and C2 are satisfied.

The consistency anthe asymptotic normality o can beproven by adapting the

properties of least squares estimators in F@le87). We state the asymptotresults for

P in Theorem 1 and Theorem 2. The proofs of all our theoeeafound inthe appendix

B.
Theorem 1(Consistency ofP). LetA, P,and, be the true values &, P, and>

n
respectively. Assuma, = n'lz a, OTT - a, wherea, is thei" row of A, anda, is a
1=1

_ n
g-dimensional row vector an{ , = n‘lz(arOi -a,)' (a, —a,) 0TI - K, whereK , is a
1=1
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full rank matrix. Let the identifiabilityconditions C1-Czhold. Let W be thesubset of
p+p(p+1)/2-dimensional Euclidean space ang = (a,P,,vech(Z, + BK,P)")'. Assume
w, is in the interior ofV and £ ,=0?l o- Then , whem - oo,

vec(P) (TP - vec(R)).

g(w,;6)
pP—q

Remark 3. Note that is a consistent estimator o&?, and that

A(f’) = YI5‘(F3I5t)’1 converges to usual least squares estimatendienP is known.

n
Remark 4. The sample mean of the estimated dsdyrce contributionsn'lz a;,
1=1

where a; is the i" row of A(If’):YIf’t(lf’ﬁ‘)‘l, can beshown to be consistent;

n‘li&i P - a,.

1=1

Theorem ZAsymptotic Normality ofl5). Let theassumptions forheorem 1hold.

Letr be the number of free parameter®iand 8 be ther-dimensional vector consisting of
those free parametersAssumethat the true parameter valés U int(©), where O, the
parameter spacr 6, is a convexcompactsubset ofr-dimensional Euclidearspace.
Assume the error covariance matily = ol | and theerrorshave finitefourth moments.

Let é be the value of that minimizes

o(y, vechS 0) = tr[(S+y'y)(1, = P'(PP') *P)|.
Then
Jn(6-6,) IF - N(O,H'BGB'H™),

where
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G is the limiting covariance matrix t{)f/,(vechS)t]t, B =(B, B)),

—_ t t ty—1 ty—1 t ty—1 t ty-1
8.=|L{(1, -RERY*R)DERYR} M{ERRY*R O (1, - RRR)R)}]e,
5, = -2L{[1, - i(RR)R) Do),

H = 2L((1, - R(RR)*R) DK, )L +2L(1, - R(RR)*R) D ala, L,

L= We;% is the matrix ofpartial derivatives oP with respect to9 evaluated aé = 6,
ovecP, . : : - .
M = 0 is the matrix of partial derivatives Bfwith respect tcf evaluated af = 6,,

and @ is the p? x 1 p(p+1) matrix suchthat vecA = ® vechA for any pxp symmetric

matrix A.

Remark 5. Noteo, = 0 fori #j under our assumption that = o?l .

Remark 6. If 6, is on theboundary of®, i.e., some ofthe elements 06, is zero,

then the limitingdistribution of & would not be anormal distribution. It would be a

mixture of point mass at zero and a normal distribution.

3.2. Replicated functional model

Consisder the model

Y =UAP+E, (5)
1, O L 0O
O L, L 0p¢ | _—
WhereU:BNI I\;IO MEI m =N, 1, is anm-dimensional column vector
1=1
0 0 L 1,7

consisting of 1'sA is thenxq source contribution matri® is thegxp source composition
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matrix, ancE is aNxp error matrix. Theé™ observation in thg" replication,;_/ij with

double script notation, is represented by

Y.

-:mp+%’
Zij

i=1L,n, j=1L,m

wherea; is theg-dimensional row vector correspondingthei™ source contribution, and
€; is arandom error corresponding to theobservation irthe j™ replication. We assume
g;'s are independent and identically distributed with mean véaod variance-covariance

matrix 2, and a,’s and P areunknown paramters. Thisodel is recognizable as an

“replicated functional model” (see, e.g., Gleser 1983). We have

E(Y) = UAP

and

Var(Y) =1 ,0Z.

Note thatU is a knownNxn matrix. Underthe identifiability conditions,A1-A3 or B1-
B3, described in section 2, this model is identifiedr{early identified). Thatis, UA,P,
= UA,P, implies thatA, = A, andP, = P, (or A, = A, andP, = P,).

n

Let Y m = N. HereN s the total number of observations in the data.
1=1

The least squares estimatorAadndP are obtained by minimizing the sum of squares,

Qu(P, A) = N7tr[(Y ~UAP)'(Y ~ UAP)] (6)
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= N'ltr[(Y ~UY +UY - UAP)'(Y - UY +UY - UAP)]

= N-ltr[(v —UY)Y(Y - U\?)] + N'ltr[(UV —UAP)'(UY - UAP)]
= N’Jtr[(Y —UY)\(Y - U\?)] + N’ltr[(\? - AP)'U'U(Y - AP)]

= N'ltr[(Y —UY)Y(Y - U\?)] + N'ltr[lvl(\? - AP)(Y - AP)t]

over the feasible s&, where

e:§RM

where }, (= A1-A3 or B1-B3) is a set ahe identifiability conditions defined in section 2.

p
a, 20, p; =20, Zpkj:], i=1L ,n, k=1L ,q, j=1L,p, IA%
=1

Since N‘ltr[(Y—UV)‘(Y—U\?)] does not depend oA or P, minimizing Qy(P, A) is
equavelent to minimizin@, (P, A) = N‘ltr[M(\? - AP)(Y - AP)‘] w.r.t. AandP.

A fitting algorithm for estimating\ andP under this model is given below:
VERTEX 2
1) GivenA, Pcan be estimated by

P =[(UA) (UA)| (LAY UY =(AMA) " AMY

O
|
fiN

3

OOoOoodno
QD
2
o
<l
"
DD%:ID%
<
MoOoOooogod

=y
<

11
it

3
il
|
=

[, 0
O
O

whereM =

=z

O
00 m,

=3

2) Find A which minimizes

Q. (P, A) = Nr[M(Y - AB)(Y - AI5)‘]
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= N‘ltréw(\? - A(AIMA)_lA‘M\?)(V - A(A MA)_lA‘MV)E

=Nt (1, ~ AAMA) AN VY (1, - A(AMA) A

t

0
B
=Nt (1, — AAMA) " A YY1, - A(AMA) At )
= N’ltr[\_(‘M(ln - A(A‘MA)'lAtM)\?]
over the feasible s@, where
Q, ={Aa, 20, i=1L.,n, k=1L, I}

where | (= A1-A3 or B1-B3) is a set of the identifiability conditions defined in section 2.

Definition4. LetA, be a sequence of random matricesgnde a constant matrixThen

A, I7 - A, meansP(|A, - A > ) ~ 0 asn - « for eacke > 0, where|A| = 5 3 a;.

The asymptotiaesults for P are stated in Theorem 3 and Theoremwhijch are
established based on the asymptotic results&or In thefollowing propositions we first
state the asymptotics fok.

Proposition 2 (Consistency ofA). LetA,, P,andZz, be the true values &, P, and

2 respectively. Let the parameter spacedNoQ, be a compactubset ofnxg-dimensional
Euclidean space containing,./A Assume the identifiability conditiors1-A3 in Section 2

are satisfied. Also assumgP, is in the interior of a subset okp-dimensionalEuclidean

space. Then, wham - oo, Iim%:cI >0,i=1, .., n,

AP A,
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Remark 7. Under theidentifiability conditionsB1-B3 in Section 2, we get the

approximate consistency &, i.e., P(|A, - A|>¢€) - 0 asn - « for practically small

(not arbitrary) > 0.

Let ﬁz(A‘MA)_lAIM\?. As an immediateonsequence of Proposition 2 athe fact

that Y IP- AR, and by usingthe continuous mapping theorem, webtain the

consistency oP as follows.
Theorem 3(Consistency ofﬁ). Underthe definitions and th@ssumptions of

Proposition 2, whem - o, Iim%:cI >0,i=1, .., n,

PIF-P.
We now establish the asymptotic normality/of
Proposition 3 (Asymptotic Normality of A).  Let theassumptions for Proposition 2

hold. Letr be the number of free parametersArand 8 be ther-dimensional vector
consisting of those free parameterdssumethat the true parameter valég O int(O),
where®, the parameter space firis a convex compact subsetafimensionalEuclidean

space. Assume theerrors have finitefourth moments. Let 6 be the value oP that
minimizes
9(Y,NM; A) =tr[\7‘N‘1M(In - A(AtN*MA)-lAtN-lM)\?].
Then
V(8- 6,) I~ N(O,H'B(C"D %,)B'H ),

wherem”=min{m}, Z_ is error covariance matrix,

1<isn
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B =2Qc(l, - A(ACA)"AC) O R|, H = Q[C(l, - A(ACA)AC) O RR]Q,

e ol
O i
[T, 00 Bg! 0
o J . m 0 c O m°
c=U Owherec = lim —, c°=0 ¢ Owherec”= Iim —, and
D O I:l m, —» o N O 2 O mY o
D O 0 O O
G0 0 ¢’
0 _
H ¢,

t
Q= (?\;e;:% Is the matrix of partial derivatives Afwith respect t@ evaluated af = 6,.

Remark 8. The same comment as Remark 5 can be made hégisf on the

boundary ofo.

Remark 9. The asymptotic normality oﬁz(A‘MA)_lA‘M\? canalso be established

by standard arguments foonlinear leasisquares estimators. Howevehe resulting
distrubution has an extremely complicated covariana&ix. Thus, weemploy Bootstrap
method to obtain the approximate covariameatrix. The estimates are aymptotically

unbiased by theorem 3.

Under the replicated functional model (5), resampling caddoe in twoways, Case
resampling and Model based resampling. We adapt the algorithms in Davison and Hinkley

(1997) for our model:

For h=1L ,H (H: bootstrap size),

A) Case resampling
1. For each source contribution (i =1L ,n), choosey;,L .y, by randomly sampling
with replacement frony,, L ,y;,, .

2. Combiningy,,L ,y,,, i =1L ,n, leads to a bootstrap samp,
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B) Model based resampling
1. Find A and P based on the original data.

2. Compute residuals bR = (I —DH)'%(Y—UAﬁ) where DH is a diagonal matrix

consisting of the diagonal elementstf= (UAEUA)t (UA)E_l(UA)t.

3. Randomly sample; from r, —F,L ,r, —F wherer, (i =1L ,N) is thei"" row of the
N N D

matrixRandr is the residual mean vector, i.€.7 N’li Mol Z g
=1 1=1

4. SetY"” = UAP + E”"where E” = (eE,L JEN )t.

Bootstrap estimator®” are obtainedor H bootstrap samplegnd the sample covariance

matrix of thoseP" is used as approximate covariance matri of

Remark 10.1t has been observed from the simulation study that case resampling leads

to more stable bootstrap estimators thadelbased resamplingAccuracy ofbootstrap
estimatorsP” from model based resampling depehdavily onhow goodthe estimateA

from the original data is sincA is treated a#,, in model based resampling.

4 . Simulations
In this section we consider simulated examples to illustreg@proposed methods. For
VERTEX 1, the data is generated by the model (2) wher@00, p = 9, andq =3. The

errorsare independently generatédm the centered lognormal distribution $wat they

have mean @Gnd variance-covariance matrixl . The source compositionmatrix P

(actually,P") is given in Table 1. The value afwas chosen sthat theproportions of the
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error standard deviations tbe modelstandard deviationare mostly betweed0~30%.
The elements of source contribution mat#ixare takerfrom the uniform randormumbers
(uniform(0,2)). The true meaisource contributionare given inTable 2. Theresulting

data matrixy consists of nonnegative numbers.

Table 1. True source composition profileg))

Species Source 1 Source 2 Source 3

1 0.2242 0.2264 0

2 0 0.1678 0.1369
3 0.1932 0.1981 0.0438
4 0 0.1316 0.0385
5 0.0708 0 0.2067
6 0.0337 0.0387 0.0089
7 0.2266 0 0.2237
8 0.1452 0.1996 0.3414
9 0.1063 0.0378 0

Table 2. True mean source contributions

Source 1 Source 2 Source 3
C_IO 0.9919 1.0037 1.0158

To apply VERTEX 1, we assume that it is known beforehthatispecies 2 and 4 are
missing in source 1, species 5 an@ré missing in source 2, and species 1 and 9 are
missing in source 3i.e., some ofthe elements of theource compositiommatrix are
prespecified. Table 3 shows the resulting estimates of theource compositions from

VERTEX 1, and Table 4 shows the asymptotic standard deviations of the estimators.

Table 3. Estimated source composition profild%EgTEXl)

Species Source 1 Source 2 Source 3

1 0.2224 0.2293 0

2 0 0.1637 0.1446
3 0.1953 0.2011 0.0392
4 0 0.1280 0.0456
5 0.0703 0 0.2045
6 0.0332 0.0368 0.0118
7 0.2304 0 0.2136
8 0.1449 0.2020 0.3406
9 0.1035 0.0392 0
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Table 4. Asymptotic standard deviations étERTEXl

Species Source 1 Source 2 Source 3

1 0.0257 0.0013 0

2 0 0.0012 0.0072
3 0.0134 0.0007 0.0015
4 0 0.0016 0.0047
5 0.0183 0 0.0024
6 0.0013 0.0006 0.0010
7 0.0162 0 0.0153
8 0.0144 0.0009 0.0012
9 0.0071 0.0062 0

The VERTEX 1providesthe estimatesor all of n source contributions, but only the
sample mean of those estimated source contributions is reperdThe estimated mean

source contributions is given in Table 5.

Table 5. Estimated mean source contributions

Source 1 Source 2 Source 3
-~ 1.0129 0.9774 1.0211

aVERTEXl

Note that thenumbers inTable 5 are the estimates of #hesolute source contributions in
this case sincéhe truesource profilesare generated so that tkem of species ieach

profile is 1. In reakituations,the sumcould be any positivaumber, say,, k=1, 2, 3.

In that case, (d,,4,,,d;;) will be the estimate 0{c,ay,;,C,00,,C,005), 1 =1L ,n, and

~

(51,52,03) will be the estimate ofc,0y,, C,0,, C,0s)-

Fig. 1 showshe princial component plot of tha#ata,the estimatedource profiles,
and the true source profiles. It can be seen that the source profiles obtain&ERGEX

1 give very good approximation to the true source profiles.
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Fig. 1. Principal component plots of the data (o), the true sources (+), and
the fitted sources by VERTEX 1 (*)

To illustrate VERTEX 2, the data is generated based on the model (5) Mhei@0,
n = 24 (assuming the source contributioar® repeated every Z¥ur), p =7, andq = 3.
Although the number of replications need not be equal, for the sake of brewityy same
number of replications are used for the source contributions. mhesn,=... =m,, =
30.

The source profilesnormalized tosum to lare given inTable 6. Thesource
contribution matrixA is generated tgatisfy the conditionsA1-A3 in section 2. It is
assumed that source 1 is missing on 8th hour, source 2 is missing louvthnd source
3 is missing on 6thhour, and wheneach source is missingthe averagesource
contributions of the othesources staythe same. The errors associated withN
observationsare independently generatgdm the centered lognormal distribution #uat
the proportions of the error standard deviations to the model standard deviations (which can
be defined as thequarerooted diagonal elements BfK,P, in this case)are about

10~30%.
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Table 6. True source composition profileg))

Species Source 1 Source 2 Source 3
1 0.0852 0.2252 0.1627
2 0.2124 0.0417 0.0638
3 0.1155 0.1597 0.1902
4 0.0305 0.0185 0.0657
5 0.1981 0.1312 0.2486
6 0.1681 0.2132 0.1852
7 0.1902 0.2104 0.0838

Note that, IN'VERTEX 2, the constrainechinimization isdone withA. Once we get the

estimatedsource contributions,A,ERTExz, the source compositionsire estimated by

~ ~ ~ -1 A —
ordinary leassquares, i.€.,Rcrrex, = (At/ERTEXZA\/ERTEXZ) Arrex, Y- Table 7shows the

estimatedsource profilesriormalized tosum to 1. Although the nonnegativity constraints

for the compositions were not used, the estimates of source pevélednonnegative. It

is observed from the simulation that only when the true source composition matrix contains
zeros, the correspondingestimateqof zeros)are negative. Inthat case, it would be a
natural choice to replace the negative estimatds0 and renormalizachsource profile.

Fig. 2 showsthe principal component plot of theéata, the truesource profiles, and

@Emexz- It can beseenthat I%}ERTEX2 gives a very goodpproximation to the trusource

composition matrix.

Table 7. Estimated source composition profilé%EgTExz)

Species Source 1 Source 2 Source 3
0.0868 0.2265 0.1631
0.2107 0.0373 0.0617
0.1142 0.1627 0.1925
0.0315 0.0177 0.0688
0.1972 0.1339 0.2501
0.1680 0.2150 0.1852
0.1915 0.2070 0.0786

~NOORWNPRE
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Fig. 2. Principal component plots of the data (0), the true sources (+),

and the fitted sources by VERTEX 2 (*)

Table 8and Table 9show the bootstrap standard deviations @ERTEXZ based on 200

bootstrap samples from Case resampling and Model based resampling, respectively.

Table 8. Estimated standard deviations IAQ,LERTEXZ

from Case resampling

Species Source 1 Source 2 Source 3
1 0.0022 0.0037 0.0019
2 0.0033 0.0053 0.0031
3 0.0019 0.0023 0.0015
4 0.0016 0.0014 0.0011
5 0.0015 0.0020 0.0015
6 0.0014 0.0017 0.0012
7 0.0019 0.0025 0.0017
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Table 9. Estimated standard deviations I%,‘ERTEXZ

from Model based resampling

Species Source 1 Source 2 Source 3
1 0.0022 0.0020 0.0019
2 0.0025 0.0022 0.0021
3 0.0014 0.0015 0.0013
4 0.0010 0.0012 0.0010
5 0.0019 0.0021 0.0016
6 0.0013 0.0012 0.0012
7 0.0021 0.0023 0.0018

5. Applications

In this section we present some applications of our methods to real air pollution datasets.

5.1 Example 1 (Air pollution composition)

As part of a large air qualitgtudy, hourlyconcentrations of hydrocarbagases were
determined by automated gas chromatographyatsites in HoustoTexas fromJune to
November1993. The original dateconsists of 2,541hourly observations (aftenitial
screening of the outliers) on Mlatile organiccompoundgVOC) and total honmethane
organic carbon (TNMOC).The wind data consisting of hourly averag&ind direction,
standard deviation of the wind direction, aregultantwind direction and speed were also
provided. These data were used in Henry, Spiegleman, Collins, and Park (IT887)2
important species wergelected by examination of tlseatterplotsithe correlationmatrix,
and environmental engineer’s judgemtmtfurther analysis in Henrgt al. (1997). We
use the same set of species. According to Henaf. (1997) Industrial 2 and Industrial 3
show especially highemissions forthe wind direction 180 to 190. To the dataset
consisting of 183 observations withe 180-190 wind directionYERTEX 1 is applied
again with § = 3. Here, information neededor prespecification of zer@lement is
obtained fromthe SAFER result in Hernyet al. (1997). Table 10showsthe estimated

source profiles. The fitted sourcesare very close in their compositions to Industrial 2,
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Industrial 3, and Industrial 5 from SAFER. TIRe(r?) values are given iffable11. Fig.

3 shows the principal component plot of the data and the fitted sources by VERTEX 1.

Table 10. Estimated source composition profile%Eng)

Specie$  Source 1 Source 2 Source 3
Ethang 0.0173 0.0106 0.5152
N_prop 0.0000 0.0000 0.3254
Acetyl 0.0074 0.0000 0.0362
T2peng 0.0422 0.0000 0.0000
Bu23dm 0.1093 0.0033 0.0115
Pena2n 0.6316 0.0000 0.0000
Pen23n] 0.0000 0.0297 0.0378
Hexa3m 0.1127 0.0385 0.0496
Etbz 0.0598 0.2330 0.0003
Mp_xyl 0.0000 0.6421 0.0000
Bz135m 0.0000 0.0234 0.0000
Bz124m 0.0195 0.0194 0.0242
Table 11. R? values betweeR o, and Pucx
Source 1 Source 2 Source 3
Industrial 2 0.9880 0.0271 0.0435
Industrial 3 0.0268 0.8925 0.0179
Industrial 5 0.0425 0.0097 0.9269
0.4 T » 0.6 <
*
0.2 0.4
«~ 0 o 0.2
M 02 o X
0.4 ,( -0.2
0432 0.3 0.4 0.5 062 0.3 0 4x 0.5
z1 z1
0.6 "
0.4
o 0.2
N O X
-0.2
045 0 * 0.5

z2

Fig. 3. Principal component plots of the data (0)
and the fitted sources by VERTEX 2 (*)
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5.2 Example 2 (Air pollution spatial)

As the second example we consider measurements on diolfide gascollectedfrom 11
receptor sites ithe nearbyGrand CanyorNational Park (Henry, 1992). The resulting
dataset consists of 53 observations onvhtiables (here receptsites). The number of
sources,q, is estimated to be 3 by the NUMFACT algorith(hlenry, Park, and
Spiegelman, 1997). Physicallthere are thre&nown source regions of sulfulioxide
gases inthe region. Thesesourcesare believed tacorrespond to pollutiorsources in
southern California, copper smelters in southern Arizona and northern Mexiceleeinid
power plants. Notll the source profiles havéhe required number aferos to apply
VERTEX 1, so we apply VERTEX @ith identifiability conditionsA1-A3. Source 1 is
assumed to be missing on Day 1, Source 2 is missing on Day 12, and Source 3 is assumed
to be missing on Day 44. These edge points (obs. 1, 12, and 44) are takerphgcipal
component plots ofhe dataand theSAFER fit results (Henry andKim, 1990). The
estimated source profiles normalizedston to 1 and standard errors based on 8 bootstrap
samples fromModel based resampling appear Tiable 12. Fig. 4 showshe principal
component plot of the datnd the fittedsources. Fronthe plot it can beseenthat the

estimated source profiles give a reasonable fit to the data.

Table 12. Estimated source composition profile@ L c,)*

Variables Source 1 Source 2 Source 3
1 0.1295 (0.0030) 0.0707 (0.0044) 0.0686 (0.0046)
2 0.0521 (0.0024) 0.1138 (0.0051) 0.0299 (0.0029)
3 0.1235 (0.0032) 0.0684 (0.0042) 0.0708 (0.0041)
4 0.0886 (0.0064) 0.0476 (0.0086) 0.1275 (0.0078)
5 0.0635 (0.0060) 0.1100 (0.0119) 0.2178 (0.0098)
6 0.1272 (0.0042) 0.0686 (0.0042) 0.0686 (0.0059)
7 0.0586 (0.0037) 0.1064 (0.0056) 0.0427 (0.0046)
8 0.0278 (0.0044) 0.1270 (0.0043) 0.0317 (0.0029)
9 0.0857 (0.0035) 0.1010 (0.0082) 0.2167 (0.0077)
10 0.1346 (0.0065) 0.0994 (0.0071) 0.0731 (0.0038)
11 0.1090 (0.0021) 0.0872 (0.0067) 0.0525 (0.0060)

T Standard errors are given in parentheses.
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Fig. 4. Principal component plots of the data (0)
and the fitted sources by VERTEX 2 (*)

6. Conclusions

This article has been concerned with consistent estimation soirce profiles and
uncertainty estimation. Teliminate model nonidentifiabilityproblem, new sets of
identifiability conditions based on the source contribution matrix Wwesposed iraddition

to a set of traditional identification conditiotisat use preassigned 0's ithe source
composition matrix. Theseew conditions usuallyequireless priorinformation than the
conditions based on the source composition matrix. As a methestiofating thesource
compositions and the contributions, simultaneously, the constrained nonlineaqleass
approachwas suggested. Twalgorithms to findthe leastsquares solutionYERTEX 1
and VERTEX 2 were presented. Each of these can selectively be implemented according to
the identifiability conditionsthat can be achieved in the problamder study. The
estimators fromlVERTEX were shown to beonsistent and asymptotically normal under

appropriate identifiability conditions.
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Appendix A: Notations

A nxg source contribution matrix
P : gxp source composition matrix

E : Nxp error matrix

m : # of replications foi"" source contribution
n

Z m = N: total number of observations

1=1

1, : m-dimensional column vector consisting of 1's

Sy,
[
1, 0 L 0( m, oop g &g
0 O 0 O 0, 0
oM M O MO 0 @) O 0 ]K/ll 0
O U O O
00 L Lg m mo  o.™ f
a-q" an
&H

= N
e” OIZI
[T 00 = .
0 c [l 0 c” 0
c=U 2 O co=0 o 0
O o] O o = O
o O © o0
%) ColJ Ho ¢
H ¢,

2, variance-covariance matrix of error vectors, i.e., ¥gr€ 2,

t
x:AP’ W:NLXO, F:MLXO
a0 06'
Q:dvecA)

= R ovecA T= ovecR U= ovecR

26" -

06"’ 26"

- O

a, = chaoi’ Ko = gqgjm _iqamgg‘jm _iqam%

1=1 =1
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Appendix B: Proofs
B.1. Proof of proposition 1
Let’s call a new source contributionatrix and anew source compositiomatrix obtained
by a linear transformatioA” andP’, respectively. And, assurdeP” = AP,
By postmultiplyingA'P" = AP by P, we get
AP P' = APP
APP(PP)' = A
sincePFP is of full rank by the assumption. Lettisg= PP'(PP)?,
A=AS. (A.1)
Similarly, premultiplyingA’P" = AP by A, we get
AA'P = AAP
(AAYIAAP =P
sinceA'A is of full rank by the assumption. Lettify= (AA)'AA’,
P=RP (A.2)
By (A.1), (A.2), and the assumption thaP" = AP, we have
AP = ASRP = AP,
SinceA’ is of full column rank ané” is of full row rank, we get from (A.2),
(ATAYIA'A'S RP PP P Y = (ATA)TATAP PP P
and hence

SR =I.

Note that both oSandR areqgxq full rank matrices. Hence,

S=R.
Using this and (A.1), we get
A = AR,
and from (A.2),
P=R'P.

Thus, ifA'P" = AP,thenA” = ARandP = R'P for a nonsingular matrix



35

R = (AA)'A'A". Note thaiR can have different expressions.

B.2. Proof of result 1.
We need thdollowing lemmas toprove result 1 and result 2. Assurtie physical
constraints for the source composition matrix andsth@ce contribution matrix3), hold
throughout.

Lemma Al. Letr, denote thek,j)™ element ofR wherek =1L ,q, j =1L ,q.
Then

q
Zrkj =1, k=1L ,q.
=1

Proof. We haveP = RP* fromP" = R'P. Thus,k,j)" element of the matrif can be

expressed as

q

ZrkipljD: By -

=1

Due to the constraint that row sumpis 1,

p
It follows from the constrain§ p”.D =1that
=1

q
Zrki =1
1=1
Lemma A2. Under the assumptions A1-A3,
g, =0, k=1L g, j=1L ,q, j#k.

Proof. FromA’ = AR, the(i,j)™ element of the matriR” can be expressed as



36

Qi taph, tL +ary =a;, 1=1L,n, J=1L ,q

and hence
ayfy + 0,0 +L +agr, =0 (A.3)

Saykth (k =1L ,q ) source is missing on some days. Then

alon, +L +aon  +alin.,, +L +alor=a ), (A.4)
j =1L ,gsincea” = 0. Herea;" is defined in the similar way as .
Substracting (A.4) from (A.3),
(@, =T +L + (@, ~ T8y + Bty + @y =Ty +L + (@, T,
=a’-a", (A.5)
By applying A2, we have

ﬁkrkj =0

forj Z k.

This impliesr,; = 0 sincea, # 0 by A3.

Proof of resutl. From lemma A2,

g

=0, k=1L q, j=1L ,q, j#k.

Using this and lemma A1l together, we get
q
Zrkj =r, =1, k=1L q.
=1

This completes the proof.

B.3. Proof of result 2.
We need the following lemmas additionaly to prove result 2.

Lemma A3. Under the assumptions B1 and B3, for 1L ,q, j =1L ,q,

2
‘rki‘sai

q
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where), is the smallest eigenvalue BfP" .

Proof. Recall thatP = RP". Postmultiplying this byP" (P"P")™, we get
R= PP (PP,

Let C=PP" andD = (PDPD)_l. The(k,j)" element ofC can be expressed by

p
Gy = > PPy
1=1
Eachsummand,p, p]DI in the above equation ounded by 1 due tthe constraintsthat

0<p;<land0<p; <1 Hence,
i ]
OSij :Zpkipjis P, (A.6)
1=1
k=1L ,q, j =1L ,q. Note that the matriP"P" is symmetric. Bythe diagonability of
symmetric matrices (see, e.g., Searle 1982, sec. 11.6b), we have the expression that
PP = UAU'

whereA is the diagonal matrix of the eigenvaluesRP" andU is the orthogonamatrix

consisting of the eigenvectors BfP", and hence
D =(PP")" =(UAU') " =UAL! (A7)
Using (A.7), the(i,j)™ element oD can be expressed by

Y

q
G20

is JS’ I_l’L q! J :11L !q'

S

Note that |u | <1,

eigenvalue ofP"P", we obtain fork =1L ,q, j =1L ,q,

i1
<2

s=1

21

ZA_ isHjs

s=1

] =

U is

q
s (A.8)
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by the triangle inequality and the nonnegativity of the eigenvaluesofrzegative definite

matrix. Note tha#\, > 0 due to the assumption B3.

The(k,j)" element of the matriR = CDis written by

k=1L ,q, j =1L ,q.

Lemma A4. Under the assumptions B1 - B3, fo=e 1L ,q, j =1L ,q, k #|,

nil=B

2 —
whereB is defined byB = c_ri §+ wa
k

q
Proof. From (A.5) in the proof of lemma A2, we get
(6_71 - al(k))rlj +L + (C_Yk—l - C_YIEE)l)rk—l,j + akrkj + (C_Yk+l - C_YIEI:)l)rk+l,j +L + (C_Yq - C_Yl(k))rqj
=a jD -a jE"‘),
That is,
akrkj = (ajD - C_quk)) - (6_71 - al(k))rlj -L - (ak—l - C_YIEE?I.)rk—l,j - (C_Yk+1 - C_YIEQL)rkﬂ,j -
L —(a, —Eé"’)rqj
and hence fok =1L ,q, j =1L ,q,k #]j,
‘Ekrkj‘ = ‘(C_YJD - ajt(k)) - (C_Yl - al(k))rlj -L - (ak—l - algli)l)rk—l,j - (ak+1 - aéli)l)rku,j -

(A —7K
L (aq a, )rqj

~0 _ 7 0k) ~ — K ~ K ~ K
S‘ai aj ‘+‘a1 a, Hrlj""l- +‘ak—1 ak—lHrk—l,j‘-'-‘akﬂ a1 +

ey

T,
L +‘arq a; Hrqj‘



Ypo |, Deat e
<e+te +L +¢ =e+e¢ g-1).
S BT A T
by the triangle inequality, B2, and lemma A3.
Thus
2 —
e PEODE
q
It follows from B3 that
£ (-1
bl £ B B
a, A

q

wherek =1L ,q, j =1L ,q,k #]j.

Proof of result. From IemmaA4},rkj‘ <B, k=1L g, j=1L ,q, k #].

and lemma Al and by the assumption Bi& small enough, we get

q
1= Zrkj =r,, k=1L q.

=1

This completes the proof.

B.4. Proof of theorem 1.

We need the following lemmas to prove the theorem.

39

Usingthis

Lemma A5. Lety, = a,P, + &, where theg, are independent identically distributpd

dimensional random row vectors with zero mean vector, positive definite covanatroe

2, Let{a,} be a fixed sequence satisfying

n
a, = n‘lzam 0T - a,
1=1

and

Ko = n_lZ(am —0,) (A — ) 0T - K.
=1
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Then, whem - oo,

and

S=nY (3 =)'y, V) TP -2, + RK R,
1=1

Proof. This result follows fronWLLN. A detailed proof can be found in Park (1997).

Lemma A6. Letg(x,y)be a continuouseal valued function defined on the Cartesian

productAx B, whereA is a subset op-dimensional Euclidean space adds a compact

subset ofi-dimensional Euclidean space. Ixgbe an interior point oA. Assumethat the
pointy, is the unique point for whiciin ;g(X,,y) is attained. Ley, (X) be a point in B
such that

9%, Ym(X)) = Miny9(X,y) -
Theny,(X) is a continuous function ofatx = Xx..

Proof. Appendix 4.B of Fuller (1987).

Proof of theoremLet w, = (y,vech(S)')', and6 = vec(P). Let® be the compactubset
of pg-dimensional Euclidearspace Define g(wn;e):tr[(S+ yty){lp—Pt(PPt)'lP}].

Note thatg(w,;6) is a continuous real valued function defined/drO. By lemma A5, as

W, TP - W,
We show that Ming(w,;6)= I})/Imientr[(z0 +PK,P,+ F{}agaoF{)){lp -P'(PP)™ P}] is
uniquely attained aff = 6, if =, = 0”1 . AssumingZ, = o’l ,

o(@,6) =tr[(021, + PiK R, + RiasaR){ 1, - Pt(PP‘)"lp}]



41

=o%[1, - P'(PP)*P| +t[K R{1, - P'(PP) P} F}]
+ula,R{1, - P'(PP")*P}Ria]
= UZ(D_ Q) +tr[K0pO{ | . Pt(PPt)_lP} Pot] +tr[a0PO{|p - PI(PP‘)—lp} F%taé].
Notethat |, — P'(PP')™P is a projection matrix and so columns bf- P'(PP')™"P are

orthogonal to and linearly independent of column&'qfows ofP). SinceK, is of full

rank,K P, also span the row spaceRf Since the projectiomatrix is unique(see,e.g.,
Rao 1973, sec 1c.49r,[KOF{){ I, - pt(PPt)—lp} Pot] has a unique minimum when
P'(PP")™P = P;(P,P})™*R,, which is truefor P =RP, for any gxq nonsingulamatrix R .
By the identifiability conditions o, C1-C2,R should be an identity matrix, and hence,
tr[KOF{){Ip - P‘(PPt)‘lP} Fg‘K(‘)] has a unique minimum O Bt= P,. Thus,
Ming(c,;6)
=02(p- o)+ Mintr{KR(1, - P'(PP)*P)Ri} + tr{ a,Ry(1, - P'(PP') *P)Rias)}
Lo ofol\'p 0 ofol\'p o“o
—_ 2 t t\ -1 pt t t ty-1 pt t ot
=0%(p-a)+u[KR{1, - R(RR)'R}R] +t[asR{1, - R(RR) 'R} Ria]
=0*(p-0q)
is uniquely attained & = P,, i.e., 8 = 6,. By lemma A6,vec(l5) which is the value of
vec(P)such thatg(wn;vec(ls)) = I\G/IDlen o(w,,;vec(P)) is a continuous function of7, and the

result follows from the continuous mapping theorem.

B.5. Proof of theorem 2

We will need the following lemmas in the sequel to prove theorem 2.
Lemma A7.Lety, = a,P, + &, where thes, are independent identically distributpd
dimensional random row vectors with zero mean vector, positive definite covamaitroce

2,, and finite fourth moments. Let{} be a fixed sequence satisfying
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n
a, = n‘lzam 0T - a,
1=1

and

Ko = n_lZ(am —0,) (ag — ) 0T - K.
=1

Lety = [)‘/,(vechS)t]t andy, = [CTOF},,(vechm +vechzo)t]t wherem = P'K,P,. Then
G (¥ —y,) OF ~ N(O.1),
where the elements &, are the covariances of the elementy of
Cov(yi,yj) =n"o;,
Cov(yi,qk) = nn—_zlr”k,
C(Sj,SKl) = nn—_zl(mkajl +mo, +m0o, + Mo, +Kij’k|) +0(n?),
Kiw = E{(sisj —aij)(ekeI -0, )}
o; = E(sisj), andrt, = E(sisjsk).
Proof. Itis a direct adaptation of theorem 1.C.2 of Fuller (1987).
Lemma A8. Under the definitions and the assumptions of lemma A7,
Jn(y -y,) @' - N(O,G),
where the elements &fare the limiting values of the element&f,

IimnCov(yi,yj) =0y,

Liﬁmm nCov(yi,ﬁk) =Ty,
Liamm nCov(Sj,SKl) = (mkajI +mo, +m, o, +m,o;, +Kij’k|),
andm;’s are the elements af = RK R,
Proof. It follows from the fact that+/nG*? O TIT - G** in probability and Slutsky

theorem.

Lemma A9. Let g,(vechS 6) :tr[S{Ip - pt(PPt)-lp}]_ Then
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@ 2 gvecnse)={L{(1, - R(RR)R) 0 (RR)R)
+M{(RP)*RO(I, - R(RR) R} ]GJ vec{S— (2, + RIK,R)|

t t
where L= d"ect% = WeCtP| . M= Wectl% _ dvectP |
90 d6 |P=PO 00 00

, and CDp is the

lo-r,
p? x £ p(p+1) matrix such thaﬂrec(S—(lp + F{}KOF}))) =, vech(S—(Ip + F}}KOPO)).

2

(b) —ooar Gi(vechS 6) = 2L ({1, - Ri(RR) 'R} DK, ]L + 0,1
whereL = ovech, _ dvech| .
96' 96" |ocs,

Proof. A detailed proof can be found in Park (1997).

Lemma A10. Let g,(V,6) = y(I, - P'(PP")™"P)y'. Then,

@ 2% - a1fi, - ri(RR) R} D)y - @,R) +o (7).

2 —
(b) 96(.5%) 329(3/9’?0) =2Lt[{lp -R(RR)™ P O agao]uo ().

Proof. A detailed proof can be found in Park (1997).

Proof of theorem. Let®© = {0< 8 <1, i=1,...,1}. First, we showwith probability

approaching on@ is in the interior of the parametspace. Thatis, weneed toshow that

there is an opertball with centerd, all of whose points belong . Let's denote the set
of all points@in R such that|@ — a| < d, which is an open-ball of radiusd and centeas,
by B(a;d). By theassumptiong, [J Int (©), and hencehereexists ad, > 0 suchthat
B(6, 9, O ©. By theorem 16 is consistent for8,. Therefore, withprobability

approaching one ausincreases,eﬂ-aO || <e. Settinge =98,/2, we have
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B(6; &/2) 0 B(6,; &) O O
with probability approaching one as increases.Thus 60 Int(®) with probability

approaching one asincreases

The rest of proof is based on Taylor’'s theorem #aedasymptotic normality of and
S. The same argument in the proof of theode®.2 inFuller (1987)can beused for our

casetoo. Weonly need tocalculate thefirst and second derivatives difie objective

function g(y,S6) with respect tof since the objective functiowhich we minimize is

different fromthat of Fuller. From (4.B.19) irruller (1987), weobtain with probability

approaching one as- oo,

0-0=

_[Py(y.vechs 6) 0" dy(y, vechS 6,)
0 0606 0 PL

(A.9)
where the elements 6f are evaluated at points on the line segment joiagd 6.
Note that our objective functiog(y, vechS 6) can be reexpressed as follows:
0y, vechs9) = tr|(S+¥'y){1,, - P(PP") *P]
=u[g{1, - P'(PPY*F}] +¥{1, - P'(PP)*P}y"
Let g,(vechS 6) = tr[S{Ip - P‘(PPt)‘lP}] andg,(v.6) = {1, - P'(PP")*P}y". Then,

3(y,vechs,6) _ 0.

5 de{gl(vechsewgz(y,e)}

o 90
=30 g,(vechS 6) + Y. 9,(y.6). (A.10)

By lemma A9 (a),
d t t ty—1 ty—1
= avecns8,)=-|L{(1, - RI(RR)'R) O (RR) 'R

M{(RR) R 0 (1, - R R} @ vecs- (=, + RIGR)]
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By lemma A10 (a),

dng?)_gao) :—ZLI[{|p_|%t(F%POt)—1P} Dao](y a,P )+O n 2)

Let
B.=[L{(1, - RRRY*R) D (RR) R} +M{(RR) R D(1, - R(RR) R}
and
B, =2u[{1, - R(RR) "R} 0ai]
Then it follows from (A.10) that

Note that

0%g(y,vechS, 0 0? 52
g();'eaet )= Seog 2(VeehSO) +— - 6:(3.0). (A.12)

By lemma A9 (b),

aZ
0606
By lemma A10 (b),

,(vechs 8;) = 2L'[{1, - Ri(RR) R} D K,|L +0,().

70,3.6,) _
02909t 2Lt[{

l,—Fi(RP)R) Dc_rtﬁ]L+O (n 4.
Let H,=2L[{1, - Ri(RR) 'R} DK, |L andH,=2L[{1, - Ri(RR) 'R} D@, |L.
Then it follows from (A.12) that

0°g,(vechS 6,)

ooa - H,+H,+0,(1): (A.13)

By theorem 1,

6IFP- 6, asn — o,
and so 6" also converges t@, since 6" is betweend and 6,. Because theartial

derivatives are continuous,
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9*g(y,vechS,6") _ 9°g(y,vechS6,) ,
0606" 606"

0,(1)

=H, +H, +0,(1)
(A.14)

where we have used (A.13). Lettig= H, +H, andB = (B,, B,), we obtain that

~ - —_ J— t 1
6-6,= H‘ls[y—ao%,{vechs—vech(zo + PO‘KOF%)}t +0,(n?), (A.15)

where we have used (A.9), (A.11), and (A.14).

LetB, = —2Lt[{lp -R(RP)R} O ag], B = (B,, B,) and
H :2Lt[{lp—F§(R,F§)‘1R)}DKO]L+2L‘[{IP—F§(R)F§)'1R,}DagaO]L. Then, by the

assumptionsa, O TIT - a,, KO OTT - K, and hence by theontinuous mapping

theorem,

BOMr-B, HOMT-H. (A.16)

It follows from (A.15), (A.16), lemma A8, and the continuous mapping theorem that
Vn(6-8,) I~ N(0,H'BGB'H™)

whereG is defined in lemma AS8.

B.6. Proof of proposition 2

By theWLLN, asm - o, i =1, ..., n,
Y P - AP,
Let g(Y,N*M; A) :%tr[\?tM{ln - A(AtMA)'lA‘M}V]. Then by thecontinuous mapping

theorem,

o(Y,N*M; A) IF - (AR, C; A)
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z|3
Vv
o

3=
|
8

N
QD
>
o
0
Il

Note that

Ming(AR,C:A) =Mirfir{ RAC(1, - AKCA)* AC)ARY]

=Min
60

tr{ RACH1, - ClAACA)™ Atc%)cépbe,}]

is uniquelyattainedwhen C?A(A'CA) *A'C? = C*A (A'CA,) *AC? since the projection
matrix is unique. By the identifiability of the model parameters discussed in section 2, this

implies thatA = A,. Thus, I\G/IEE@ng(AbR,,C; A) is uniquely attained & = A,. By lemma A6,
A which isthe value ofA suchthat g(Y,N*M:A)= MAing(V,N'lM;A) is a continuous

function of (\?, N‘lM) and the result follows from the continuous mapping theorem.

B.7. Proof of proposition 3.

We need the following lemmas in the sequel to prove the proposition.

am, 00
U m, U
Lemma A1l. Letv =0 Uand m”=min{m}. Then
D O D 1<i<n
U {
nY m,J
(a) vec(lvﬁ(\? - AJR)))t - N(0,,.1, D %)

(b) vec(\sﬁ(\? - AOPO))t - N(onp,cD 0 zp)

&” OD

O 0

ExI 0

O c O m° m
wherec"=U O ¢”= lim —, andc = lim —.

0 2 o d mw N m - N

0 O

N cO

] ¢,
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B\/ﬁ(yl - aOlpp)

Proof. (a)M%(\? - AP) = %”‘2(372-“; aozF’p)
0

[ Y

By the multivariateCLT, \E(Y - ao,lg)t - N(Op,zp), i=1L ,n. The conclusion
follows becausegg,L ,y, are independent.

(b) The conclusion isimmediate because «m'(Y - AR) = m'M*M:(Y - AP) and

1 1

" 2 e ¥

g{ 0n G0 0p

: 0 mg! : O
., 0 m 0 o ¢ 0 )
vm'M 2 =0 m, Oomago-0 0 =c"

0 o 0 0 2 5 0

0 0 0 O

Og m’g 0, o

H m, 5 H ¢,

Lemma Al2. LeM be amxn diagonal matrix ané be amxq matrix, andé= vecA.

Then

9 ; _ _ oA
(@) Mﬁ{ln - AAMA) T AM}A= -M{1, - A(AMA) 1AtM}£.

t
(b) AM %{ l, - A(AMA)*A'M} = —Z—Ae M{1, - A(AMA)*A'M} .

() A'M %{ l, - A(AMA)*AM}A=0

gxq-

02
06.00

i

(d) AM {1,- AAMA) T AM} A

t
== M{1, - A(AMA)*A'M] oA oA M{1, - A(AMA)*A'M} A
26, 36, 06, d6,

Proof. (a) For an elemerg@, of 6,

9 | - A(AMA)AM
6,
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-1
a(At MA)
= 9A = (AMA)TAM - AL A'm - A(AtMA) laiM
Y 26 i
_ r t
= %(AtMA) A'M -A{AMA) " o(AMA) (AMA) " FAM - A(AtMA) LoA”

06, 06, H 6.
_ oA (DA oA oA
=38 (A‘MA) A'M - A(A'MA) 1%MA+ AtMa—gl A‘MA) A'M - A(A'MA) ! ol

= OB (A'MA) " A'M - A(AMA) a—AtMA(AtMA) A'M
09, 26

_ t
—A(A‘MA) A‘Ma—A(AtMA) A‘M—A(AtMA) 1ai|v|
26 PY)

t
=—{1,- AAMA)"AM }d (A'MA)TAM - A(AMA)™ dAM

{1, - AAMA) " A'M}

(A.17)
Postmultiplyingboth sides of the above equationAywe get

M %{ 1, - A(AMA) T AM} A

t
=-M{1, - A(AMA)*A'M }a (AMA)A'MA - MAGAMA) 2 M1

06,

2~ A(AMA) TAM]A

t
=-M{1, - AAMA) " A'M} d—g ~ MA(A'MA)" g—g(MA MA)

-Mm{1, - A(AtMA)'lAtM}g—A.

(b) Premultiplyingboth sides of the equation (A.17) By we get

J a
AM a_e{ 1, - A(AMA)* A'M}

t
=-AM{1, - AAMA)*AM] g—g(AtMA)’lA‘M - A MA(A‘lle)‘lﬁi M{1, - A(A'MA)* A'M}



:—(Atlvl—Aﬂ\/l)j—g(Atlle)‘lAI d’g M{1, - A(AMA)* A'M}

_OA 4
5 ——M{1, - AAMA) T AM}.
(c) Postmultiplying both sides of (b) By

oA oA

d
AM—{1 - AAMAAM}A= -2 M1, - AAMA) *AMIA= -2 (MA- MA) =0,
ae{()}ae,{()}ae()
(d) Differentiating both sides of (a) 8, we get
0 52 B 0 J oA
M |- AAMA) TAMY A+ M —{1_— A(AMA)AM
R
2
-m2 —{1, - A(AMA)*AM }dA M{1, - A(A'MA)*A'M} oA
26, i 06,06,
Premultiplying both sides of the above equatioibyve get
0 52 _ 0 , oA
‘ME——{1 - AAMA) TAMI A+ AM — A(AIMA)*A'M
@9@9]{ A ) }g‘ da{ ( ) }09,.
2
:—Atl\/li{|n—A(AIMA)‘lAtM}@—AtM{ln—A(AIMA)‘lAtM} oA
26, 6, 06,06,
It follows that
0 52 0
AMG——{1_ - A(AMA)*AM
96,06, {ln— A ) }g‘
t t
_dilvl{ — A(A'MA)A'M }dA+di|v|{ ~ A(AMA)A'M }0”'A
) 96, 96,

j i i j
where we have used (b).

Lemma A13. Letg(Y,N*M:A) = tr[VtN'lM{l - A(A‘N‘lMA)‘lA‘N‘lM}\?] and

Q= d‘;e;%. Assume tha%— =o(m™), i=1L ,n. Then

()dg(YNlMG)
90

~2Q[c{1, - A(ACA)ACHO R |vec(Y ~ AR) +0,(m™).

50
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(b) dzg(\?d,;;M,eo):Qt[C{ln _ %(P{)C'%)_lpéc} O POPO‘]Q+ 0,(D.

Proof. (a) For an elemerd, of 6,

d V2 -1 —_ - \V2 t d t -1 at N/ D
d—eig(Y,N M,6) =N ]‘[@Y—A)F{)) Mg{ln—A(A MA) AM}(Y—AOPO)E

9
26,

+N g\? -AR)YM—{I, - A(AtMA)‘lAtM}A)FBE
0 0

+N4r gAOF{))‘ M i{ l, = A(AMA) AM}(Y - Abe,)g
O 26 0

+N"]‘[r§AOF{))‘ Mi{ |, - A(A‘MA)‘lA‘M}(AbF{))E} (A.18)
O 96 0

By the property ofrace,we have

NHrY - AR) M2 {1, - AGIMAY*AMY(Y - AR
5 06, H

=(vec(Y - A)F{))t)t E\rllvl %{ L, - A(AMA)AM} O, E/ec(\? - APR)

={vec(Y - AR} é::d%{ l, - A(ACA)"AC) O, + o(1)§/ec(\? - AP).

By lemma A11(b), vec(Y - AR) =O,(m ).  Since I, - AACA)*AC is the projection
matrix, we have
- V2 t 0 t -1 pt N/ D_ *—1
N7tr Y - AR)'M—{1, - ALAMA) " AM}(Y - AR) = O,(m ).
0 6 0
Thusthe first term of the equatioA.18) is negligible. Fothe remaining terms of the
equation (A.18) whe =6,, we get

e (00 AL Al
N ltrg\(—,%lvo) MD?(IH - A(A'MA)A'M)
|:| i




O
=Ny - AoPo)tMﬁln - %(AéMA))‘lAéM)%
0 B i

A=ro

0
.
0
0

by lemma A12 (a),

N'ltrngP)tMéi(l —A(A‘MA)‘lAtM) QV—%P)E
0 ei " A:Aoa E
0 Ogat| O = L
=-NTrRo | OM{1, - AGAMA) AMKY - AR)D
H Dﬁ i A:AOD B

by lemma A12 (b), and

O 9 % 0
N'ltr%ADF}))t M%(In - A(AMA)A'M) AbPO)B: P 0yuq P = Oy
|:| I

A=Ag 0

by lemma A12 (c). It follows that

J o U . Oga| OO
ﬁgw,N*M,eo)=—N'ltrgv—ﬂb%)tM{ln—/%(A%M/%)'A;M}mg m%

N TP A EM(I A(AMA) " AM)(Y A)F’)S’ro( )
- r 0 n - 0 b m .
H°e E

iA:AOD

Using the property aface, we get for the first term of (A.19),

- D— t t -1 At DdA . 2
N%rgv—ﬂbm M{1, - A (AMA,) %M}% 5&5

=Ry

O Oyat
:N‘“trDD(}B—d:

gln ~ MA(AMA,)* AIM(Y - AR)

A=Ay

[(MAnt
=N"tr %ﬁ—dp‘
Qi

| t
=N -1 D/ecdi
5 96

0
0
H
O
i
H

gln -~ MA(AMA) " A}M(Y — AR)R;

A=Ay

|j —

A=A

and for the second term of (A.19),

52

(A.19)
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N {1, - A(AMA)AM(Y - AR)D
oy Oo -
H [ﬁBIAA0 B
N[0 EM{I Ay (AMA)AM (Y ARIPE
= r n_ - o/Fo
%A%D H
O o O B _
=N“ovecol  O[M{L - A(AMA) T AM} O R vec(Y - AR
U ila=a, U
Thus,

2 —
—g(Y,N"M,6
20 o( b)

| Al

a
= 2N M(1,- A(AMA)AM)D RlvedY - AR)+0,(m ™)
%vecde ) AE[ ( ) ]v m

O oa

= -2[vec
06

|j v -1
[l Ation AQ)o et - ARy o)

by the assumption th%%—c =o(m™), i=1L ,n.

It follows that

aAY,N"*M,8,) _
08

-20[ {1, - A(4cA)* AC) 0 Blved Y - AR +om ™)

ovecA,

whereQ=—-2
Q 060"

(b) For element®, and 6, of 6,

(Y, N*M,0) . Ho t, 0° IMAYLAM B
=NtrY-AP) M | - A(A'MA)*A'M Y P
L Y - AR s (1~ A AR

+N‘ltr§ -AR)M aedj?e( —A(AtMA)_lAtM)'%PGE

06,00,

+N"1tr§AOP) ‘92( - A(A'MA) ' A'M) —AbPO)E
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+ N'ltrgAbF}))t M- (1, - AA MA)‘lAtM)(AbPO)E (A.20)

76,06,

2

Note thatdedw{ [ A(AtCA)'lA‘C} is bounded ove® since |, — A(A'CA)*A'C is the

i7

projection matrix. We have for the first term of the equation (A.20),

Nt é\? -AR)M aeé;a {1,-AANMA)TAM}Y - A)Po)é
— t 2 = 0 w1
=tr év - AR) C%ﬁej{ 1, - A(ACA) " ACHY - Abl%)é& o,(m™)

=o(m"),

for the second term of (A.20),

- V2 t A t -1 pt 0
N%rév AbF{))Mdeiaej{ln A(A'MA) AM}AbPO%
=tr{Y - AR)C o {1 —A(A‘CA)'lAtc}AbP%O(m*'?)

/" 0606, " g "

= Op( m _;) ,
and for the third term of (A.20),

dZ

- t t -1 pt V2 0 .-~
N%ré%%)MW{In—A(AMA) AM}(Y—AbF{,)E:Op(m ).

Thus

‘929(7’”1””’9)=N‘]tr§%%)t'\4 T_{1, - AAMAY AM} (AR O ),
g

06,08, 06,06,
For 6=6,,
Y. N*MB)_ 2 H o O .
a0, N AR Madeiﬁe. (1, - AA A A Q%F’o)%op(m )
[ E j A—AOE E
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t A\) t -1 pt % td_Att) _ t -1 pt % 0
—trgo 70 CUln ~ AUACAYTACH 0P+ Bl 5 L ~ AACAY "ACH 5 R 0,1

g% 1, - ACA) AT} 2 Pptmtré%c{l - A(ACA ) AC) A"PPEH)(D

. 0""% _ 4 o P
oy E[C {1,- A(ACA) AbC}DPP]veCE

+%/ec E[C {1,- A(ACA)*AC}O PPt]vec%+o )

where we have used lemma A12 (d) and the propertieaag. It follows that

d%g(Y,N™M,6,)
0606

=2Q/[c{1, - A (ACA)AC} O RR|Q+0,w.

Proof of proposition. By the same argument as that in theorem 2, it cashbe/nthat
60 Int(©) with probability approaching one as increasesTherest of proof is based
on Taylor's theorem and the asymptotic normalityvof

The same argument in the proof of theorem 4.B.2 in Fuller (1987) can be used for our

casetoo. Weonly need tocalculate thefirst and second derivatives diie objective
function g(Y,N™M;8) with respect td since theobjective functionwhich weminimize is
different fromthat of Fuller. From (4.B.19) irruller (1987), weobtain with probability

approaching one as - o,

_EP°G(Y N M6 T (Y, N"*M:6,)
0 4606 0 90

where the elements 6f are evaluated at points on the line segment joljiagd 6.

By lemma A13 (a),

a(Y,N™*M,6,)
20

By lemma A13 (b),

=-2Q[c{1, - AACA) *AC O R]veclY - AR) +o,(mi").
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d°g9(Y,N™M,8,)
0606

=2Q[c{1, - A(ACA)AC} D RR|Q+0,w.
By proposition 2,
6P~ 6, asm - o,
and so 8" also converges t@, since 8" is betweenf and 6,. Because theartial

derivatives are continuous,

9°g(Y,N"M,8') _ 9°g(Y,N"M.6,) ,
9606' 0606'

0,(D).
Letting B =Q[C{1, - A(ACA)*AC} 0 R] and
H =Q[c{1, - A(ACA)*AC} 0 RR]Q, we obtain that
6-6,= H'leec(V - A)Po)t + op(mﬁ) : (A.21)
It follows from (A.21), lemma Al1l (b), and the continuous mapping theorem that

m(6 - 6,) ¥ N(0,HB(C 0 5,)B'H ).



