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Abstract

For modelling non-stationary spatial random fields Z = {Z(x) : x ∈ Rn, n ≥ 2}
a recent method has been proposed to deform bijectively the index space so that
the spatial dispersion D(x, y) = var[Z(x) − Z(y)], (x, y) ∈ Rn × Rn, depends
only on the Euclidean distance in the deformed space through a stationary and
isotropic variogram γ. We prove uniqueness of this model in two different cases:
(i) γ is strictly increasing; (ii) γ(u) is differentiable for u > 0.
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1. Introduction

Spatial interpolation or smoothing techniques are used widely in the environmental
sciences to estimate a spatial random field at un-monitored locations, or to interpolate
data onto a regular grid of points for use in subsequent analyses. Many of these
techniques require spatial variogram models in continuous space. Such models are
based often on simplifying assumptions (see [3], Chapter 2, for instance), including
spatial stationarity or homogeneity where the second order association between pairs
of sites is assumed to depend only on the spatial distance between these sites. In
environmental applications, factors such as topography, local pollutant emissions,
and meteorological influences may cause such assumptions to be violated. This has
led to research into modelling heterogeneous (spatially non-stationary) second order
structure, as reviewed in [7].

We consider identifiability of the heterogeneous spatial modelling approach pro-
posed by Sampson and Guttorp [15]. They model the spatial dispersion D(x, y) =
var [Z(x) −Z(y)] of the spatial random field Z = {Z(x) : x ∈ Rn, n ≥ 2} as a
function of Euclidean distance between site locations in a bijective deformation of
the geographic coordinate system. The geographic coordinate system is referred to as
the G-space, and the deformed coordinate system is known as the D-space, where D
stands for dispersion. In the following, we identify both the G-space and the D-space
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University, S-412 96 Göteborg, Sweden, Email: olivier@math.chalmers.se.

∗∗ Postal address: Statistics and Applied Probability, University of California, Santa Barbara, CA
93106-3110, USA.

1



2 OLIVIER PERRIN AND WENDY MEIRING

as Rn for simplicity. The model is of the form

D(x, y) = γ (‖Φ(y) − Φ(x)‖) , ∀(x, y) ∈ Rn × Rn,(1.1)

where ‖.‖ represents the classical Euclidean norm in Rn, Φ represents a bijective
bi-continuous deformation of the G-space onto the D-space and γ a stationary and
isotropic variogram which depends only on the Euclidean distance between sites.
When γ is increasing, the deformation effectively stretches the G-space in regions
of relatively higher spatial dispersion, while contracting it in regions of relatively
lower spatial dispersion, so that a stationary and isotropic variogram can model the
dispersion as a function of the distance in the D-space representation. The simplest
non-trivial example is an affine bijective deformation Φ(x) = Ax, where A is a regular
square matrix and where the principal axes of A determine the geographic directions
of greatest and weakest spatial dispersion in this stationary anisotropic model. This
is called the case of geometric or elliptical anisotropy in the geostatistics literature. In
this paper we use the terminology variogram only when we are referring to stationary
and isotropic dispersion models.

When γ is strictly increasing and n = 2, Meiring [9] proves the uniqueness of both
the deformation Φ and the variogram γ, up to a homothetic Euclidean motion for Φ
and up to a scaling for γ. Her proof is based on geometrical arguments. This result
can be generalized to n ≥ 2 as indicated in Meiring et al. [10]. Using topological
properties of metric transforms given by Schœnberg [16], we provide a more concise
proof of uniqueness of γ up to scaling, and Φ up to homothetic Euclidean motion in
Rn, n ≥ 2, when γ is strictly increasing and continuous except possibly at the origin.

Many isotropic variogram models are not strictly increasing, including the hole-
effect models [3]. Perrin and Senoussi [14] consider deformation models of non-
stationary spatial correlation of the form

r(x, y) = ρ(‖Φ(y) − Φ(x)‖), ∀(x, y) ∈ Rn × Rn,(1.2)

where r(x, y) is the spatial correlation between points x and y, and ρ is a stationary
and isotropic correlation model which is not necessarily strictly increasing. Under
smoothness assumptions on Φ and ρ, they show uniqueness of ρ up to scaling, and
Φ up to a homothetic Euclidean motion in Rn, n ≥ 2. Their proof also is valid if
written for spatial dispersion models which may exist when correlations do not. We
show that one of the assumptions of [14] is redundant, and thus prove the result of
[14] for spatial dispersion models under fewer assumptions. Many commonly used
variograms, including the linear, spherical, exponential, Gaussian, power, and hole-
effect models described in [3], satisfy the smoothness assumptions. For n = 1 we refer
to Perrin [12] and Perrin and Senoussi [13].

2. Uniqueness

We endow Rn, n ≥ 2, with the classical Euclidean norm ‖.‖. Let Gn be the group
of the orthogonal matrices G of dimension n and let Hn be the group of homothetic
Euclidean motions H

Hn = {H : H(x) = λGx + b, ∀x ∈ Rn with λ > 0, G ∈ Gn, b ∈ Rn}.
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When n = 2, Hn is composed with translations, rotations, reflections about a line and
homothetic transformations, or any composition of these transformations. Concerning
identification of model (1.1) we have the first result.

Proposition 2.1 If (Φ1, γ1) is a solution to (1.1), then for any H in Hn, (Φ2, γ2)
with Φ2 = H ◦ Φ1 and γ2(u) = γ1(u/λ) is a solution as well.

Thus, uniqueness of (Φ, γ) can only be discussed at least up to a scaling for γ and up to
a homothetic Euclidean motion for Φ. The practical implications of this result are that
we can fix the homothetic Euclidean motions of the D-space prior to identifying the
D-space coordinates and associated variogram. For R2 −→ R2 deformations, fixing
four coordinates in the G-space will fix translations, homothetic transformations and
rotations up to reflections about a line. In higher dimensions, additional constraints
are required. For instance, in R3 we fix two points and constrain a third point to lie
in a fixed plane.

We will prove the reverse of proposition 2.1, that is, uniqueness holds exactly up
to a scaling for γ and up to a homothetic Euclidean motion for Φ, in two different
cases: (i) γ is strictly increasing; (ii) γ(u) is differentiable for u > 0.

2.1. Monotonic case. We introduce first two definitions drawn from Schœnberg
[16] and Von Neumann and Schœnberg [17].

Definition 2.1 A set Ω endowed with a function δ(x, y) satisfying the following
properties for all (x, y) ∈ Ω2

δ(x, y) = δ(y, x) ≥ 0 and δ(x, y) = 0 ⇐⇒ x = y

is called a semi-metric space.

Consider a continuous function τ : R+ → R+ satisfying

(A) τ(u) = 0 ⇐⇒ u = 0

and define δτ (x, y) = τ(‖y − x‖). Therefore according to definition 2.1, Rn endowed
with δτ is a semi-metric space. Following Blumenthal [1] we say that

Definition 2.2 (Rn, δτ ) is isometrically embeddable in Rm, n ≤ m < ∞, if there is
a continuous function Φ : Rn → Rm such that for all (x, y) ∈ Rn × Rn

τ(‖y − x‖) = ‖Φ(y) − Φ(x)‖.

The following theorem in Schœnberg [16] gives the form of τ .

Theorem 2.1 If (Rn, δτ ), n ≥ 2, is isometrically embeddable in Rm, n ≤ m < +∞,
then necessarily

τ(u) = u/λ, λ > 0, unless τ(u) ≡ 0.

We can now state our first main result about the identification of model (1.1).
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Theorem 2.2 If two continuous variograms, γ1 and γ2, with γ1 strictly increasing,
and two bijective bi-continuous deformations, Φ1 and Φ2, from Rn onto Rn give the
same dispersion, i.e. if

γ1 (‖Φ1(y) − Φ1(x)‖) = γ2 (‖Φ2(y) − Φ2(x)‖) , ∀(x, y) ∈ Rn × Rn,(2.1)

then the variograms are identical up to a scaling, as are the deformations up to a
homothetic Euclidean motion.

Proof. Suppose (Φ1, γ1) and (Φ2, γ2) satisfy (2.1). Setting γ = γ−1
1 ◦ γ2 and Φ =

Φ1 ◦ Φ−1
2 , (2.1) is equivalent to

γ(‖y − x‖) = ‖Φ(y) − Φ(x)‖, ∀(x, y) ∈ Rn × Rn.(2.2)

It follows from the properties of γ1 and γ2 that γ is positive, continuous and meets
the condition (A). Therefore Schœnberg’s theorem applies and gives γ(u) = u/λ for
some λ > 0. To fix homothetic transformations we may impose λ = 1. So we get
γ1 = γ2 and (2.2) becomes

‖y − x‖ = ‖Φ(y) − Φ(y)‖, ∀(x, y) ∈ Rn × Rn.

Therefore, Φ is an isometric transformation of the Euclidean space Rn. Thus, there
is an orthogonal matrix G and a vector b such that Φ(x) = Gx + b. To fix Euclidean
motions we may impose G ≡ identity and b = 0 so that we get Φ1 = Φ2.

¤

Corollary 2.1 Consider all variograms which are the sum of a continuous vari-
ogram and a nugget. If two variograms from this class, γ1 and γ2, with γ1 strictly
increasing, and two bijective bi-continuous deformations, Φ1 and Φ2, from Rn onto
Rn give the same dispersion, i.e. if (2.1) holds, then the variograms are identical up
to a scaling, as are the deformations up to a homothetic Euclidean motion.

Proof. γ1 and γ2 satisfy lim
u→0

γ1(u) = α1 ≥ 0 and lim
u→0

γ2(u) = α2 ≥ 0. Letting

x → y in (2.1) we obtain α1 = α2 = α. Now define γ̃1 and γ̃2 by γ̃1(u) = γ1(u) − α
and γ̃2(u) = γ2(u) − α for u > 0, and set γ̃1(0) = γ̃2(0) = 0. Then γ̃1 and γ̃2 are
continuous for u ≥ 0. Therefore, according to theorem 2.2 γ̃1 = γ̃2, so that γ1 = γ2,
and Φ1 = Φ2.

¤

It follows immediately from a conjecture by Schœnberg [16], proved by Crum [4]
(see for instance Gneiting and Sasvári [5]), that the assumption of continuity of the
variograms in Theorem 2.2 and Corollary 2.1 (except possibly at zero distance in
the Corollary 2.1) may be replaced by the assumption of measurability when second
moments exist.
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2.2. Differentiable case. The first result considers affine deformations and shows
that two variograms give the same modelled dispersions for all pairs of locations
if and only if the variograms and affine deformations are identical (shown in [10]
and included here for completeness). The second result deals with the more general
case of a bijective and bi-differentiable deformation, and a variogram γ such that
γ(u) is differentiable for u > 0. The latter result is proved for non-stationary
deformation models of spatial correlations in Perrin and Senoussi [14] under an
additional assumption, which we prove is redundant.

Lemma 2.1 If two non-constant variograms, γ1 and γ2, which are the sum of
continuous variograms plus nuggets, and two bijective affine deformations, Φ1 and
Φ2, give the same dispersions, i.e. if (2.1) holds, then the variograms are identical
up to a scaling, as are the deformations up to a homothetic Euclidean motion.

Proof. Consider any distinct points x and y in Rn. Then, by properties of affine
mappings and by (2.1), there exists λ(x, y) > 0 such that

‖Φ1(w) − Φ1(v)‖ = λ(x, y) ‖Φ2(w) − Φ2(v)‖ ,(2.3)

and

γ1 (‖Φ1(w) −Φ1(v)‖) = γ2 (‖Φ2(w) − Φ2(v)‖) = γ2

(
‖Φ1(w) − Φ1(v)‖

λ(x, y)

)
for all v and w collinear with x and y in Rn. Hence, by isotropy of γ1 and γ2,

γ1(u) = γ2

(
u

λ(x, y)

)
for all u ≥ 0, so γ1 and γ2 are identical up to a scaling. Now x and y were any
two distinct points, and γ1 and γ2 are not constant, hence λ(x, y) = λ for all x, y.
By (2.3), Φ1 and Φ2 are identical up to a homothetic Euclidean motion.

¤

We suppose now that Φ is a bijective deformation from Rn onto Rn and that γ is
a variogram, satisfying the following assumptions

(B1) Φ is differentiable in Rn as is its inverse.
(B2) γ(u) is differentiable for u > 0.

For any differentiable function f : (x, y) ∈ Rn × Rn 7−→ f(x, y) ∈ R let Jf denote the
Jacobian matrix of f and set{

∂xf(x, y) = (∂1f, . . . , ∂nf)(x, y)
∂yf(x, y) = (∂n+1f, . . . , ∂n+nf)(x, y),

where ∂if(x, y), i = 1, 2, . . . , 2n, denotes the ith first partial derivative of f(x, y).
We now show that, if γ(u) is not constant for u > 0, (B1) and (B2) imply linear

independence of a set of derivative mapping functions, denoted (B3).
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Lemma 2.2 Assume (B1) and (B2) hold. If (Φ, γ) is a solution to (1.1), such
that γ(u) is not constant for u > 0, then

(B3) the set of functions {y 6= 0 7−→ ∂jD(0, y), j = 1,2, . . . , n}
is linearly independent.

Proof. Without loss of generality we may impose, due to proposition 2.1, the re-
striction that Φ(0) = 0. We denote the first derivative of γ by γ(1)(u) for u > 0,
and let α = (α1, α2, . . . , αn) be any vector in Rn. We set Φ = (φ1, φ2, . . . , φn) and
∂iΦ(0) = (∂iφ1, ∂iφ2, . . . , ∂iφn) (0), i = 1,2, . . . , n. We have for x = 0 and all y 6= 0

α(∂xD(0, y))t = −γ(1)(‖Φ(y)‖)
‖Φ(y)‖

n∑
i=1

αi∂iΦ(0)(Φ(y))t.

Suppose α(∂xD(0, .))t = 0. Then γ(1)(.) = 0 or
n∑

i=1

αi∂iΦ(0)(Φ(.))t = 0. The equality

γ(1)(.) = 0 contradicts our assumption concerning γ. Therefore for all y 6= 0

n∑
i=1

αi∂iΦ(0)(Φ(y))t = 0

which is equivalent to

n∑
j=1

βjφj(y) = 0(2.4)

with βj =
n∑

i=1

αi∂iφj(0), j = 1, 2, . . . , n. Now JΦ(x) is nonsingular since Φ−1(x)

exists by (B1). Hence {φ1, . . . , φn} are linearly independent. Therefore (2.4) implies
necessarily that βj = 0, j = 1, 2, . . . , n. For the same reason, it follows that αi = 0,
i = 1,2, . . . , n.

¤

Perrin and Senoussi [14] prove identifiability of ρ in model (1.2) up to scaling and
Φ up to homothetic Euclidean motion, under the assumptions (B1), and (B2) and
(B3) modified for correlations by replacing γ by ρ and D(0, y) by r(0, y). In Lemma
2.2 we have shown that assumption (B3) is redundant. Under fewer assumptions,
we now prove the identifiability of γ up to scaling and Φ up to homothetic Euclidean
motion.

Theorem 2.3 Assume (B1) and (B2) hold. If (Φ, γ) is a solution to (1.1), such
that γ(u) is not constant for u > 0, then it is unique, up to a scaling for γ and up to
a homothetic Euclidean motion for Φ.



Identifiability for non-stationary spatial structure 7

Proof. Let (Φ1, γ1) and (Φ2, γ2) be two solutions to (1.1). Set Φ = Φ1 ◦ Φ−1
2 . By an

analogous argument to that of Perrin and Senoussi [14] (details are provided in the
Appendix for referees), it follows that for all x 6= y

∂xD(x, y)J−1
Φ2

(x) = ∂xD(x, y)J−1
Φ2

(x)J−1
Φ (Φ2(y))JΦ(Φ2(x)),

where JΦ(Φ2(x)) = JΦ1(x)J−1
Φ2

(x). When x = 0 we obtain

∂xD(0, y) = ∂xD(0, y)A1J
−1
Φ (Φ2(y))A2, y 6= 0,

where A1 = J−1
Φ2

(0) and A2 = JΦ1(0) are two regular square matrices. It follows
from lemma 2.2 that JΦ(Φ2(y)) = A = A2A1 for all y 6= 0, i.e. Φ1 = AΦ2 + b,
where b ∈ Rn. Without loss of generality we may impose, due to proposition 2.1,
the restriction that Φ1(0) = Φ2(0) = 0, that is b = 0. Thus, Φ = A and it follows
that γ2(‖v − u‖) = γ1(‖A(v − u)‖) for all (u, v) ∈ Rn × Rn. Therefore, we obtain
from lemma 2.1 that necessarily A = λG where λ > 0 and G is an orthogonal matrix.
Consequently, the variograms γ1 and γ2 are identical up to a scaling, as are the
deformations Φ1 and Φ2 up to a homothetic Euclidean motion.

¤

3. Discussion

Deformation models for non-stationary spatial second order structure have found
application in a number of areas [11], including spatial estimation in air pollution
studies [2], monitoring network design [8], and the investigation of the regional repre-
sentativeness of monitoring locations in terms of second order structure [6]. Practical
questions remain regarding identifiability of spatial dispersion models (1.1) fitted
to data from finite monitoring networks. However our results suggest asymptotic
identifiability of such models when fitted to data from increasingly dense networks
of monitoring sites, or to observations from remote sensing studies with increasing
spatial resolution. The importance of spatial estimation in environmental studies
motivates strongly for further theoretical study of the properties of deformation
models and for a characterization of situations when non-stationary spatial dispersion
models improve spatial estimation and variability assessment.
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Panthéon-Sorbonne, Paris.

[13] Perrin, O. and Senoussi, R. (1998) Reducing non-stationary stochastic
processes to stationarity by a time deformation. To appear in Statistics &
Probability Letters.



Identifiability for non-stationary spatial structure 9

[14] Perrin, O. and Senoussi, R. (1998) Reducing non-stationary random fields to
stationarity and isotropy using a space deformation. Submitted for publication.

[15] Sampson, P. and Guttorp, P.D. (1992) Nonparametric estimation of
nonstationary spatial covariance structure. J. Amer. Statist. Soc., 87, 108–119.

[16] Schœnberg, I.J. (1938) Metric spaces and completely monotone functions.
Annals of Mathematics, 39, 811–841.

[17] Von Neumann, J. and Schœnberg, I.J. (1941) Fourier integrals and metric
geometry. Trans. Amer. Math. Soc., 59, 226–251.



10 OLIVIER PERRIN AND WENDY MEIRING

Appendix

In the paper we omit selected steps from the proof of Theorem 2.3, since they are
very similar to those in [14] which is submitted for publication elsewhere. These steps
are included here to aid the referees of our paper, and would not appear in the final
paper.

The notation is different from [14] since we consider spatial dispersions, which may
exist even when the spatial correlations considered by [14] do not.

Theorem 2.3 Assume (B1) and (B2) hold. If (Φ, γ) is a solution to (1.1), such
that γ(u) is not constant for u > 0, then it is unique, up to a scaling for γ and up to
a homothetic Euclidean motion for Φ.

Proof. Let (Φ1, γ1) and (Φ2, γ2) be two solutions to (1.1). Set Φ = Φ1 ◦ Φ−1
2 , and

Γ(u, v) = D(Φ−1
2 (u), Φ−1

2 (v)). Then

Γ(u, v) = γ2(‖v − u‖) = γ1(‖Φ(v) − Φ(u)‖).(3.1)

It follows that the following relations hold for all u 6= v{
∂uΓ(u, v) = −∂vΓ(u, v)
∂uΓ(u, v) = −∂vΓ(u, v)J−1

Φ (v)JΦ(u),

from which we deduce ∂uΓ(u, v) = ∂uΓ(u, v)J−1
Φ (v)JΦ(u). Set x = Φ−1

2 (u) and y =
Φ−1

2 (v). Then for all x 6= y

∂xD(x, y)J−1
Φ2

(x) = ∂xD(x, y)J−1
Φ2

(x)J−1
Φ (Φ2(y))JΦ(Φ2(x)),

and JΦ(Φ2(x)) = JΦ1(x)J−1
Φ2

(x).
Our proof now continues as provided in the paper, making use of Lemmas 2.1 and
2.2, unlike Perrin and Senoussi who use the result of Lemma 2.2 as an assumption.

¤


