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Abstract

Nonhomogeneous hidden Markov models (NHMMs) provide a relatively simple

framework for simulating precipitation at multiple rain gauge stations conditional on

synoptic atmospheric patterns. Building on existing NHMMs for precipitation occur-

rences, we propose an extension to also include precipitation amounts. The model

we describe assumes the existence of unobserved (or hidden) weather patterns, the

weather states, which follow a Markov chain. The weather states depend on observ-

able synoptic information and therefore serve as a link between the synoptic scale

atmospheric patterns and the local scale precipitation. The presence of the hidden

states simpli�es the spatio-temporal structure of the precipitation process. We assume

the temporal dependence of precipitation is completely accounted for by the Markov

evolution of the weather state. The spatial dependence in precipitation can also be

partially or completely accounted for by the existence of a common weather state. In

the proposed model, occurrences are assumed to be conditionally spatially independent

given the current weather state and, conditional on occurrences, precipitation amounts

are modeled independently at each rain gauge as gamma deviates with gauge speci�c
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parameters.

We apply these methods to model precipitation at a network of 24 rain gauge sta-

tions in Washington state over the course of 17 winters. The �rst 12 years are used

for model �tting purposes, while the last 5 serve to evaluate the model performance.

The analysis of the model results for the reserved years suggests that the character-

istics of the data are captured fairly well and points to possible directions for future

improvements.

Keywords: hidden Markov model, precipitation amounts model, downscaling

1 Introduction

Stochastic models for precipitation have several important applications. For example, simula-

tions from these models enter as input into 
ooding, runo� and crop growth models. General

circulation models (GCMs) have been developed to realistically simulate atmospheric circu-

lation patterns under di�erent climate regimes and rainfall models can be used to downscale

the e�ect of these atmospheric patterns to precipitation.

Historically, rainfall modeling has followed two main themes. Some models were con-

structed to incorporate physical principles (e.g. Hobbs and Locatelli 1978), while others

gave a more statistical description of the data. Along the lines of the former approach, point

process models were developed by Le Cam (1961), Waymire, Gupta, and Rodriguez-Iturbe

(1984) and Goodall and Phelan (1991), based on the idea of rain storm cells. The basic

entity is the convective cell { identi�ed by birth time and location and the models describe

a cluster process of N cells.
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In the context of statistical descriptions of rainfall data, Gabriel and Neumann (1992)

modeled precipitation occurrences as a �rst-order Markov chain. Their approach has been

extended to allow seasonal di�erences (Stern and Coe 1984; Woolhiser 1992) by using time-

varying parameters.

Recently, the idea of relating daily precipitation to synoptic atmospheric patterns has

led to the development of weather state models. One motivation for including atmospheric

variables in the model is the desire to assess the regional and local e�ects of global climate

changes. General circulation models, which typically operate on grids on the order of 5�

latitude � 5� longitude, can capture large-scale atmospheric patterns and determine the

e�ect of changes in the atmosphere on those patterns. However, GCMs are not as adequate

for reproducing local and regional phenomena, such as rainfall (Giorgi and Mearns 1991).

Thus, there is a need for models that can downscale the GCM predictions of global climate

to local precipitation patterns. Stochastic models for rainfall that do not include synoptic

atmospheric information can not be used for this purpose, since they can only produce

simulations under the current climate regime. In weather state models, synoptic atmospheric

patterns are the basis for classifying each day into a weather state and precipitation is then

modeled within each state via multivariate distributions. Di�erent versions of these models

have been proposed by, for example, Hay et al. (1991), Bardossy and Plate (1992), Hughes

et al. (1993) and Bartholy et al. (1995).

Our goal is to obtain a model that allows simulation of precipitation amounts, conditional

on the value of some synoptic atmospheric variables. We base our approach on nonhomo-

geneous hidden Markov models (NHMMs), a class of models introduced by Hughes and

Guttorp (1994). NHMMs extend the hidden Markov models (HMMs) used by Zucchini and
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Guttorp (1991) by incorporating synoptic atmospheric information. Nonhomogeneous hid-

den Markov models assume the existence of weather states, but they di�er from the weather

state models mentioned above in the way the states are de�ned. In weather state models,

each day is classi�ed a priori into a state, according to synoptic patterns. Precipitation does

not a�ect the state de�nition. In NHMMs, instead, the states are identi�ed as precipitation

patterns that result from the model �tting procedure, while the role of synoptic atmospheric

information is to in
uence the state transitions. In Hughes et al. (1994, 1999) nonhomoge-

neous Markov models (NHMM) are used to model precipitation occurrences. Here we extend

this approach to precipitation amounts.

In Section 2 we describe the assumptions that de�ne a NHMM, the parameterization we

use and the methods we apply to obtain estimates of the model parameters. Section 2 also

explains our approach to the problem of determining the model order and to the treatment of

the atmospheric variables. Section 3 describes an application of our methods to precipitation

amounts at a network of gauges in Washington state. In section 4, we conclude with a

discussion.

2 Methods

2.1 Model Assumptions

The NHMM assumes the existence of a hidden or unobservable stochastic process, which can

take on a discrete number of states. In the context of precipitation modeling, we interpret

this process as the \state of the weather." The adjective \nonhomogeneous" derives from
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the assumption that the state of the weather at time t depends not only on the state of

the weather at the previous time point, but also on the current value of some atmospheric

variables. Thus, the state transition matrix varies in time with the atmospheric quantities.

The assumptions for the hidden process can be summarized as:

P
�
St j S

t�1
1 ;XT

1

�
= P (St j St�1;Xt) ; (1)

where St is the weather state at time t and Xt is a vector of atmospheric variables at time t.

Assumption (1) asserts that, given the state of the weather at the previous time point

and the current value of some atmospheric variables, the state of the weather at time t does

not depend on any other history of states nor on any other past or future values of the

atmospheric quantities.

The parameterization we adopt for P (St j St�1;Xt) is:

P (St j St�1;Xt) / 
ij exp

�
�
1

2
(Xt � �ij)�

�1(Xt � �ij)
0

�
; (2)

where � is the variance-covariance matrix for the atmospheric data. The �ij parameters

represent the mean vectors of the atmospheric variables when the state of the weather at

the previous time point was state i and the current state of the weather is j, while the 
ij

parameters can be interpreted as baseline transition probabilities. It is necessary to impose

the constraints
P

j 
ij = 1 and
P

j �ij = 0, in order to ensure identi�ability of the parameters.

The other fundamental element in the NHMM is the observed stochastic process { in this

context precipitation { which is assumed to be conditionally temporally independent, given
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the weather state. The hidden Markov model assumptions for the observed process can be

summarized by:

f
Rtj(ST1 ;R

t�1
1

;XT
1 )
(r) = fRtjSt(r) (3)

where Rt is the vector of precipitation amounts at a network of stations at time t. Thus,

given the current weather state, precipitation is assumed independent from all the past

precipitation values, all other past and future weather states and from any values of the

atmospheric variables.

Assumptions (1) and (3) determine the temporal structure in the precipitation process.

The de�nition of the spatial structure requires additional hypotheses. In the analysis pre-

sented here, we assume conditional spatial independence of both occurrences and amounts

given the weather state; i.e. we hypothesize that all the dependence between rain gauges is

induced by the common weather state. In the discussion we suggest possible extensions to

this relatively simple dependence structure.

The parameterization for the observed process builds on the spatial independence model

for precipitation occurrences of Hughes and Guttorp (1994). Amounts are introduced by

modeling precipitation at each station, given the weather state, as a mixture of a point mass

at zero and a gamma distribution. In other words, conditional on the current weather state

and on the occurrences, we model the amounts at each gauge as a gamma distribution (with

state speci�c parameters). The resulting parameterization is:

fRtjSt=s(r) =
NY
i=1

��
psi�

�
ri;�si; �si

��1
[ri>c]

(1 � psi)
1
[ri�c]

�
; (4)
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where N is the number of rain stations, psi is the precipitation probability at station i in

state s, �si and �si are the gamma parameters for station i in state s, and c is a prespeci�ed

cuto� (i.e. amounts below c are treated as no precipitation).

In the model described by (2) and (4) the number of unconstrained parameters is

S(S � 1)(M + 1) + 3SN;

where M is the number of atmospheric variables included in the model, S the number of

weather states and N the number of rain gauges.

2.2 Parameter estimation

Parameter estimates are obtained by maximizing the likelihood. The likelihood of the ob-

served data given the atmospheric variables is:

L(�) = f
RT

1
jXT

1
=xT

1
;�

�
r
T

1

�
(5)

=
X

s1;:::;sT

f(RT

1
;ST

1 )jXT

1
=xT

1
;�

�
r
T

1 ; s
T

1

�
(6)

=
X

s1;:::;sT

P (S1 = s1jX1)fR1 jS1=s1(r1)
TY
2

P (St = stjSt�1;Xt)fRtjSt=st(rt); (7)

where � is the vector of the model parameters. In rainfall modeling, the number of observa-

tion times, T , is usually large. But even for small T 's, computation of the likelihood directly

as in (7) is intractable. However, the calculation is possible using the forward-backward

algorithm, originally developed by Baum (1972). The algorithm is recursive and successively

moves the terms of the summations in (7) as far to the right as possible. Following this
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principle, the likelihood can be written as:

L(�) = �(x1)B(r1)A(x2)B(r2):::A(xT)B(rT )1
0;

where B(r) is a S �S diagonal matrix, with bss(r) = fRtjSt=s(r), A(x) is a S �S transition

matrix with aij(x) = P (St = jjSt�1 = i;Xt = x), 1
0 is a length S column vector of ones and

�(x) is a row vector of length S. The quantity �(x) is the solution to �(x)A(x) = �(x) (i.e.

it is the stationary distribution for A(x)).

To maximize the likelihood, we apply the EM algorithm. Hughes, Guttorp, and Charles

(1999) give a detailed description of this procedure.

2.3 Model order

Fitting an NHMM to precipitation data involves the choice of a model order and of the

atmospheric variables to be included. We �rst determine the order of the NHMM, i.e.

the number of hidden weather states, and include the atmospheric variables afterwards.

The choice of the number of hidden states is a non-trivial issue. Standard likelihood-based

methods { such as the Akaike information criterion (AIC) (Akaike 1974) and the Bayesian

information criterion (BIC) (see Kass and Raftery 1995 for a review) { rely upon assumptions

that do not hold for the order selection problem. Nonetheless, the Bayesian information

criterion, de�ned as:

BIC = �2 loglikelihood + log(no. observations) (no. free parameters);
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yields reasonable models in terms of interpretability and �t to the data (Hughes, Guttorp,

and Charles 1999). Thus, BIC is one of the elements { but not the sole determining factor

{ that we use in choosing the number of weather states.

Models of di�erent order can also be compared with respect to their capability of repro-

ducing some key features in the observed data. For example, an important characteristic we

try to match is the distribution of the \storm" durations at the di�erent rain gauges, where

\storm" is de�ned as a string of consecutive days when precipitation occurred.

Another consideration is the increase in the number of parameters induced by an increase

in the number of weather states. Choosing too many states can lead to an intractable model

in terms of computer time.

2.4 Atmospheric variables

Atmospheric data are used to help determine the current (hidden) weather state (see equa-

tions (1) and (2)). To reduce the number of model parameters, we prefer to include relatively

few atmospheric variables in the model. However, synoptic scale atmospheric variables are

typically available on regular grids and several grid nodes usually cover the region of interest.

Thus, a method for summarizing the grid data into few values is needed. Our approach is

based on the singular value decomposition (SVD) technique (von Storch and Zwiers 1998).

For each atmospheric �eld Y we compute a matrix C, with element cij given by the correla-

tion between the precipitation process at station i and the atmospheric variable Y at node

j. This matrix is decomposed using the SVD method, to obtain:

C = UWV
T : (8)
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Letting N denote the number of rain gauges and G the number of grid nodes, U is a N �N

matrix,V is a G�N matrix andW is a diagonal N�N matrix. The SVD technique ensures

that UT
U = VT

V = I and the diagonal elements ofW, w1; : : : ; wN , are the singular values

of the matrix C, in non-increasing order. If we standardize the atmospheric variable Y

at each node j separately and call the resulting �eld Ystd, we can construct a summary

of the original �eld by multiplying Ystd by the ith column of the matrix V , V (i). This

summary variable explains
w2
iP

k
w2
k

of the correlation between the precipitation process and

the atmospheric �eld Y. The number of summary variables needed to explain a certain

portion of the correlation depends on the relative magnitude of the singular values.

Once the SVD procedure has been applied to each of the atmospheric �elds under con-

sideration, the decision on how many and which of the resulting summary variables are to

be included in the model is based on BIC.

3 An application

We used the NHMM to analyze precipitation amounts at a network of rain gauges in Wash-

ington state. The precipitation dataset consists of daily precipitation amounts for the winters

(November through March) 1973{1990, at the 24 rain gauges shown in Figure 1. These data

were recorded by the National Weather Service and cooperators and corrected by the Na-

tional Climatological Datacenter (NCDC) 'Validated Historical Daily Data' project. The 12

winters 1973{1985 were used for model �tting, while the winters 1985{1990 were reserved

for model validation. The atmospheric data consists of daily geopotential height at 1000

and 850 mb, temperature at 850 mb and relative humidity at 1000 and 850 mb from the
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NCAR/NCEP Reanalysis project, provided through the NOAA Climate Diagnostic Center.

These variables are given on a 2:5� latitude � 2:5� longitude grid for the same period as the

precipitation data. The area of interest spans 48 grid nodes.

insert figure 1

The model �tting procedure was hierarchical. The number of weather states was �rst

determined by �tting HMMs with 2 through 7 states to the occurrence data. Several consid-

erations contributed to the decision to include 6 states. The Bayesian information criterion

suggested a \large" number of states, since BIC decreased monotonically as the number of

states increased, actually pointing at the 7 state model. However, the 7th state did not seem

to improve the �t of the model to the observed storm duration distribution or any other

important feature of the data. Thus we focused the remainder of our model building e�orts

on the 6 state model.

Atmospheric variables were added to the 6 state model after performing the SVD decom-

position on each of the 5 �elds { geopotential height at 1000 and 850 mb, temperature at 850

mb and humidity at 1000 and 850 mb { to summarize the 48 grid values into a few quantities.

Very few summary variables are su�cient to explain most of the correlation between each

�eld and the precipitation process, as shown in Table 1.

insert table 1

As an example of the type of summary variables obtained with the SVD technique,

Figure 2 shows a contour plot of the weights assigned to each grid node to form the �rst

linear combination variable for geopotential height at 1000 mb. The weights are highest just
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at the northwest of Washington state, and decay in all directions as the nodes get further

away from this region. The resulting summary variable can be interpreted as a weighted

mean of the standardized 1000 mb geopotential height �eld.

insert figure 2

Several NHMMs with 6 states were �t using di�erent combinations of the selected sum-

mary variables, and BIC was used to choose the best model. The model that minimizes BIC

contains two atmospheric variables: the �rst summary variable for geopotential height at

1000 mb and the �rst summary variable for humidity at 850 mb.

A NHMM with 6 states and including the �rst summary variables for geopotential height

at 1000 mb and relative humidity at 850 mb was then �t to the precipitation amounts. The 6

states identi�ed by the NHMM correspond to the precipitation patterns in Figure 3a. States

1 and 6 are clear cut wet and dry respectively, for all the stations in the network. The other

states correspond to intermediate patterns that re
ect regional di�erences. Fitting the 6 state

NHMM to occurrences only, leads to very similar patterns, indicating that the inclusion of

amounts does not seem to substantially change the state de�nitions, in terms of precipitation

probabilities. The 6 weather states also correspond to di�erent amount distributions. For

each state, Figure 3b shows the distribution of the positive precipitation amounts at Puyallap,

in the South Puget region. Larger amounts correspond to the predominantly wet states,

especially state 1 where the precipitation probability is large at all stations. In predominantly

dry states, when precipitation occurs the amounts tend to be smaller. State 4, which is dry in

Eastern Washington and relatively wet around Puget Sound, corresponds to smaller amounts

with respect to the �rst three states, even at the stations where the precipitation probability

12



remains fairly large.

insert figure 3

The Viterbi algorithm (Juang and Rabiner 1991) identi�es the most probable sequence

of states, so that each day is classi�ed into one of the states de�ned by the NHMM. The

resulting relative frequencies of the weather states are 14%, 15%, 16%, 18%, 20% and 17%.

Averaging the geopotential height at 1000 mb �eld over all days classi�ed into a particular

state gives the predominant pattern associated with that state. The same procedure leads

to the predominant 850 mb relative humidity pattern associated with each of the 6 weather

states. One may compare these atmospheric patterns to the corresponding precipitation

patterns in Figure 3a. Figure 4 shows the contour plots for geopotential height at 1000 mb

and relative humidity at 850 mb for all the 6 states. State 6 is characterized by a high

pressure system and low relative humidity over the Washington region, which correspond to

low precipitation probability. In state 1, low pressure at the northwest of Washington state

and high moisture over the entire region correspond to the high precipitation probability at

all stations. The other atmospheric patterns are consistent with the observed precipitation

patterns and suggest that some of the weather states might be regarded as \transition

states". For example, we �nd that state 5 typically transitions to either state 4 or state 6

with approximately equal probability.

insert figure 4

Some indications of how well the NHMM �ts the data derives from the comparison

between observed and model-based precipitation probabilities (Figure 5a), and between ob-

served and model-based log odds ratios (Figure 5b). The precipitation probabilities are
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reproduced well, while the log odds ratios, which re
ect the spatial correlation between oc-

currences at each pair of stations, are modeled less adequately, especially when the observed

correlation is high. This indicates that the hypothesis of conditional spatial independence,

given the weather state, may need to be modi�ed. The common weather state seems to ex-

plain much of the correlation, but additional unexplained local spatial correlation remains.

A similar conclusion is suggested by Figure 5c, which shows the Spearman correlation co-

e�cient corresponding to the precipitation amounts at each station pair. A relatively low

spatial correlation between amounts, as well as between occurrences, can be adequately cap-

tured by the common weather state, but when the correlation between gauges is strong, the

weather state is not su�cient to account for all of it.

insert figure 5

Another issue is whether the gamma distribution is an appropriate choice to model the

conditional distribution of precipitation amounts, given occurrence and the weather state.

The �t varies from station to station; Figure 6 shows qqplots of observed versus model-based

precipitation amounts at three representative stations from three geographical regions in

Washington state. In general the distribution of precipitation amounts is best modeled at

the stations in the South Puget area, while the North Puget stations correspond to the worst

�t. The Eastern Washington region, which is the driest area, shows the largest variability

in �t from gauge to gauge.

insert figure 6

Plots similar to those in Figures 5 and 6 were obtained using the reserved data. The �nal

6 state NHMM (which was �t using 1973{1985 data), together with geopotential height at
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1000 mb and relative humidity at 850 mb for the 1985{1990 period, were used to generate

precipitation amounts for the 1985{1990 winters. The SVD weights obtained previously were

applied to form the summary atmospheric variables from the '85{'90 geopotential height and

humidity �elds. The comparison of various statistics for the observed and generated '85{

'90 precipitation amounts indicates how well the model captures the characteristics of the

reserved data. Figure 7a shows the observed versus model-based precipitation probabilities

at all stations. The model underestimates the precipitation probability at most stations.

Since the rain gauges are not independent, it is reasonable to expect, for any given 5 year

realization, that the observed precipitation probabilities will be mostly smaller or mostly

larger than the model-predicted precipitation probabilities. Therefore, it is not too surprising

that most of the points in Figure 7a lie below the y = x line. We have generated several

5 year realizations from the NHMM and compared the resulting 'observed' precipitation

probabilities with the 'model-based' probabilities obtained by averaging over many sets of

5 year realizations. Even for these cases, where the observations are a realization from the

model, the 'observed probabilities' are typically mostly smaller or mostly larger than the

'model-based' ones.

insert figure 7

Another characteristic of the reserved data that should be captured by the model is

the conditional distribution of precipitation amounts, given occurrence. Figure 8 shows the

qqplots of observed versus model-based precipitation amounts at the same stations as in

Figure 6. The model seems to reproduce the distribution of observed precipitation amounts

reasonably well overall, although the �t varies from station to station.
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insert figure 8

4 Discussion

The model described in this paper can be used to generate simulations of precipitation

amounts that incorporate synoptic atmospheric information. The hidden Markov model

assumptions simplify the temporal and spatial structures to be parameterized, since the

common weather state accounts for the temporal dependence and much of the spatial corre-

lation between rain gauges. Several possible improvements to the model are currently under

investigation, including more realistic spatial dependence structures and reduced parameter-

izations.

The conditional spatial independence structure adopted in the present application is rel-

atively simple. Although this assumption captures most of the correlation between rain

gauges, Figures 5 and 5c suggest the need to include some additional dependence in the

model. We plan to investigate two alternative structures. The �rst step is to introduce

dependence between precipitation occurrences and assume conditional spatial independence

of amounts given occurrences and the weather state. The autologistic model of Hughes,

Guttorp, and Charles (1999) can be adopted to describe the dependence of precipitation oc-

currences at di�erent rain gauges. Precipitation amounts, conditional on occurrences, would

be modeled independently at each gauge as in the previous sections. Thus the parameteri-

zation for the observed process becomes:

fRtjSt=s(r) / exp

0
@ NX

i=1

�isr
i +

X
j<i

�ijsr
irj

1
A NY

i=1

�
�
ri;�si; �si

�1
[ri>c]

(9)
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If the structure described by (9) still does not account for all the observed correlation between

rain gauges, more complicated models which allow for interactions between the precipitation

amounts at di�erent stations will be considered. The spatial dependence between occurrences

could still be described by the autologistic model and the amounts could be modeled jointly

at all stations, through a multivariate gamma or exponential distribution.

The proposed modi�cations to the spatial dependence structure would increase the num-

ber of parameters, already large in the NHMM applied to the Washington state data. A

possibility that will need to be investigated is the reduction of the number of parameters,

both in the hidden and observed parts of the model. One reasonable modi�cation of the

hidden part is to have only one vector �i of means of the atmospheric variables for each

state i, regardless of the state of the system at the previous time point. In the observed part

of the NHMM, one could specify some function of the precipitation amount parameters to

have a common value at all stations within a sub-region.

Models like the NHMM can be used to study the e�ect of climate variability. Repeated

GCM simulations under current climate conditions can constitute di�erent realizations of the

atmospheric �elds included in the model. The NHMM can be used to generate occurrences

and amounts for each realization, thereby downscaling the e�ect of the variability in the

synoptic scale variables to precipitation. The e�ect of climate change is another issue that can

be investigated using NHMMs. The output of GCM runs under altered climate conditions

can serve as input into the downscaling model described here. Thus, the e�ects of the

altered climate scenario could be downscaled to the local scale precipitation processes by

generating precipitation occurrences and amounts from the NHMM. For this application of

the NHMM to be valid, the relationship between the synoptic scale atmospheric variables
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and the local scale precipitation, as found under the model �tting conditions, would have to

hold also under the altered climate. Charles, Bates, and Hughes (1999) discuss issues related

to validation of downscaling models for studying climate change.
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gph 1000 gph 850 tem 850 hum 1000 hum 850

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

w2
iP

k
w2
k

0.95 0.03 0.96 0.03 0.84 0.11 0.91 0.07 0.96 0.03

Table 1: Percentage of correlation explained by the summary variables
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9

10
11

12
13

14

15

16

17
18

19

20

21

22
23

24

  1  ANACORTES           
  2  BELLINGHAM INTL AP  
  3  BUCKLEY 1 NE        
  4  CEDAR LAKE          
  5  CHIMACUM 4 S        
  6  COLFAX              
  7  COUGAR 6 E          
  8  COUPEVILLE 1 S      
  9  DALLESPORT FCWOS AP 
10  ELMA                
11  EPHRATA AP FCWOS    
12  HATTON 9 SE         
13  KAHLOTUS 5 SSW      
14  MC MILLIN RESERVOIR 
15  MCNARY DAM          
16  NEWPORT             
17  OLYMPIA AP          
18  PULLMAN 2 NW        
19  PUYALLUP 2 W EXP STN
20  RICHLAND            
21  RITZVILLE 1 SSE     
22  SEATTLE-TACOMA AP   
23  SPOKANE INTL ARPT   
24  YAKIMA AIR TERMINAL 

Figure 1: Map of the rain gauges
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Figure 2: Contour plot of the weights for the �rst gph 1000 summary variable.
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(a) Precipitation probabilities at the 24 rain gauges.
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(b) Histograms of precipitation amounts at Puyallap (South Puget area)

Figure 3: Precipitation probabilities and histograms of amounts corresponding to the 6

weather states.
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Figure 4: Contour of the geopotential height at 1000 mb and humidity at 850 mb �elds for

each weather state.
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Figure 5: Observed versus model based precipitation probabilities, log odds ratios and cor-

relations of positive amounts between all station pairs (Spearman coe�cient). The model

based quantities are obtained by simulating data from the 6 state NHMM for amounts.

24



••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••

•••••••••••••••••••••
•••••••••••••••

••••••••••••
••••••••

•••••••
•••••

••••
• ••

••
•

• • •
•

•

•

Quantiles of observed amounts

Q
au

nt
ile

s 
of

 m
od

el
 b

as
ed

 a
m

ou
nt

s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

(a) Coupeville (North Puget

area)

•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••
•••••••••••••••••••••••••
••••••••••••••••••••

••••••••••••••••••
•••••••••••••••

•••••••••••••
••••••••

•••••••
••••••
•••••
••••

•••
• • ••

• ••
• •

•
•

•

Quantiles of observed amounts

Q
ua

nt
ile

s 
of

 m
od

el
 b

as
ed

 a
m

ou
nt

s

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(b) Puyallap (South Puget

area)

•••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••
•••••••••••••••••••••

•••••••••••••••••
••••••••••••
••••••••••

••••••••
•••••

•••••
•••
••
••
• ••

••
••

•

•

•

•

Quantiles of observed amounts

Q
au

nt
ile

s 
of

 m
od

el
 b

as
ed

 a
m

ou
nt

s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(c) Yakima (Eastern Washing-

ton area)

Figure 6: Qqplots of observed versus model-based amounts at selected stations. The model

based amounts are simulated from the 6 state NHMM.
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Figure 7: Observed versus model-based precipitation probabilities for the reserved period,

1985{1990
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Figure 8: Qqplots of observed versus model-based amounts at selected stations for the re-

served period, 1985{1990.
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