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Abstract. Multi-scale analysis of univariate time series has appeared in the

literature at an ever increasing rate. Here we introduce the multi-scale analysis of

covariance between two time series using the discrete wavelet transform. The wavelet

covariance and wavelet correlation are de�ned and applied to this problem as an

alternative to traditional cross-spectrum analysis. The wavelet covariance is shown

to decompose the covariance between two stationary processes on a scale by scale

basis. Asymptotic normality is established for estimators of the wavelet covariance

and correlation. Both quantities are generalized into the wavelet cross-covariance and

cross-correlation in order to investigate possible lead/lag relationships. A thorough

analysis of El-Ni~no{Southern Oscillation events and the Madden{Julian oscillation is

performed using a 35+ year record. We show how potentially complicated patterns of

cross-correlation are easily decomposed using the wavelet cross-correlation on a scale

by scale basis, where each wavelet cross-correlation series is associated with a speci�c

physical time scale.

Some key words: Con�dence intervals; Cross-correlation; Cross-covariance; Madden{

Julian oscillation; Maximal overlap discrete wavelet transform; Southern Oscillation

Index.
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1. Introduction

The bivariate relationship between two time series is often of crucial interest in

atmospheric science. For example, the Madden{Julian oscillation (MJO) [Madden and

Julian, 1971] was found using bivariate spectral analysis between the station pressure

and zonal wind components at Canton Island (2.8�S, 171.7�W) { speci�cally the

co-spectrum and magnitude squared coherence. This oscillation has been documented

as having a period anywhere from 30{60 days and has appeared in many studies in

the Indian Ocean and tropical Paci�c Ocean; see Madden and Julian [1994] for a

review. This apparent broadband nature of the oscillation has been hypothesized as

being nonstationary, so the broad peak observed in previous spectral analyses might

be attributed to the fading in-and-out of the oscillation over the measured time series.

Temporal variations in the MJO and its relationship with El Ni~no{Southern Oscillation

(ENSO) events have previously been investigated using traditional cross-spectral

analysis.

Given the nonstationary nature of the MJO, analyzing it through a transform

which captures events both locally in time and frequency is appealing. The short-time

Fourier transform is one such technique, where the discrete Fourier transform is applied

to subsets of the time series via a moving window resulting in a grid-like partition of

the time-frequency plane. The discrete wavelet transform (DWT) is another technique,

where the time-frequency plane is partitioned such that high-frequencies are given small

windows in time and low-frequencies are given large windows in time via an adaptive

windowing of the time series. See Kumar and Foufoula-Georgiou [1994] and Kumar

[1996] for descriptions of time-frequency/time-scale analysis. An non-decimated version

of the orthonormal DWT { the maximal overlap DWT (MODWT) { has proven useful

in analyzing various geophysical processes [Percival and Guttorp, 1994; Percival and

Mofjeld, 1997].

In this paper, we deal with a formulation of the wavelet covariance and correlation
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between two time series based upon the MODWT and Daubechies family of wavelets

with compact support [Daubechies, 1992, Sec. 6.2]. We show that the wavelet covariance

o�ers a scale by scale decomposition of the usual covariance between time series. We

then derive statistical properties of estimators of the wavelet covariance and correlation.

Both quantities are generalized into the wavelet cross-covariance and cross-correlation

in order to investigate possible lead/lag relationships. We demonstrate the use of these

results in an analysis of the relationship between a Southern Oscillation Index (SOI)

time series and the station pressure series from Truk Island (7.4�N, 151.8�W).

1.1. Relationship to Previous Work

Previous work on the time-varying nature of the MJO includes Anderson et al.

[1984] who �ltered atmospheric relative angular momentum (4 years) and the 850{

200 mb shear of the zonal wind at Truk Island (25 years) with a �lter designed to pass

the frequency band corresponding to periods of 32{64 days. They noted that, with

respect to the Truk Island series, a possible association with increased amplitude of the

oscillation during the 1956{57, 1972{73, and 1976{77 ENSO warm events but noted

that the duration of these increases were much longer than the ENSO events. Madden

[1986] performed a seasonally varying cross-spectral analysis on nearly twenty time

series of rawinsonde data from tropical stations around the world. The MJO appears

strongest during December{February and weakest during June{August, and that it is

always stronger in the western Paci�c and Indian oceans than elsewhere. Madden and

Julian [1994] note the broadband nature of the oscillation by comparing the station

pressure spectra for Truk Island (7.4�N, 151.8�W) during two time spans { 1967 to 1979

and 1980 to 1985. The MJO appears to have a 26-day period in the early 1980s.

The in
uence of ENSO events has also been hypothesized to a�ect the period of

the MJO. Gray [1988] performed a correlation analysis between daily station pressure

data from Truk (7�N, 152�W), Balboa (9�N, 80�W), Darwin (12�S, 131�E) and Gan
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(1�S, 73�E), with seasonal sea surface temperature anomalies on a 5� grid. The data

were partitioned into ENSO and non-ENSO years; in non-ENSO years a strong seasonal

shift in frequency was found at all sites except Truk Island. Kuhnel [1989] investigated

the characteristics of a 40{50 day oscillation in cloudiness for the Australo{Indonesian

region. Using data on a 10� by 5� grid, regions in the eastern Indian Ocean and western

Paci�c Ocean were found to have a pronounced 40{50 day peak with no obvious seasonal

variation. Another region in the Indian Ocean (5{15�S, 95{100�E) showed a stronger

oscillation in the March{June period. Regions around 5{15�S over northern Australia

and in the Paci�c Ocean showed a much stronger 40{50 day oscillation during the

Australian monsoon season from December to March, than the rest of the year. The

40{50 day cloud amount oscillation did not appear to be a�ected by warm ENSO events.

The ability of the DWT to capture variability in both time and scale can provide

insight into the nature of atmospheric phenomena such as the MJO, but we must make

use of the DWTs of two time series in such a way that these bivariate properties can

be brought out. Hudgins [1992] introduced the concepts of the wavelet cross spectrum

and wavelet cross correlation in his thesis, both in terms of the continuous wavelet

transform (CWT). In a subsequent paper, Hudgins et al. [1993] applied these concepts

to atmospheric turbulence. They found the bivariate wavelet techniques provided

a better analysis of the data over traditional Fourier methods { especially at low

frequencies. Liu [1994] de�ned a cross wavelet spectrum, equivalent to that of Hudgins

[1992], and complex-valued wavelet coherency which was constructed using the co-

and quadrature wavelet spectra. These quantities were used to reveal new insights on

ocean wind waves; such as wave group parameterizations, phase relations, and wave

breaking characteristics. Lindsay et al. [1996] de�ned the sample wavelet covariance for

the DWT and MODWT along with con�dence intervals based on large sample results.

They applied this methodology to the surface temperature and albedo of ice pack in

the Beaufort Sea. Recently, Torrence and Compo [1998] discussed the cross-wavelet
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spectrum, which is complex valued, and the cross-wavelet power, which is the magnitude

of their cross-wavelet spectrum, in terms of the CWT. They also introduced con�dence

intervals for their cross-wavelet power and compared the SOI with Ni~no3 sea surface

temperature readings.

In this paper, we extend the notion of wavelet covariance for the MODWT

and de�ne the wavelet cross-covariance and wavelet cross-correlation. The wavelet

cross-covariance is shown to decompose the process cross-covariance on a scale by scale

basis for speci�c types of nonstationary stochastic processes. Asymptotic normality is

proven for the MODWT-based estimators of wavelet cross-covariance.

1.2. Outline

The MODWT, a non-decimated variation of the DWT, is described in Section 2. In

Section 3, the wavelet cross-covariance and cross-correlation are de�ned in terms of the

MODWT coe�cients at a particular scale of the transform. Central limit theorems are

stated for estimators of both quantities based on a �nite sample of MODWT coe�cients

(proofs are given in the Appendix). Explicit methods for computing approximate

100(1� 2p)% con�dence intervals are provided in Section 4. Fisher's z-transformation

is utilized in order to keep the con�dence interval of the wavelet correlation bounded by

�1 for small sample sizes.

In Section 5, we perform a wavelet analysis of covariance with a daily Southern

Oscillation Index and daily station pressure readings from Truk Island. Spectral analysis

shows two peaks in the magnitude squared coherence between the two time series

around the established MJO range of frequencies, and cross-correlation analysis provides

a complicated correlation structure. The wavelet cross-correlation decomposes the usual

cross-correlation producing several patterns associated with physical time scales. Using

the wavelet cross-correlation, the relationship between the two time series is more easily

shown.
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2. Maximal Overlap Discrete Wavelet Transform

The DWT of a time series X is now a reasonably well-established method for

analyzing its multi-scale features. In this section we provide a brief introduction to

a slight variation of the DWT, called the maximal overlap DWT (MODWT). The

MODWT gives up orthogonality (through not subsampling) in order to gain features

such as translation-invariance and the ability to analyze any sample size. Here, we

follow previous de�nitions of the MODWT by Percival and Guttorp [1994] and Percival

and Mofjeld [1997].

Let f~h1g � f~h1;0; : : : ; ~h1;L�1g denote a the wavelet �lter coe�cients from a

Daubechies compactly supported wavelet family [Daubechies, 1992, Sec. 6.2] and let

f~g1g � f~g1;0; : : : ; ~g1;L�1g be the corresponding scaling �lter coe�cients, de�ned via the

following quadrature mirror relationship ~g1;m = (�1)m+1~h1;L�1�m. By de�nition, the

wavelet �lter f~h1g is associated with unit scale, is normalized such that
P ~h2l = 1=2

and is orthogonal to its even shifts. For any sample size N � L and with h1;m = 0 for

m � L, let

eH1;k =
N�1X
m=0

~h1;m e�i2�mk=N ; k = 0; : : : ; N � 1;

be the discrete Fourier transform (DFT) of f~h1g, and let eG1;k denote the DFT of f~g1g.
Now de�ne the wavelet �lter f~hjg for scale �j � 2j�1 as the inverse DFT of

eHj;k = eH1;2j�1kmodN

j�2Y
l=0

eG1;2lkmodN ; k = 0; : : : ; N � 1:

The wavelet �lter associated with scale �j has length minfN;Ljg where Lj �
(2j � 1)(L� 1) + 1. When N > Lj, de�ne ~hj;m = 0 for m � Lj. Also, de�ne the scaling

�lter f~gJg for scale 2�J as the inverse DFT of

eGJ;k =
J�1Y
l=0

eG1;2lkmodN ; k = 0; : : : ; N � 1:
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In order to construct a jth order partial MODWT, we let fXkg � fX0; : : : ;XN�1g
be the DFT ofX (for arbitrary N). The vector of MODWT coe�cients fWj, j = 1; : : : ; J

is de�ned to be the inverse DFT of f eHj;kXkg and is associated with changes of scale �j.

The vector of MODWT scaling coe�cients eVJ is de�ned similarly by the inverse DFT

of f eGJ;kXkg and is associated with averages of scale 2�J and higher. For time series of

dyadic length, the MODWT may be subsampled and rescaled to obtain an orthonormal

DWT. In practice, a pyramid scheme similar to that of the DWT is utilized to compute

the MODWT; see Percival and Guttorp [1994] and Percival and Mofjeld [1997].

Percival and Mofjeld [1997] proved that the MODWT is an energy preserving

transform in the sense that

kXk2 =
JX
j=1




fWj




2 + 


eVJ




2 :
This allows for a scale-based analysis of variance of a time series similar to spectral

analysis via the DFT. In a wavelet analysis of variance, the individual wavelet

coe�cients are associated with a band of frequencies and speci�c time scale whereas

Fourier coe�cients are associated with a speci�c frequency only.

3. Wavelet-Based Estimators of Covariance and Correlation

Here we de�ne the basic quantities of interest for estimating association between

two time series using the MODWT. The decomposition of covariance on a scale by scale

basis of the wavelet covariance is shown, and central limit theorems are provided for the

wavelet covariance and correlation.

3.1. De�nition and Properties of the Wavelet Cross-Covariance

Let fUtg � f: : : ; U�1; U0; U1; : : : g be a stochastic process whose dth order backward

di�erence (1�B)dUt = Zt is a stationary Gaussian process with zero mean and spectral
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density function SZ(�), where d is a non-negative integer. Let

W
(U)

j;t = ~hj;l � Ut �
Lj�1X
l=0

~hj;lUt�l; t = : : : ;�1; 0; 1; : : : ;

be the stochastic process obtained by �ltering fUtg with the MODWT wavelet �lter

f~hj;lg. Percival and Walden [1999, Sec. 8.2] showed that if L � 2d, then fW (U)

j;t g is a
stationary process with zero mean and spectrum given by Sj;U(�).

Let fXtg � f: : : ; X�1; X0; X1; : : : g and fYtg � f: : : ; Y�1; Y0; Y1; : : : g be stochastic
processes whose dXth and dY th order backward di�erences are stationary Gaussian

processes as de�ned above, and de�ne d � maxfdX; dY g. Let SXY (�) denote their

cross spectrum and, SX(�) and SY (�) denote their autospectra, respectively. The cross

spectrum is a complex valued function de�ned to be SXY (f) �
P1

�=�1C�;XY e
�i2�f� for

jf j � 1=2, where C�;XY is the cross covariance sequence given by C�;XY � CovfXt; Yt+�g.
The wavelet cross-covariance of fXt; Ytg for scale �j = 2j�1 and lag � is de�ned to be


�;XY (�j) � Cov
n
W

(X)

j;t ;W
(Y )

j;t+�

o
; (1)

where fW (X)

j;t g and fW
(Y )

j;t g are the scale �j MODWT coe�cients for fXtg and fYtg,
respectively. When L � 2d the MODWT coe�cients have mean zero and therefore


�;XY (�j) = EfW (X)

j;t W
(Y )

j;t+�g. By setting � = 0 and Yt to Xt or Xt to Yt, Equation (1)

reduces to the wavelet variance for Xt or Yt denoted as, respectively, �2X(�j) or �
2
Y (�j)

[Percival, 1995].

The following theorem demonstrates that the wavelet cross-covariance decomposes

the covariance between two stationary time series on a scale by scale basis.

Theorem 1 Let fXtg and fYtg be weakly stationary processes with autospectra SX(�)
and SY (�), respectively. Let L > 2d and de�ne V

(X)

J;t � ~gJ;l � Xt and V
(Y )

J;t � ~gJ;l � Yt,
which are stationary processes obtained by �ltering fXtg and fYtg using the MODWT

scaling �lter f~gJ;lg, respectively. For any integer J � 1, we have

C�;XY = CovfXt; Yt+�g = Cov
n
V

(X)

J;t ; V
(Y )

J;t+�

o
+

JX
j=1


�;XY (�j):
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As J ! 1, we have C�;XY =
P1

j=1 
�;XY (�j), that is, the wavelet cross-covariance

decomposes the cross-covariance between fXtg and fYtg on a scale by scale basis.

If we think of f~gJg as a low-pass �lter covering the nominal band [�2�(J+1); 2�(J+1)],
this statement is intuitively plausible since the scaling �lter f~gJg is capturing smaller

and smaller portions of the cross spectrum as J !1.

3.2. Estimating the Wavelet Cross-Covariance

Suppose X0; : : : ; XN�1 and Y0; : : : ; YN�1 can be regarded as realizations of portions

of the processes fXtg and fYtg, whose dXth and dY th order backward di�erences form

stationary Gaussian processes. As before, let d = maxfdX ; dY g.
Let fWj;t = W j;t for those indices t where fWj;t is una�ected by the boundary {

this is true as long as t � Lj � 1. Thus, if N � Lj, we can de�ne a biased estimator

~
�;XY (�j) of the wavelet cross-covariance based upon the MODWT via

~
�;XY (�j) �

8>>><>>>:
eN�1
j

PN���1
l=Lj�1

fW (X)
j;l
fW (Y )

j;l+� ; � = 0; : : : ; eNj � 1;eN�1
j

PN�1
l=Lj�1��

fW (X)
j;l
fW (Y )

j;l+� ; � = �1; : : : ;�( eNj � 1);

0; otherwise;

where eNj � N � Lj + 1. The bias is due to the denominator 1= eNj remaining constant

for all lags, though it disappears at lag � = 0. The following theorem establishes

asymptotic normality for the MODWT-based estimator of the wavelet covariance. We

may generalize to the wavelet cross-covariance by simply replacing shifting fW (Y )

j;t g with
respect to fW (X)

j;t g and appealing to the same theorem (as in the proof of Thereom 1).

Theorem 2 If L > 2d, and suppose fW (X)

j;t ;W
(Y )

j;t g is a bivariate Gaussian stationary

process with autospectra satisfying
R 1=2
�1=2

S2
j;X(f) < 1 and

R 1=2
�1=2

S2
j;Y (f) < 1, then the

estimator ~
XY (�j) is asymptotically normally distributed with mean 
XY (�j) and large

sample variance eN�1
j Sj;�;(XY )(0). The quantity Sj;(XY )(0) is the spectral density function

for fW (X)

j;t W
(Y )

j;t g (the product of the MODWT coe�cients).
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Since we are strictly interested in Gaussian processes, we can re-express the variance

of the wavelet covariance (see the Appendix for details) by

Varf~
XY (�j)g � VjeNj

; (2)

for large eNj, where

Vj � Sj;(XY )(0) =

Z 1=2

�1=2

Sj;X(f)Sj;Y (f) df +

Z 1=2

�1=2

S2
j;XY (f) df: (3)

Note, Sj;XY (�) is the cross spectrum between two series of scale �j MODWT coe�cients

whereas Sj;(XY )(�) is the autospectrum for the product of scale �j MODWT coe�cients.

This will allow us to easily construct approximate con�dence intervals for the MODWT

estimator of the wavelet covariance.

3.3. Wavelet Cross-Correlation

We can de�ne the wavelet cross-correlation for scale �j and lag � as

��;XY (�j) �
Cov

n
W

(X)

j;t ;W
(Y )

j;t+�

o
�
Var

n
W

(X)

j;t

o
Var

n
W

(Y )

j;t+�

o�1=2 =

�;XY (�j)

�X(�j)�Y (�j)
:

Since this is just a correlation coe�cient between two random variables, �1 �
��;XY (�j) � 1 for all �; j. The wavelet cross-correlation is roughly analogous to its

Fourier counterpart { the magnitude squared coherence { but it is related to bands

of frequencies (scales). Just as the cross-correlation is used to determine lead/lag

relationships between two processes, the wavelet cross-correlation will provide a lead/lag

relationship on a scale by scale basis.

3.4. Estimating the Wavelet Cross-Correlation

Since the wavelet cross-correlation is simply made up of the wavelet cross-covariance

for fXt; Ytg and wavelet variances for fXtg and fYtg, the MODWT estimator of the
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wavelet cross-correlation is simply

~��;XY (�j) � ~
�;XY (�j)

~�X(�j)~�Y (�j)
; (4)

where ~
�;XY (�j) is the wavelet covariance, and ~�2X(�j) and ~�2Y (�j) are the wavelet

variances. When � = 0 we obtain the MODWT estimator of the wavelet correlation

between fXt; Ytg.
Large sample theory for the cross-correlation is more di�cult to come by than for

the cross-covariance. Brillinger [1979] constructed approximate con�dence intervals for

the auto and cross-correlation sequences of bivariate stationary time series. We use

his technique to establish a central limit theorem for the MODWT estimated wavelet

cross-correlation. To simplify notation the following theorem gives a central limit

theorem for the wavelet correlation (� = 0) but easily generalizes to arbitrary lags.

Theorem 3 Let L > 2d, and suppose fW (X)

j;t ;W
(Y )

j;t g is a bivariate Gaussian stationary

process with square integrable autospectra, then the MODWT estimator ~�XY (�j) of the

wavelet correlation is asymptotically normally distributed with mean �XY (�j) and large

sample variance given by

Varf~�XY (�j)g � 1eNj

eNj�1X
�=�( eNj�1)

f ��;X(�j)��;Y (�j) + ��;XY (�j)��;Y X(�j)

� 2�0;XY (�j)[��;X(�j)��;Y X(�j) + ��;Y (�j)��;Y X(�j)]

+ �20;XY (�j)[
1
2
�2�;X(�j) + �2�;XY (�j) +

1
2
�2�;Y (�j)] g;

where ��;X(�j) � EfW (X)

j;t W
(X)

j;t+j� jg=[2�j�2X(�j)] is the scale �j wavelet autocorrelation

for the process fXtg.

4. Con�dence Intervals for Wavelet Estimators

With central limit theorems for both the wavelet cross-covariance and cross-

correlation, we may now explicitly construct an approximate con�dence interval (CI) for
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the estimators. For the wavelet cross-correlation, a nonlinear transformation is utilized

in order to bound it between �1 and reduce the computational complexity of its large

sample variance. Without loss of generality, we provide the following CIs for lag � = 0.

We may generalize the results presented here for arbitrary lag by simply replacing

ffW (X)
j;t g and ffW (Y )

j;t g with ffW (X)
j;t g where t = Lj + � � 1; :::; N � 1 and ffW (Y )

j;t+�g where
t = Lj � 1; :::; N � � � 1 for � � 0, or ffW (X)

j;t g where t = Lj � 1; :::; N + � � 1 and

ffW (Y )
j;t+�g where t = Lj � � � 1; :::; N � 1 for � < 0.

4.1. Wavelet Cross-covariance

The formula for an approximate 100(1�2p)% CI of the scale �j MODWT estimator

of the wavelet cross-covariance ~
�;XY (�j), starting from Equation (3), is provided; see

also Lindsay et al. [1996]. We make use of the periodogram and the cross-periodogram

to help estimate quantities of interest under the assumption of � = 0. First, we use the

periodogram bS(p)
j;X(�) of ffW (X)

j;t g as the estimator of Sj;X(�), and similarly for bS(p)
j;Y (�) of

ffW (Y )
j;t g. Next, we de�ne the biased estimator of the autocovariance sequence associated

with the scale �j MODWT coe�cients of fXtg by

ŝ(p)j;m;X �
1eNj

N�1�jmjX
l=Lj�1

fW (X)
j;l
fW (X)

j;l+jmj;

A similar de�nition applies to fŝ(p)j;m;Y g, the biased estimator of the autocovariance

sequence associated with the scale �j MODWT coe�cients ffW (Y )
j;t+mg. Second, we use

the cross-periodogram bS(p)
j;XY (�) of ffW (X)

j;t g and ffW (Y )
j;t g, as the estimator of Sj;XY (�), and

the corresponding biased estimator of the cross covariance sequence associated with the

scale �j MODWT coe�cients by

bC(p)
j;m;XY �

1eNj

X
l

fW (X)
j;l
fW (Y )

j;l+m;

where the summation goes from l = Lj � 1; : : : ; N � m � 1 for m � 0 and from

l = Lj �m� 1; : : : ; N � 1 for m < 0.
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We can use Parseval's relation to develop an estimate of the large sample variance

for the MODWT-based estimator of the wavelet cross-covariance (Equation (3))

using the autocovariance and cross-covariance sequences of the MODWT coe�cients.

Speci�cally, the integral of the product of the periodograms is determined from the

autocovariance sequences of ffW (X)
j;t g and ffW (Y )

j;t g viaZ 1=2

�1=2

bS(p)
j;X(f)

bS(p)
j;Y (f) df = ŝ

(p)
j;0;X ŝ

(p)
j;0;Y + 2

eNj�1X
m=1

ŝ
(p)
j;m;X ŝ

(p)
j;m;Y ;

and the integral of the squared cross periodogram from the cross covariance sequence of

ffW (X)
j;t ;fW (Y )

j;t g via Z 1=2

�1=2

hbS(p)
j;Y X(f)

i2
df =

eNj�1X
m=�( eNj�1)

h bC(p)
j;m;XY

i2
:

Hence, an estimate for the large sample variance of the MODWT estimator of the

wavelet cross-covariance is given by

eVj � ŝ
(p)
j;0;X ŝ

(p)
j;0;Y

2
+

eNj�1X
m=1

ŝ
(p)
j;m;X ŝ

(p)
j;0;Y +

1

2

eNj�1X
m=�( eNj�1)

h bC(p)
j;0;XY

i2
: (5)

The estimator eVj is unbiased when � = 0 [Whitcher, 1998]. Under the assumption

that the spectral estimates are close to the true values, an approximate 100(1� 2p)%

con�dence interval for 
XY (�j) is"
~
XY (�j)� ��1(1� p)

s eVjeNj

; ~
XY (�j) + ��1(1� p)

s eVjeNj

#
;

where ��1(p) is the p� 100% percentage point for the standard normal distribution.

4.2. Wavelet Cross-correlation

We now use the large sample theory developed in Section 3.4 to construct an

approximate CI for the MODWT estimator of the wavelet cross-correlation. Given

the non-normality of the correlation coe�cient for small sample sizes, a nonlinear
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transformation is sometimes required { Fisher's z-transformation [Fisher, 1915; Kotz,

Johnson, and Read, 1982, Volume 3]. Let

h(�) � 1

2
log

�
1 + �

1� �

�
= tanh�1(�)

de�ne the transformation. For the estimated correlation coe�cient �̂, based on n

independent samples,
p
n� 3(h(�̂)� h(�)) has approximately a N(0; 1) distribution.

An approximate 100(1� 2p)% CI for �XY (�j) based on the MODWT is therefore24 tanh
8<:h[ ~�XY (�j)]� ��1(1� p)q bNj � 3

9=; ; tanh

8<:h[ ~�XY (�j)] +
��1(1� p)q bNj � 3

9=;
35

where bNj = Nj � L0j and L0j = d(L� 2)(1� 2�j)e is the number of DWT coe�cients

associated with scale �j. We are using the number of wavelet coe�cients as if ~�XY (�j)

had been computed using the DWT because, under the assumptions of Fisher's

z-transformation, the denominator should consist of the number of independent samples

used in constructing the correlation coe�cient. If the autospectra and cross spectrum

of the two processes fXt; Ytg are slowly varying over each octave band of the DWT,

the assumption of uncorrelated DWT coe�cients is justi�ed; see McCoy and Walden

[1996] and the references contained therein. This property simply does not hold for the

MODWT coe�cients. If an equivalent degrees of freedom argument were available for

the wavelet cross-covariance, as was used when establishing CIs for the wavelet variance

based on the MODWT [Percival, 1995], this could be used instead of bNj.

5. Application

5.1. Introduction

The relationship between ENSO events and the MJO is a topic which could bene�t

by using wavelet techniques. To investigate how these two atmospheric phenomena

interact, we analyze two time series. The �rst one being the Southern Oscillation Index
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(SOI) [Walker, 1928], which is an indicator of ENSO and usually de�ned to be the

di�erence between monthly averages of the station pressure series from climate stations

at Darwin, Australia (130.8�E, 12.4�S) and Tahiti, French Polynesia (149�W, 14�S).

We deviate slightly from the usual de�nition of the SOI by introducing a daily

version of it. We obtained daily pressure readings from Darwin, Australia, and Tahiti,

French Polynesia, starting in 1 June 1957 and continuing through 31 December 1992

(N = 12; 998) and di�erenced them; see Figure 1. The distance of the stations from

the equator is apparent in the strong annual component in the time series. The

measurements in the summer and winter of 1983 appear to be higher than those in

adjacent years. This approximately corresponds to a large ENSO event in the early

1980s. We also obtained daily station pressure readings from Truk Island (7.4�N,

151.8�W) as an indicator of the MJO. This series also exists from 1 June 1957 to

31 December 1992; see Figure 1. Unlike the SOI, there is no apparent annual trend

given its close proximity to the equator. Missing values in both series were replaced by

one-step-ahead predictions from an ARIMA(3,1,0) model applied to the series [Jones,

1980].

5.2. Time-Domain and Spectral Analysis

Here we analyze the SOI and Truk Island station pressure series using standard

time and frequency domain techniques. The cross-correlation sequence is typically

estimated by utilizing the periodogram-based estimates of the autocovariance sequences

for fXtg and fYtg, and their cross-covariance sequence. The estimated cross-correlation

sequence for the SOI and Truk Island series is shown in Figure 2. The maximum occurs

at a lag of +1 days. We also observe the characteristic broad-band peak commonly

found in atmospheric time series from this region, with a approximate range of 35{55

day lags.

A bivariate spectral analysis of these data (Figure 3) provides some insight into the
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possible relationship between ENSO events and the MJO. A Parzen smoothing window

was applied to the periodogram with the window parameter chosen such that the

spectral window bandwidth was 0:0081 day�1, as in Madden and Julian [1971]. The lag

window co-spectrum between the SOI and Truk Island station pressure series exhibits a

large peak at the lower frequencies, which include the annual and inter-annual cycles,

and two distinct peaks (centered at 0:0163 day�1 and 0:0273 day�1) in the frequency

range of the MJO. We can test, at the � level of signi�cance, the null hypothesis of

zero mean squared coherence (MSC) by checking the estimated MSC, on a frequency

by frequency basis, against 1 � �2=(��2) and rejecting if the estimated MSC exceeds

it [Koopmans, 1974, p. 284]. The parameter � is the number of equivalent degrees of

freedom associated with the spectral estimates; � � 189 using Table 269 in Percival and

Walden [1993]. We see that both peaks are signi�cant at the 5% and 1% levels for a

broad range of frequencies.

5.3. Wavelet Analysis

Daily measurements allow us to apply the MODWT and analyze the sub-series

which correspond to �ltered series with approximate pass-band 1=2j+1 � jf j � 1=2j.

Due to the approximate bandpass nature of the MODWT, with the approximation

improving as the length of the wavelet �lter increases, it is unnecessary to remove any

annual or semiannual components (a similar argument is made when bandpass �ltering

atmospheric time series in Anderson et al. [1984]), which should be roughly captured in

the �7 and �8 scales. The MJO is known to occur with periods of around 30{60 days.

We therefore expect to see it in scale �5, associated with changes of 16 days and an

approximate pass-band of 1=64 � jf j � 1=32.

A partial MODWT (J = 10) was applied to each series using the Daubechies least

asymmetric wavelet �lter of length L = 8 { which we denote by LA(8). Figures 4

and 5 give the MODWT coe�cients for the Truk Island station pressure series and SOI,
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respectively. Each vector has been circularly shifted in order to obtain an approximate

zero-phase �lter, allowing us to align features across scales; see Percival and Mofjeld

[1997] for more details. For the Truk Island series, we observe only a slight annual trend

in the fW8 series and the large disruption in the early 1980s appears to primarily a�ect

scales �7 through �10. The fW5 series, associated with frequencies in the range of the

MJO, appears to fade in and out in magnitude with no apparent pattern. The SOI

multiresolution analysis exhibits a strong annual trend where the disturbance in the

early 1980s a�ects the scales �8 through �1. Again, the scale associated with the MJOfW5 exhibits numerous bursts across time.

Figure 6 shows the estimated wavelet correlation between the SOI and Truk station

pressure series at a lag of zero days. The wavelet correlation appears to be signi�cantly

di�erent from zero (in fact, positive) for all scales except �6 and �7. The signi�cant

correlation for scale �5, and larger magnitude with respect to neighboring scales, lends

credibility to the hypothesis of an association between the 
uctuations in ENSO activity

and the MJO.

If we are to investigate a possible lead/lag relationship between the two series, then

the wavelet cross-correlation must be estimated for various lags. Figure 7 shows the

estimated wavelet cross-correlation between the SOI and Truk Island station pressure

series. Con�dence intervals (not displayed) may be computed from Section 4.2. The

large positive peak in the �rst �ve scales is at a lag of 1 day for scales �1 and �2, a lag

of 2 days for scales �3, a lag of 4 days for scale �4 and zero days for scale �5. The higher

scales do not show any apparent trend when looking at lags up to �240 days.

There is an obvious asymmetry in the wavelet cross-correlation for scales �4 and

higher. The analysis here was performed so that at a lag of +1 day, the SOI time series

leads the Truk station pressure series. As already noted for scale �5, the largest positive

cross-correlation occurs at lag zero. The largest negative cross-correlation is at a lag

of 20 days, approximately half the period of the MJO, and the second largest positive
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cross-correlation occurs at a lag of 41 days, approximately a full period of the MJO.

Even though the SOI consists of a di�erence between two stations with di�erent spatial

locations, there is still a strong 40 day oscillation which is correlated (and in phase)

with the Truk station pressure series. It is also interesting to note that the wavelet

cross-correlation for the �rst three scales is essentially an odd function. A possible

interpretation is that common short-term weather patterns are causing these small

scale disturbances. In contrast, the wavelet cross-correlation for scales �6 and �7 are

essentially even functions. Patterns in higher scales (lower frequencies) correspond to

the annual and inter-annual trends.

Although direct comparison between Figure 7 and Figure 2 is not appropriate,

because the wavelet correlation does not decompose the correlation between two

stationary processes, the wavelet covariance does decompose the covariance between two

time series. Since the wavelet correlation is simply the wavelet covariance standardized

at each scale, the shape of each wavelet cross-correlation is the same even though the

magnitudes are o�. Hence, we may make a rough comparison between the two, keeping

in mind the facts just stated.

The �rst obvious di�erence is the fact that usual cross-correlation is positive for all

negative lags. Looking at Figure 7, we see that the wavelet cross-correlation for scales �9

and �10 are all positive and contribute to this feature, whereas for positive lags they are

close to zero and allow the annual scale (�8) to dominate. The two dips on either side of

the peak at a lag of +1 days is the superposition of the �rst six scales in Figure 7. The

subsequent peak around a lag of +40 days is a result of the anti-correlation for scales �5

and �6 reducing the annual cross-correlation component (�8) for smaller lags. This leads

to a di�erent interpretation than what is seen by looking at the usual cross-correlation

sequence. The correlation structure, when applied to all scales simultaneously, results in

a quite complex looking cross-correlation sequence. When broken up with the wavelet

transform a few simple, yet distinct, patterns appear which may be associated with
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known atmospheric phenomena.

6. Discussion

We have introduced a new analysis technique for bivariate Gaussian time series

which utilizes the MODWT. Certain nonstationary time series, with dth order

stationary backward di�erences, are easily handled by this methodology. As in the

univariate case with the wavelet variance, natural estimators of the cross-covariance and

cross-correlation are de�ned. The wavelet cross-covariance and wavelet cross-correlation

\decompose" their classical counterparts on a scale by scale basis. Thus, complicated

patterns of association between time series are broken down into several much simpler

patterns { each one associated with a physical time scale. With any good statistical

analysis a measure of variability is also required, and the central limit theorems here

enable approximate con�dence intervals to be calculated.

A thorough analysis between the Southern Oscillation Index and a station pressure

series from Truk Island was performed in order to gain insight into potential interactions

between ENSO events and the MJO. Whereas conventional time and frequency domain

techniques provide results which are di�cult to interpret, the wavelet cross-correlation

nicely displays how the association between the two processes changes with scale.

Short-term weather patterns (changes of 1, 2 and 4 days) exhibit symmetric wavelet

cross-correlations. The �fth scale, associated with the MJO, shows that the SOI (an

indicator of ENSO activity) is correlated with Truk Island station pressure series (an

indicator of the MJO) and they are roughly in phase. This scale exhibits the strongest

magnitude correlations when compared with scales shorter than those associated with

the semi-annual and annual frequencies.
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Appendix A: Proofs of Theorems

Lemma 1 For all � > 0, there exists a J� such that
���CovnV (X)

J;t ; V
(Y )

J;t

o��� < � for J > J�.

Proof of Lemma 1 For the orthonormal DWT
P

l g
2
J;l = 1 and by de�nition

~gJ;l = gJ;l=2
J=2. Therefore we have

P
l ~g

2
J;l = 1=2J . Parseval's relation tells us thatZ 1=2

�1=2

eGJ(f) df =

Z 1=2

�1=2

��� eGJ(f)
���2 df =

LJ�1X
l=0

~g2J;l =
1

2J
:

We know the amplitude spectrum AXY (f) � jSXY (f)j is a non-negative real valued

function. Hence, if AXY (�) is bounded by some �nite number C, then for J > J�,���CovnV (X)

J;t ; V
(Y )

J;t

o��� � Z 1=2

�1=2

eGJ(f) jSXY (f)j df = C

Z 1=2

�1=2

eGJ(f) df =
C

2J
< �:

If AXY (�) cannot be bounded by any �nite number C, there at least exists a constant

C� such that
R
AXY (f)�C�

AXY (f) df < �=2, using a Lebesgue integral. A rough bound on

the squared gain function of the scaling �lter for Daubechies wavelets is eGJ(f) � 1, so

for all J > J�,�����
Z 1=2

�1=2

eGJ(f)SXY (f) df

����� �
Z
AXY (f)�C�

eGJ(f) jSXY (f)j df +
Z
AXY (f)<C�

eGJ(f) jSXY (f)j df

�
Z
AXY (f)�C�

AXY (f) df + C�

Z
AXY (f)<C�

eGJ(f) df
� �

2
+ C�

Z 1=2

�1=2

eGJ(f) df � �

2
+
C�

2J
< �:

2

Proof of Theorem 1 Without loss of generality, we set � = 0 and simply

shift fW (Y )

j;t g with respect to fW (X)

j;t g to get � 6= 0. Because fW (X)

j;t g and fW
(Y )

j;t g
are obtained by �ltering the processes fXtg and fYtg with a Daubechies compactly

supported wavelet �lter of even length L > 2d, respectively, we know that fW (X)

j;t g and
fW (Y )

j;t g are stationary processes with autospectra de�ned by Sj;X(f) � eHj(f)SX(f)

and Sj;Y (f) � eHj(f)SY (f) where eHj(f) � eH(2j�1f)Qj�2
l=0

eG(2lf) is the squared gain
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function for f~hjg. Note, the squared gain functions associated with unit scale for the

wavelet and scaling �lters are given by eH(f) � j eH(f)j2 and eG(f) � j eG(f)j2.
The covariance between fW (X)

j;t g and fW
(Y )

j;t g is given by


XY (�j) =

Z 1=2

�1=2

eHj(f)SXY (f) df:

This is a straightforward generalization of the univariate case; see Whitcher [1998] for

more details. The covariance between fV (X)

j;t g and fV
(Y )

j;t g is given by

Cov
n
V

(X)

J;t ; V
(Y )

J;t

o
=

Z 1=2

�1=2

eGJ(f)SXY (f) df;

where eGJ(f) � QJ�1
l=0

eG(2lf) is the squared gain function for f~gJg. Because of the

following identity for squared gain functions eH(f) + eG(f) = 1 for all f [Percival and

Walden, 1999, Sec. 4.3], we have

CovfXt; Ytg =
Z 1=2

�1=2

h eG(f) + eH(f)i SXY (f) df = Cov
n
V

(X)

1;t ; V
(Y )

1;t

o
+ 
XY (�1);

and the case when J = 1 holds. We now proceed to prove the main assertion by

induction. Assume the property holds for J � 1; i.e.,

CovfXt; Ytg = Cov
n
V

(X)

J�1;t; V
(Y )

J�1;t

o
+

J�1X
j=1


XY (�j):

So we have

Cov
n
V

(X)
J�1;t; V

(Y )
J�1;t

o
=

Z 1=2

�1=2

"
J�2Y
l=0

eG(2lf)#SXY (f) df

=

Z 1=2

�1=2

h eG(2J�1f) + eH(2J�1f)i "J�2Y
l=0

eG(2lf)#SXY (f) df

=

Z 1=2

�1=2

h eGJ(f) + eHJ(f)
i
SXY (f) df

= Cov
n
V

(X)

J;t ; V
(Y )

J;t

o
+ 
XY (�J):

The decomposition of covariance between fXt; Ytg has now been established for a �nite

number of scales. From Lemma 1, as J ! 1 the remaining covariance between the

scaling coe�cients goes to zero. Hence, the theorem is established.
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2

Proof of Theorem 2 Without loss of generality, we set � = 0 and simply shift

fW (Y )

j;t g with respect to fW (X)

j;t g to get � 6= 0. With L > 2d, both series of MODWT

coe�cients fW (X)

j;t g and fW
(Y )

j;t g have zero mean. Square integrability of the autospectra

implies that fsj;�;Xg  ! Sj;X(�) and fsj;�;Y g  ! Sj;Y (�); i.e., the autocovariance

sequences and autospectra are Fourier transform pairs. Because L > 2d, the squared gain

function for Daubechies wavelet �lters guarantees we have Sj;X(0) = 0 =
P1

�=�1 sj;�;X.

A similar statement holds for ffW (Y )
j;t g and, therefore, fsj;�;Xg and fsj;�;Y g are absolutely

summable.

Let Sj;XY (f) � eHj(f)SXY (f) denote the MODWT �ltered cross spectrum.

From the magnitude squared coherence being bounded by unity, and using the

Cauchy{Schwarz inequality, we know thatZ 1=2

�1=2

jSj;XY (f)j2 df �
Z 1=2

�1=2

Sj;X(f)Sj;Y (f) df

�
 Z 1=2

�1=2

S2
j;X(f) df

Z 1=2

�1=2

S2
j;Y (f) df

!1=2

<1:

So the cross-covariance sequence and cross spectrum associated with scale �j are also

a Fourier pair and, again, by using a Daubechies wavelet �lters with L > 2d, we have

Sj;XY (0) = 0. Therefore, the cross-covariance sequence for fW (X)

j;t ;W
(Y )

j;t g is absolutely
summable.

We �rst note that the MODWT estimate of the wavelet covariance ~
XY (�j) is

essentially a sample mean for the time series W
(XY )

j;t � W
(X)

j;t W
(Y )

j;t (cf. Equation (1)).

This process also has an absolutely summable cumulant sequence by Theorem 2.9.1 of

Brillinger [1981, p. 38]. Then Theorem 4.4.1 of Brillinger [1981, p. 94] tells us that

~
XY (�j) is asymptotically normal with mean 
XY (�j) and large sample variance given

by eN�1
j Sj;(XY )(0), where Sj;(XY )(0) is the spectral density for W

(XY )

j;t evaluated at f = 0.

2
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Derivation of Equation 2 Since we are exclusively interested in Gaussian

processes, Sj;(XY )(0) may be re-expressed as a function of the auto and cross spectra of

the wavelet coe�cients fW (X)
j;l g and fW (Y )

j;l g. The variance of the estimated MODWT

wavelet covariance at scale �j can be computed directly via

Varf~
XY (�j)g =
1eN2
j

N�1X
l=Lj�1

N�1X
m=Lj�1

Cov
nfW (X)

j;l
fW (Y )

j;l ;
fW (X)

j;m
fW (Y )

j;m

o

=
1eNj

eNj�1X
�=�( eNj�1)

 
1� j� jeNj

!
Cov

nfW (X)
j;l
fW (Y )

j;l ;
fW (X)

j;l+�
fW (Y )

j;l+�

o

� 1eNj

eNj�1X
�=�( eNj�1)

 
1� j� jeNj

!
sj;�;XY ; (A1)

where sj;�;XY is the autocovariance sequence for the product of the scale �j MODWT

coe�cients with respect to fXtg and fYtg.
Using the Isserlis theorem and properties of the Fourier transform, the spectrum

of fZtg at f = 0 is SZ(0) =
R 1=2
�1=2

SU(f)SV (f) df +
R 1=2
�1=2

S2
UV (f) df [Whitcher,

1998]. Since we have the Fourier relationship fs�;Zg  ! SZ(�), we necessarily have

SZ(0) =
P1

�=�1 s�;Z , when f = 0. Re-examining Equation (A1) and utilizing Ces�aro

summability [Titchmarsh, 1939, p. 411], we can say

lim
eNj!1

eNj Varf~
XY (�j)g = lim
eNj!1

eNj�1X
�=�( eNj�1)

 
1� j� jeNj

!
sj;�;XY

=
1X

�=�1

sj;�;XY = Sj;(XY )(0);

where

Sj;(XY )(0) =

Z 1=2

�1=2

Sj;X(f)Sj;Y (f) df +

Z 1=2

�1=2

S2
j;XY (f) df

2

Proof of Theorem 3 Since L > 2d, we have that both sets of wavelet coe�cients

ffW (X)
j;t g and ffW (Y )

j;t g have mean zero. Let us de�ne Aj;t � [fW (X)
j;t ]2, Bj;t � [fW (Y )

j;t ]2, and
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Cj;t � fW (X)
j;t
fW (Y )

j;t , and subsequently de�ne their sample means

Aj � 1eNj

N�1X
t=Lj�1

Aj;t = ~�2X(�j);

Bj � 1eNj

N�1X
t=Lj�1

Bj;t = ~�2Y (�j); and

Cj � 1eNj

N�1X
t=Lj�1

Cj;t = ~
XY (�j):

The vector-valued process fAj;t; Bj;t; Cj;tg has an absolutely summable joint cumulant

sequence by Theorem 2.9.1 of Brillinger [1981, p. 38]. Hence, from Theorem 4.4.1 of

Brillinger [1981, p. 94] the vector of sample means fAj; Bj; Cjg are asymptotically

normally distributed with mean vector f�2X(�j); �2Y (�j); 
XY (�j)g, and large sample

variance given by eN�1
j Sj;ABC(0), where Sj;ABC(�) is the 3 � 3 spectral matrix for

fAj;t; Bj;t; Cj;tg.
The MODWT estimator of the wavelet correlation ~�XY (�j) is essentially a function

of these sample means g(Aj; Bj; Cj), where g(x; y; z) � z=
p
xy. Appealing to Mann and

Wald [1943], we have that ~�XY (�j) is asymptotically normally distributed with mean

�XY (�j) and large sample variance

eN�1
j _g

�
�2X(�j); �

2
Y (�j); 
XY (�j)

�T
Sj;ABC(0) _g

�
�2X(�j); �

2
Y (�j); 
XY (�j)

�
(A2)

where _g(�; �; �) is the gradient of g(�; �; �). Now let us re-express Equation (A2) into the

desired result using the fact that we are only interested in Gaussian processes. Because

we are evaluating Sj;ABC(�) at f = 0, it is in fact a symmetric matrix of the form

Sj;ABC(0) =

26664
Sj;AA(0) Sj;AB(0) Sj;AC(0)

Sj;AB(0) Sj;BB(0) Sj;BC(0)

Sj;AC(0) Sj;BC(0) Sj;CC(0)

37775 ;
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where the elements of the matrix are

Sj;AA(0) = 2

Z 1=2

�1=2

S2
j;X(f) df; Sj;BB(0) = 2

Z 1=2

�1=2

S2
j;Y (f) df;

Sj;CC(0) =

Z 1=2

�1=2

Sj;X(f)Sj;Y (f) df +

Z 1=2

�1=2

S2
j;XY (f) df;

Sj;AB(0) = 2

Z 1=2

�1=2

Sj;XY (f)Sj;Y X(f) df;

Sj;AC(0) = 2

Z 1=2

�1=2

Sj;X(f)Sj;Y X(f) df; and

Sj;BC(0) = 2

Z 1=2

�1=2

Sj;Y (f)Sj;Y X(f) df:

The gradient is explicitly given by

_g
�
�2X(�j); �

2
Y (�j); 
XY (�j)

�
="

� 
XY (�j)

2�2X(�j)
p
�2X(�j)�

2
Y (�j)

� 
XY (�j)

2�2Y (�j)
p
�2X(�j)�

2
Y (�j)

1p
�2X(�j)�

2
Y (�j)

#T
;

and, through matrix multiplication and application of Parseval's relation to each auto

and cross spectra in Sj;ABC(0), we may express Equation (A2) as

1eNj

eNj�1X
�=�( eNj�1)

�

2XY (�j)

4�6X(�j)�
2
Y (�j)

2s2j;�;X +

2XY (�j)

2�4X(�j)�
4
Y (�j)

2Cj;�;XYCj;�;Y X

+

2XY (�j)

4�2X(�j)�
6
Y (�j)

2s2j;�;Y +
1

�2X(�j)�
2
Y (�j)

�
sj;�;Xsj;�;Y + C2

j;�;XY

�
� 
XY (�j)

�4X(�j)�
2
Y (�j)

2sj;�;XCj;�;Y X � 
XY (�j)

�2X(�j)�
4
Y (�j)

2sj;�;YCj;�;Y X

�
:

Each of the autocovariance terms are equivalent to the wavelet autocovariance for

scale �j (de�ned by letting Xt = Yt in Equation (1)) and each cross-covariance term is

equivalent to the wavelet cross-covariance for scale �j. This yields the desired result.

2
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List of Figures

1. Station pressure series for Truk Island (7.4�N, 151.8�W) and the Southern

Oscillation Index. The \staggered" look of the Truk Island series prior to 1971 is

the result of rounding to the nearest millibar.

2. Estimated cross-correlation sequence for the Southern Oscillation Index and Truk

Island station pressure series for lags up to �240 days.

3. Estimated lag window co-spectrum and magnitude squared coherence (MSC)

between the Southern Oscillation Index and Truk Island station pressure series. A

Parzen lag window, with spectral window bandwidth 0:0081 day�1, was applied

to the periodogram. The dotted and dashed lines correspond to the 5% and 1%

levels of signi�cance test for non-zero MSC, respectively.

4. MODWT coe�cients for the Truk Island station pressure series using the LA(8)

wavelet �lter. The wavelet coe�cient vectors fW1;fW2; : : : ;fW10 are associated

with variations on scales of 1; 2; : : : ; 1024 days and the scaling coe�cient vectoreV10 is associated with variations of 2048 days or longer.

5. MODWT coe�cients for the daily Southern Oscillation Index using the LA(8)

wavelet �lter. The wavelet and scaling coe�cients have the same interpretation as

in Figure 4.

6. MODWT estimated wavelet correlation between the Southern Oscillation Index

and Truk Island station pressure series.

7. MODWT estimated wavelet cross-correlation between the Southern Oscillation

Index and Truk Island station pressure series for lags up to �240 days. Con�dence
intervals may be computed from Section 4.2. The positive peak in the �fth scale

�5 is at a lag of 0 days.
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