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Model Uncertainty and

Health E�ect Studies for Particulate Matter

Summary

There are many aspects of model choice that are involved in health e�ect studies of

particulate matter and other pollutants. Some of these choices concern which pollutants

and confounding variables should be included in the model, what type of lag structure for

the covariates should be used, which interactions need to be considered, and how to model

nonlinear trends. Because of the large number of potential variables, model selection is

often used to �nd a parsimonious model. Di�erent model selection strategies may lead to

very di�erent models and conclusions for the same set of data. As variable selection may

involve numerous tests of hypotheses, the resulting signi�cance levels may be called into

question, and there is the concern that the positive associations are a result of multiple

testing. Bayesian model averaging is an alternative that can be used to combine inferences

from multiple models and incorporate model uncertainty. This paper presents objective prior

distributions for Bayesian model averaging in generalized linear models so that Bayesian

model selection corresponds to standard methods of model selection, such as the Akaike

Information Criterion (AIC) or Bayes Information Criterion (BIC), and inferences within a

model are based on standard maximum likelihood estimation. These methods allow non-

Bayesians to describe the level of uncertainty due to model selection, and can be used

to combine inferences by averaging over a wider class of models using readily available

summary statistics from standard model �tting programs. Using Bayesian Model Averaging

and objective prior distributions, we re-analyze data from Birmingham, AL and illustrate

the role of model uncertainty in inferences about the e�ect of particulate matter on elderly

mortality.

KEYWORDS: AIC; BIC; Bayesian Model Averaging; Je�reys' Prior; Model Selection;

Noninformative Priors; Poisson Regression; PM10



1 Introduction

Statistical analyses of the e�ect of air pollution on human mortality have been performed for a

multitude of cities and a number of authors have found statistically signi�cant relationships

between increased mortality in the elderly population (and other health outcomes) and

increases in particulate matte (PM). Partly on the basis of such epidemiological studies, the

U.S. Environmental Protection Agency in 1997 proposed new stricter standards for PM10

(particulate matter with aerodynamic diameter less than 10 microns). One concern raised by

the 1998 National Research Council report on \Research Priorities for Airborne Particulate

Matter" is whether the positive associations between particulate matter and mortality (or

other health outcomes) are an artifact of model selection due to multiple hypothesis testing.

There are many aspects of model choice that are involved in health e�ect studies of par-

ticulate matter and other co-pollutants. Some of these choices concern which pollutants and

confounding variables should be included in the model, what type of lag structure for the

covariates should be used, which interactions need to be considered, and what adjustments

should be made in the multiple time-series for long-term trends and seasonality. Generalized

additive models (GAMs) for Poisson data are often used to model daily mortality, adjust-

ing for nonlinear trends using smoothing splines or other semi-parametric approaches, and

including smoothed functions and lags of meteorological variables and pollution variables.

Because of the large number of potential variables, it is neither practical nor desirable to

include every possible covariate and model selection is often used to �nd a parsimonious

model, balancing reducing autocorrelation and overdispersion against over-�tting the data

and ination of standard errors. This is often done in a highly exploratory fashion, and

di�erent model selection strategies may lead to di�erent models and conclusions about the

magnitude of relative risks associated with changes in particulate matter. For example, in

analyses for Birmingham, AL, Schwartz (1993) found the best model had a relative risk of

1.11, based on 100 �g=m3 increase in PM10, while in contrast, Davis et al. (1996) failed to

�nd any consistent PM10 e�ect, with estimates of relative risks in the range 1.02-1.05. Davis

et al. (1996) and Smith et al. (1997) found that results were highly sensitive to the choice

of meteorological variables and lags of PM10 that were included in the model.
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For making inferences, the selected \best" model is often treated as if it were the true

model. This procedure ignores the uncertainty involved in model selection, and may lead

to overcon�dent predictions (Draper 1995) and policy decisions that are riskier than one

thinks they are (Hodges 1987). One may also �nd \signi�cant" spurious e�ects, while the

meaning of reported signi�cance levels for the \best" model is also questionable (Viallefont

et al. 1998). Model uncertainty often outweighs other sources of uncertainty (Hoeting et

al. 1999), but is typically ignored in general practice.

Bayesian Model Averaging (BMA) using hierarchical models provides a coherent ap-

proach for combining predictions and inferences from multiple models, and often leads to

improved predictive performance and reduced frequentist risk (Clyde and George 1998, La-

mon and Clyde 1998, Hoeting et al. 1999). With BMA, predictions and inferences are based

on a set of models rather than a single model. For example, predictions are obtained by form-

ing a weighted average of predictions over the di�erent models, where the weights depend

on the degree to which the data support each model. All variables are used, but coe�cients

for variables that are less important are shrunk towards zero. For the health e�ects models,

model averaging can be used to incorporate uncertainty about which of several plausible pol-

lution and meteorological variables are related to mortality, incorporate uncertainty about

lag structures in pollution and meteorological variables, and can be used to model nonlinear

trends if the data support such e�ects.

While model averaging is straightforward to implement in theory, model averaging re-

quires speci�cation of prior distributions for parameters within models and prior weights

for each model. While subjective prior distributions can be used to incorporate previous

knowledge about health e�ects of particulate matter, this can be controversial because of

questions of whose prior beliefs are being represented. In this situation, it may be desirable

to have reference analyses based on \non-informative" prior distributions to supplement

analyses based on subjective prior distributions. Also because of the complexity of general-

ized additive models and the number of confounding variables, even carefully elicited prior

distributions may have unforeseen consequences on model selection. As part of an overall

sensitivity analyses, objective prior distributions play an important role. By incorporating

model uncertainty and considering a range of objective prior distributions, we can, perhaps,
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increase our con�dence that positive associations are not an artifact of model selection.

In this paper, data from Birmingham, AL are re-analyzed using Bayesian Model Aver-

aging (BMA) in conjunction with generalized additive models to assess the impact of model

uncertainty on estimates of relative risks due to changes in PM10. As in Schwartz (1993) and

Davis et al. (1996), the response variable is non-accidental mortality. Additional information

on the data and variables is given in section 2. In section 3, we describe the hierarchical Pois-

son regression model for model averaging. In section 4, we present a class of objective prior

distributions for generalized linear models (GLMs) so that 1) Bayesian model selection can

be calibrated to standard methods of model selection, such as AIC (Akaike Information Cri-

terion; Akaike 1973), BIC (Bayes Information Criterion; Schwarz 1978) and other methods,

and 2) inferences within a model are based on maximum likelihood theory. Such methods

can be implemented using readily available summary statistics from standard model �tting

programs. Model averaging using objective prior distributions provides a bridge between

classical and Bayesian methods of estimation, and presents a natural framework so that

non-Bayesians can make inferences from multiple models via model averaging. In Section 5,

we apply Bayesian model averaging with several objective prior distributions to the Birm-

ingham data. We construct posterior distributions for relative risks based on a 100 �g=m3

increase in PM10. These distributions incorporate model uncertainty as well as parameter

uncertainty. We also conduct a small model validation study to compare model selection

and model averaging under BIC and AIC prior distributions.

2 Variables

The data used in this analysis were originally constructed by Davis et al. (1996) and were

based on daily measurements from 1985{1988 of mortality (from the National Center for

Health Statistics), PM10 (from the U.S. Environmental Protection Agency, EPA), and me-

teorology variables (from the U.S. National Climatic Data Center in Ashville, NC). Variable

names and descriptions are given in Table 1.

[Table 1 here]

The response variable for this analysis is daily elderly non-accidental mortality, which is
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de�ned as the total number of deaths on a given day of all individuals age 65 and older,

excluding deaths attributed to accidental causes. While Schwartz (1993) used total non-

accidental mortality, the number of non-accidental deaths in individuals under 65 averages

around 2 per day, and should not impact conclusions greatly.

PM10 data are available from the EPA's aerometric data base for monitors in 8 locations

in Je�erson County, AL, which contains the metropolitan area of Birmingham (Figure 1).

These consist of readings from a daily monitor located in Birmingham (monitor ID 0023),

a daily monitor in Leeds (monitor ID 1010), and several monitors (ID's 0002, 0012, 0026,

2003, 3003, 6002) throughout the county that collected data every 6 days. Schwartz (1993)

and Davis et al. (1996) used the daily mean of PM10 data from all available PM10 monitors

within the metropolitan area to construct a daily area-wide measure of PM10. Because the

daily monitor in Leeds collected data only for the latter half of the time period and exhibited

lower values on average than the daily monitor in Birmingham (Figure 2), the daily area-wide

average varies substantially depending on whether the Leeds data are included. To avoid a

bias in the area-wide average because the Leeds data are not missing at random during the

�rst half of the time period, we used PM10 data from the daily monitor within Birmingham

(Monitor ID 0023), which started operation in August, 1985 and was in operation until

the end of 1988. We will explore the di�erence in results based on using the area-wide

average (pma) versus a single daily monitor 0023 (pm). Uncertainty in which monitors are

representative of population exposure is an important question and an open area for research.

[Figures 1 and 2 here]

After exploratory modeling, Schwartz (1993) reported that the average of PM10 from the

three previous days was the best predictor of mortality. Part of the di�erence in the results

between Schwartz and Davis et al. can be explained by how the three-day averages were

constructed. While Schwartz used the three previous days, Davis et al. used the current

day, and the previous two days. Smith et al.(1997) investigated using individual lags rather

than 3-day averages of PM10. In order to take into account uncertainty in the lag structure,

we constructed up to three day lags of PM10, where lag 0 is the current day.

The meteorological variables and lags (up to 2 days) used are as de�ned by Davis et

al. (1996) and are summarized in Table 1. Several of the variables originally listed by
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Davis et al. (1996) are deterministic functions of the other variables (Cooling and Heating

Degree Days, and Apparent Temperature for Heat/Cold Stress) and have been excluded

from consideration. As low wind speeds are confounded with high pollution events, but

not expected to be associated with mortality (Schwartz 1993), average wind speed was also

eliminated from consideration.

The mortality data have a strong seasonal component that may be related to u epidemics

or other causes and longer term changes in population size. As long term trends and yearly

variation in the covariates are confounded with long term and yearly variation in mortality, it

is necessary to remove this source of variation from the analysis prior to assessing the e�ect of

PM10. This is often done by adding a smooth function of time to the model using smoothing

splines (Smith et al. 1997) or sine-cosine functions (Schwartz 1993). The Time Series Work-

ing Group at the NRCSE Particulate Methodology Workshop held in Seattle, Oct 19-22,1998

(URL http://www.nrcse.washington.edu/events/pm-workshop.html) concluded \While

the method used to remove longer-term variation is unlikely to be important, the choice of

which time scales to include and which to exclude may inuence the results. Removing too

little information exposes the analysis to confounding by season, removing too much reduces

the power of the analysis and may exclude important health e�ects." In general, large scale

variation that should be removed is on a time scale of one month or greater.

We have found that using cubic splines or thin-plate splines leads to little di�erence in the

smoothed long term trend, but the number of knots does have a large impact on smoothness

of the unknown trend. In what follows we report results using a thin-plate spline basis. To

construct this basis, we selected 30 knots at equally spaced time points over the length of

the sampling period. Let kj denote a knot at location j, where 0 < kj < n. The jth basis

element evaluated at the point t is constructed as

bj(t) = (t� kj)
2 log(jt� kjj):

A function f(t), where t is the time index, representing the unknown trend can be represented

as

f(t) = �0 +
KX
j=0

�jbj(t):
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Removing knot j is equivalent to setting an �j to zero. As the dimension or number of knots

is unknown, this is also a variable selection problem; model uncertainty in the number of

knots can be addressed using BMA. For more discussion of Bayesian approaches to function

estimation using thin-plate or other radial bases see Holmes and Mallick (1997).

3 Hierarchical Poisson Regression Model

Daily mortality reects counts which are usually modeled with a Poisson or over-dispersed

Poisson distribution. We will let Yi denote the non-accidental elderly mortality for day i,

i = 1; : : : ; n = 1247 and let X = [x1;x2; : : : ;xp] denote the (n � p) design matrix based

on all variables under consideration. The design matrix X can include basis terms for

smoothing splines to model nonlinear trends, meteorological variables, such as temperature

and humidity, pollution variables, lags of meteorological and pollution variables, seasonal

indicators, or any other known confounders. We will focus on the set of variables listed in

Table 1.

Under the full model, we assume that the observations Y = (Y1; Y2; : : : Yn)
0 are indepen-

dent Poisson random variables with means � = (�1; : : : ; �n)
0 and that the means are related

to the covariates via a link function,

g(�) = X�

where the canonical link function g is the log link. In the present context of variable selection,

models correspond to di�erent probability speci�cations for the data, so that under the mth

model (Mm)

Mm : Y � Poisson(�) log(�) = Xm�m

whereXm is the design matrix under modelMm and �m is the vector of regression coe�cients

for modelMm. The set of possible models is given by S = fM1;M2; : : : ;MMg and includes

all subsets of potential covariates, or M = 2p models.

3.1 Hierarchical Model

Model uncertainty can be formally accounted for by building an expanded model that encom-

passes all models in S. In constructing the hierarchical model, it is convenient to introduce
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a p dimensional vector  of indicator variables where j equals one if variable xj is included

under Mm. To link Mm and , we take  to be the binary representation of m.

The hierarchical model is de�ned in three stages. The �rst stage of the hierarchy de�nes

the distribution for the data in terms of all variables:

Yj�;Mm � Poisson(exp(X�)) (1)

with density f(Yj�;Mm) = f(Yj�). In the expanded model, variables are eliminated by

allowing coe�cients to be exactly 0. This is achieved by allowing point masses at zero in

the prior distribution for � given Mm in the second stage. Coe�cients for variables not

in Mm are identically zero as speci�ed through distributions �0(�j) that are degenerate at

zero, while coe�cients for variables included under Mm (�m) have non-degenerate prior

distributions, so that the joint distribution for � given Mm is

p(�jMm) = p(�mjMm)

pY
j=1

�0(�j)
1�j (2)

(here �m corresponds to the elements of � where  equals 1). The last stage of the hierar-

chical model assigns prior weights to each of the models,

Mm � �(Mm) (3)

which are often taken to be uniform a priori. By collapsing the last two stages, the marginal

prior distribution for � is a mixture of point mass and continuous distributions de�ned

on (f0g [ (�1;1))p. Likewise, the posterior distribution is also a mixture distribution,

reecting model uncertainty.

3.2 Posterior Distributions

Using Bayes Theorem, the posterior probability of model Mm is

�(MmjY) =
f(YjMm)�(Mm)PM
k=1 f(YjMk)�(Mk)

(4)

where the marginal distribution of the data is

f(YjMm) =

Z
f(Yj�;Mm)p(�jMm)d� (5)
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given model Mm, which provides a measure of how much the data support each model.

Under BMA, the distribution of quantities of interest, �, such as future mortality or

relative risks, is represented as a mixture distribution,

f(�jY) =
MX
m=1

f(�mjY;Mm)�(MmjY) (6)

where the model speci�c distributions are weighted by the posterior model probabilities.

3.3 Prior Distributions for BMA

A key component to model averaging is the prior distribution for the parameters and mod-

els; how should we choose p(�mjMm) and �(Mm)? Subjective prior distributions may be

di�cult to elicit in large problems, especially when there are complicated interactions among

variables. Robustness of the prior is also a concern. In complicated models, aspects of the

prior distribution that have not received careful attention may lead to undesirable behaviour

in the posterior distribution (Berger 1985). In linear regression, p(�mjMm) is often based

on a normal distribution with mean zero, and prior covariance �(X0
mXm)

�1 and �(Mm) is a

uniform distribution over S, so that all models are equally likely a priori. Similar priors are

also often used in generalized linear models (Raftery 1996). In linear regression, this form

is often selected out of convenience because the calculations under conjugate distributions

lead to closed form solutions for the posterior distributions. While � is often based on con-

siderations of the range of �, � also has a strong impact on model selection, which is often

not taken into consideration. In fact, proper, but vague \non-informative" priors obtained

by taking � large, can lead to Bayes factors favoring the null model, even in situations where

the parameters estimates may be far from 0.

While a careful subjective Bayesian analysis is ideal, we argue that even when subjec-

tive information is available, it may be desirable to present results based on objective prior

distributions to accompany subjective analyses to check sensitivity of results to prior speci�-

cations. The Schwartz criterion or BIC is appealing in that it can be applied even when the

priors p(�mjMm) are hard to specify precisely, provides a reference procedure for scienti�c

reporting, and can be normalized to provide weights for BMA (Kass and Raftery 1995).

While AIC is another commonly used default procedure for model selection, it has not been
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used in BMA. In the next section, we describe objective prior distributions based on Je�reys'

prior and discuss how to calibrate such priors based on standard model selection criteria,

such as AIC and BIC. This provides a range of objective prior and posterior distributions

for use in BMA and scienti�c reporting, requiring varying degrees of evidence.

4 Objective Prior Distributions

In estimation problems with vector valued parameters, Je�reys (1961) suggested taking

p(�mjMm) = jI(�m)j
1=2 (7)

where jI(�m)j is the determinant of the expected Fisher information matrix. In many prob-

lems, this leads to an improper distribution, which is determined only up to a multiplicative

constant. We can always multiply an improper prior as in (7) by a constant am and still

have a \valid" improper prior distribution. The constants do not a�ect the posterior distri-

bution of � givenMm, but are present in the marginal likelihood, and thus Bayes factors or

posterior model probabilities contain the unde�ned constants.

We will show that speci�c choices of these constants yield what we will call Calibrated

Information Criterion (CIC) prior distributions for generalized linear models, and that these

CIC prior distributions can be used reconcile classical model selection and Bayesian model

selection based on posterior model probabilities. Other approaches for specifying the con-

stants based on imaginary training are in Spiegelhalter and Smith (1982). The CIC priors

provide a general framework for model averaging, as opposed to model selection, when model

uncertainty is an issue.

4.1 Calibrated Information Criterion Prior Distributions

For generalized linear models, we de�ne the CIC prior distribution as

p(�jMm)�(Mm) = (2�)�dm=2
����1cI(�̂m)

����
1=2 pY

j=1

�0(�j)
1�j (8)
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where dm is the dimension of model Mm and I(�̂m) is the observed Fisher information for

Mm evaluated at the MLE's �̂m with j; k elements,

[I(�m)]jk = �

�
@2

@�j@�k
L(�jMm)

�

and L(�jMm) denotes the log likelihood under Mm. This form automatically ensures that

the prior distribution takes into account the link function. For the Poisson regression model

with the log link the observed Fisher information is

I(�̂m) = X0
mV (�̂m)Xm (9)

where V (�m) is the covariance matrix for Y with elements exp(Xm�m) on the diagonal and

0 elsewhere. For the canonical link, the observed and expected Fisher information are the

same.

4.2 CIC Posterior Distributions

For the Poisson regression models under consideration we cannot obtain the marginal like-

lihood of the data (5) analytically. Laplace's method (Tierney and Kadane 1986) provides

a useful approximation to the marginal likelihood as long as the likelihood is peaked near

its maximum, which will be the case for large samples. Kass and Raftery (1995) have found

that Laplace approximations for determining posterior model probabilities are accurate for

sample sizes on the order of 20p or larger. As in classical approximations for obtaining the

distribution of MLE's, we replace L(�jMm) by a 2nd order Taylor series expansion about

�̂, so that under Mm

~L(�jMm) = L(�̂jMm)�
1

2
(�m � �̂m)

0I(�̂m)(�m � �̂m):

Using exp( ~L(�jMm)) in place of the actual likelihood, the (approximate) joint posterior for

�m and Mm factors as

p(�mjY;Mm) = N(�̂m; I(�̂m)
�1) (10)

�(MmjY) =
exp

�
1

2
(Dm � dm log(c))

	
PM

m=1
exp

�
1

2
(Dm � dm log(c))

	 (11)
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where Dm is the model deviance, which is the usual deviance (-2 times the log likelihood )

under the null model minus the deviance under Mm.

The log of the posterior model probability under the CIC prior distribution is

log �(MmjY) = k +
1

2
(Dm � dm log(c))

which is proportional to the model deviance minus a model complexity penalty term de-

pending on log(c). Posterior model probabilities under the CIC priors can be calibrated to

classical model selection through the choice of log(c) (Table 2) for popular methods such

as AIC (Akaike 1973, 1978), BIC (Schwarz 1978) and RIC (Foster and George 1994). For

the values of log(c) in Table 2, the model with the highest posterior probability under that

prior corresponds to the optimal CIC model using a penalized deviance criterion for model

selection. Using the CIC prior distributions, posterior inference within a model is based

on standard normal approximations in GLMs given by (10), but the CIC posterior model

probabilities can also be used to incorporate model uncertainty using (6).

[Table 2 here]

While much of statistical practice has focused on selecting a single model, this may be

unreasonable unless �(MkjY) is near one for one of the models under consideration or the

best models provide similar inferences; even if the posterior probability of the best model is

near one, there is little loss by using BMA as the best model dominates the mixture. Raftery

(1996) used BMA based on BIC in GLMs, however, the usual justi�cation of AIC provides

no way of taking into account model uncertainty (Kass and Raftery 1995). The CIC prior

distributions provide a justi�cation for model averaging using AIC and other classical model

selection criteria based on penalized deviance criteria of the form above.

The BIC and AIC priors provide a broad range for sensitivity analyses with BMA. AIC

often favors models that are more complex than models selected by BIC, and tends to

overestimate the number of parameters needed, even asymptotically (see discussion in Kass

and Raftery 1995). BIC is a more conservative strategy and requires much stronger evidence

to reject the null hypothesis, and hence often puts more weight on simpler models. For

example in a one dimensional testing problem, t2 statistics in favor of the alternative under

AIC correspond to values greater than 2 while for BIC, t2 values must be greater than
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log(n). A high probability of variable inclusion under both AIC and BIC priors implies

consistent strong support for an e�ect, while if both AIC and BIC lead to small probabilities

of variable inclusion, this provides consistent support in favor of the null. Situations where

the probability of variable inclusion is high under AIC, but low under BIC, require careful

consideration of prior distributions, and may indicate that the sample is not large enough

to detect an e�ect. Other choices of c may be more appropriate, and can be calibrated

based on considerations of practical signi�cance and costs/losses associated with decisions

of accepting di�erent hypotheses.

4.3 Implementing Model Averaging

For linear regression models with conjugate prior distributions and a small to moderate

number of covariates (less than 20), posterior distributions for many quantities can be deter-

mined analytically (George and McCulloch 1997). For larger problems, we typically cannot

enumerate all models so model averaging is approximated by using a sample of models from

S. Stochastic search using Markov Chain Monte Carlo (MCMC) methods or deterministic

search methods such as leaps and bounds can be used to identify a sample of models that

are used in BMA (see George and McCulloch 1997, Clyde 1999 and Hoeting et al. 1999

for discussion of approaches and methods for implementing BMA in the context of linear

and generalized linear models). For large problems with highly correlated variables (such

as the meteorological variables) using transformations based on factor analyses or principal

components may lead to improved convergence with MCMC methods (Clyde 1999, Clyde

and DeSimone-Sasinowska 1997).

For the application in the next section, we modi�ed the bic.glm code (available on the

BMA homepage, URL http://att.research.com/�volinsky/bma.html), written by C.

Volinsky. This uses the leaps and bounds algorithm to provide a preliminary list of models

for use with the objective CIC prior distributions; if a more detailed analysis including

subjective information or other proper priors is warranted, then one may later implement

Monte Carlo or MCMC methods to provide posterior samples for making inferences.
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5 Results for Birmingham

We explore the use of the CIC prior distributions for assessing the e�ect of particulate matter

on elderly mortality in Birmingham, AL and what impact model uncertainty may have on

decisions. We use the Poisson model with canonical log link given in (1) and consider possible

models based on the variables listed in Table 1.

As the combined design matrix for the thin-plate spline basis and meteorological and

PM10 variables contains more than 30 variables, and the leaps and bounds code in SPlus is

limited to 30 variables, one must either eliminate variables or use a multistage procedure.

We implemented the model search in two stages: the �rst stage was used to estimate the

non-parametric baseline trend using thin-plate smoothing splines; the second stage included

the posterior mean of the baseline trend estimated in Stage 1 and all meteorological and

PM10 variables listed in Table 1.

Figure 3 illustrates the degree of model uncertainty in the estimates of the baseline trend.

The thin solid line is the GLM estimate under the full model with all 30 knots. This closely

tracks a number of the high mortality episodes which may be a result of other (short-term)

factors. The dashed lines correspond to the top 100 models under the CIC posterior using

c = n, with the thick solid line corresponding to the predictive mean under BMA. This

provides an objective estimate of the baseline trend, without subjective assessment of the

number of knots, and appears to capture the necessary long-term variation without over-

�tting. We incorporate the BMA estimate of the baseline trend as a linear predictor in

the model; this can be thought of as an independent underlying baseline estimate as in

proportional hazards models. While this two stage approach ignores uncertainty in the

baseline estimate, we can later account for the additional uncertainty by repeating Stage 2

for a number of the top models from Stage 1, or by re�tting models identi�ed in Stage 2

under the baseline models identi�ed in Stage 1.

[Figure 3 here]

In Stage 2, 7860 models were selected by the leaps and bounds approach for use in

BMA. We used all 860 of the observations that had complete records for all of the lagged pm

variables, so that with all lags and the BMA baseline estimate the design matrix for the full
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model included 29 candidate predictors.

Relative risks for each model were based on a simultaneous 100 �g=m3 increase in all

PM10 variables (pm0, pm1, pm2, pm3)

R = exp (100(�pm0 + �pm1 + �pm2 + �pm3)) : (12)

The posterior distribution for the relative risk given Mm was based on a standard normal

approximation (using the Delta method) with mean based on (12) evaluated at the MLE

(posterior mode) under Mm, and variance,

�2R =

�
@R

@�

�0

�
�jMm

�
@R

@�

� ���
�=

^�jMm

where ��jMm
is the covariance matrix for � under model Mm with a block for �m that

is the inverse of the observed Fisher information matrix under Mm given in (9), and zero

entries elsewhere for the degenerate components for variables not included underMm. More

accurate approximations to the posterior distribution can be obtained by using Laplace

approximations (Tierney and Kadane 1986) or by using MCMC sampling, however, under

the Delta method approximations, Bayesian probability intervals correspond to classical

con�dence intervals used in other analyses.

Figure 4 links plots of the model space and corresponding MLE's of relative risks (pos-

terior modes) under the top 25 models under the BIC and AIC priors. The model space is

represented as a matrix, where rows correspond to models and columns to variables. In the

model matrix, a black square in position jk indicates that the kth variable is not included

in the jth model. The models are ordered from best (at the top) to worst (on the bottom)

with the scale on the y-axis reecting the log of ratio of the model probability of the best

model to the worst model in the entire sample of models. A di�erence of 2 or less in this

scale indicates that the top 25 models are more or less exchangeable.

[Figure 4 here]

The last 4 columns in the model space matrix correspond to the PM10 variables: pm0 -

pm3, the current day and 3 previous days. As the �gure shows, the top models under the

AIC and BIC priors are very di�erent regarding the inclusion of PM10: PM10 variables are

included in all of the top AIC models, but in roughly one third of the top 25 BIC models.
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The y-axis in the relative risk plots in Figure 4 also corresponds to models with the best

model at the top, thus providing a static link between the model space, which identi�es the

confounding variables, and the corresponding relative risk estimates. Clearly models where

all the coe�cients for PM10 are zero have relative risks of 1. The points indicate the mean

relative risk under each model, while the horizontal lines correspond to 95% probability

(con�dence) intervals. While the top 25 AIC models include PM10, most of the probability

(con�dence) intervals for relative risk include one.

Figure 5 illustrates the distribution of relative risk over all sampled models that included

PM10 in the model for both the BIC and AIC priors. The histograms at the top of the

�gure show the distributions of the MLE's of relative risks weighted by posterior model

probabilities. This illustrates model uncertainty in the (point) estimates, but ignores pa-

rameter uncertainty. The range in the estimates (indicated by the dots) is almost as large as

the length of individual probability intervals in Figure 4. The histograms at the bottom of

Figure 5 are based on samples of relative risks from the posterior distribution under model

averaging, which incorporates both model uncertainty and parameter uncertainty. While the

range and values of the relative risks are the same under both the AIC and BIC posteriors

(the same sampled models and realizations are used to reduce Monte Carlo variation), the

weights used in constructing the histograms depend on the posterior model probabilities and

priors.

[Figure 5 here]

Table 3 summarizes relative risks using the AIC and BIC prior distributions under model

averaging. While posterior means for the relative risk given that PM10 (or some lag of PM10 )

is included in the model are comparable under the BIC and AIC priors, (both approximately

1.05), the uncertainty over whether PM10 variables should be included in the model depends

greatly on whether the AIC or BIC priors are used. Under AIC, the probability that the

relative risk is 1 given the data is 0.03, while under the BIC prior the probability that the

relative risk is 1 given the data is 0.72. This in turn impacts the overall estimate of the relative

risk averaged over all sampled models (1.052 for AIC versus 1.015 for BIC). Because of the

asymmetry of the mixture distribution for relative risk under BMA, symmetric con�dence

intervals are less appropriate; the highest posterior density interval under the BIC prior is
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(0.99 - 1.11) while for the AIC prior the interval is (0.94 - 1.17). While the overall mean

relative risk is higher under BMA with the AIC prior, the associated level of uncertainty is

also greater, resulting in a wider probability interval.

[Table 3 here]

We also estimated relative risks using the area-wide average of PM10 and lags, and found

that the estimates of relative risk under BMA were 1.02 for AIC and 1.009 for BIC. For

comparison, Schwartz (1993) obtained a relative risk of 1.11, while Davis et al. (1996) had

relative risks in the range of 1.02 to 1.05. While the results of Schwartz are plausible (there

are models that have relative risks in this range), results under both the AIC and BIC priors

appear to support lower estimates of relative risks, with intervals that contain 1. While the

AIC prior results in more support for the hypothesis that the relative risk is not 1, both

approaches indicate that the increase in mortality is likely between 2 and 5 percent.

We may fail to reject the null hypothesis of \no e�ect" of PM10 because either there is

not enough data to detect an e�ect, or the data actually support the null hypothesis; one

advantage of BMA over the use of traditional p-values is that posterior probabilities can

distinguish between these two situations (Hoeting et al. 1999). The probability of an e�ect

is equivalent to the posterior probability that the relative risk not 1. For the BIC prior the

probability is 0.28, so that the data are indecisive, while under the AIC prior, the probability

is 0.97. In both cases, the data do not provide evidence in favor of no PM10 e�ect.

5.1 Validation Study

As the importance of the e�ect of PM10 on mortality depends on the choice of prior, we

carried out a small validation study to compare the predictive performance of Bayesian

model averaging and model selection under the AIC and BIC prior distributions. For this

we randomly selected 75 days with complete PM10 data, and repeated the BMA analysis

described in the previous section using the remaining data. For the 75 days in the validation

set, we computed the predictive MSE,

MSE =
75X
i=1

(Yi � Ŷi)
2=75

18



where Ŷi is the predictive mean of daily elderly non-accidental mortality. We calculated

predictive means and MSE's under BMA with the AIC and BIC priors, and for the best AIC

and BIC models (Table 4). The predictive comparison favors model averaging under the

BIC priors, with a gain in e�ciency over the best AIC model of just over 5%. Similar results

were obtained with other randomly selected validation sets. While this approach favors the

simpler models under BIC and BMA, little research has been conducted on validating PM10

mortality health e�ect models, and this is an open area for design of appropriate methods.

[Table 4 here]

6 Discussion

Using the methodology presented here, BMA can become a routine part of exploratory data

analysis as most quantities of interest are based on standard output from GLM packages.

The distributions of relative risk under BMA require generation of relative risks from the

posterior distribution, but this is straightforward under most higher level statistical packages.

The results are all conditional on the collection of models used, which does require special

consideration. As we proceed, we may �nd it necessary to enlarge the class of models un-

der consideration by allowing for overdispersion, nonlinear e�ects, or interactions. Bayesian

model averaging can be applied sequentially as new information or variables become avail-

able.

The analyses presented illustrate how model averaging can be used in health e�ect studies

using prior distributions based on AIC and BIC. In this example, AIC tends to favor models

with more complexity while the top models under BIC are much simpler. This leads to

wider probability intervals for relative risk under the AIC prior. While the predictive model

validation suggests that BIC is better calibrated than AIC, model averaging using the AIC

prior performs better than model selection using AIC. However, rather than trying to argue

that BIC is better than AIC, one of our goals here is to provide an objective list of potential

models ranked by AIC and BIC (or other CIC priors) as part of a sensitivity analysis. We

hope that by exploring linked plots we can gain a better understanding of confounding

variables. Given the collection of models, one can objectively discuss the relative merits
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of these models and priors. In this example, it is clear that the relative risk estimates

vary among the top models (particularly under AIC), and that the importance of the PM10

e�ect depends on whether the AIC or BIC prior is used. Ideally, we can also construct a

calibrated prior, where c is based on determining which values of relative risks are practically

signi�cant for decision making based on the size of the population at risk for contrast with

other subjective and objective prior distributions.

With the potential for reanalysis of existing studies due to legal challenges of the new

standards, model averaging provides a coherent methodology for combining inferences from

di�erent models for the same data, as well as judging how well the data support competing

models. By explicitly considering model uncertainty in analyses, more realistic measures

of uncertainty for relative risks can be obtained, providing a more secure foundation for

decision making.
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PM10 current day, one, two, and three day lags.

Daily Monitor 0023 pm0, pm1, pm2, pm3

Area Wide Average pma0, pma1, pma2, pma3

Temperature (current day, one and two day lags)

daily minimum temperature (tmin, tmin1, tmin2)

daily maximum temperature (tmax, tmax1, tmax2)

average daily temperature (mntp, mntp1, mntp2)

Humidity (current day, one and two day lags)

average dew point temperature (dptp, dptp1, dptp2)

daily minimum relative humidity (mnrh, mnrh1, mnrh2)

daily maximum relative humidity (mxrh, mxrh1, mxrh2)

average daily speci�c humidity (mnsh, mnsh1, mnsh2)

Atmospheric Pressure (current day, one and two day lags)

average daily station pressure (pres, pres1, pres2)

Seasonal Trend

thin-plate spline basis with up to 30 potential knots

Posterior mean of trend baseline

Table 1: Explanatory variables used in the Birmingham, AL analysis.

log(cm) CIC Criterion

1 R2 maximum R2

2 AIC Akaike Information Criterion
log(n) BIC Bayes Information Criterion
2 log(p) RIC Risk Ination Criterion

Table 2: Calibrated Information Criterion priors
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SUMMARIES AIC BIC

P(Relative Risk = 1 j data) 0.03 0.72
Posterior Mean of Relative Risk 1.052 1.015
Posterior Mean of Relative Risk for Models with PM10 1.054 1.053
Relative Risk for Best Model 1.025 1.00

Table 3: Summaries of the distribution of relative risk associated with a 100 unit increase in
PM10 under Bayesian model averaging (BMA) and model selection using the AIC and BIC
prior distributions.

Predictive MSE AIC BIC

Model Selection 16.83 16.03
Bayesian Model Averaging 16.31 15.98

Table 4: MSE for predicting mortality for the validation set under Bayesian model averaging
and model selection using the AIC and BIC prior distributions.

25



Figure 1: Location of PM10 monitors within the Birmingham metropolitan area (shaded
area).
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Figure 2: PM10 measurements for the daily monitor 1010 in Leeds versus PM10 measurements
from the daily monitor 0023 in Birmingham.
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Figure 3: Plot of daily non-accidental mortality in the elderly (over 65) population for
Birmingham, Alabama. The thick solid line corresponds to the baseline trend estimate
under BMA with the BIC prior distribution; the thin solid line is the GLM estimate under
the 30 knot model (roughly one knot for every 40 days); and the light dashed lines correspond
to individual estimates from the top 100 models under the BIC prior.
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Figure 4: Top 25 models and the corresponding estimates of relative risks with 95% proba-
bility intervals under the CIC priors with c = n (BIC) and c = exp(2) (AIC). Dark squares
indicate that the variable in that column is not included in the model for that row.
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Figure 5: Distribution of relative risk associated with a 100 �g=m3 increase in PM10 under the
BIC prior (left) and AIC prior (right) for all models that include PM10. Top: histograms are
posterior modes (MLE) for each model weighted by respective model probabilities. Lower:
histograms of relative risk incorporating both model uncertainty and parameter uncertainty.
The points indicate the range of the distribution. While the range and values of relative risk
are the same under both posteriors, the weights depend on the prior.
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