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Abstract

Environmental health policy decisions are characterized by irreversibility and
uncertainty of an economic, ecological and biomedical nature. For this reason
decision-makers may choose to exercise when possible some discretion over the
timing and scope of policy. Problems of this kind fall within the framework of the
theory of irreversible investments as applied to the sunk costs and sunk bene�ts
of environmental regulation. This work is an application of the basic theory to
the problem of timing and scope of emissions reductions for airborne particulate
matter. Particular attention is given to the representation of health e�ects in
a simpli�ed model of bene�t-cost uncertainty. The results describe analytically
and illustrate numerically a decision rule for optimal policy. The exposition is
designed primarily for the bene�t of quantitative policy analysts in the areas of
environmental and health regulation.

Keywords: Environmental health regulation, airborne particulate matter, bene�t-
cost analysis, irreversible investments, stochastic control

Introduction

There are growing national concerns about the costs, reach, and e�ectiveness of environ-

mental, health and safety regulation. The push is toward legislative reforms favoring greater

reliance on economic analysis in policy decisions. To discuss this issue a group of promi-

nent economists met recently under the auspices of the American Enterprise Institute, the

Annapolis Center, and Resources for the Future. As they emerged from these discussions,

Arrow and co-authors (1996) articulated a set of principles for guiding and improving quality

in the use of bene�t-cost analysis in environmental, health and safety regulation. Of interest

1Although the research described in this article has been funded in part by the United States Environmental Protection

Agency through agreement CR25173-01-0 to the University of Washington, it has not been subjected to the Agency's required

peer and policy review and therefore does not necessarily re
ect the views of the Agency and no o�cial endorsement should be

inferred.
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here was mention of the need to account for irreversibility of decisions and, repeatedly, the

ubiquity of uncertainty.

The present work describes an application of the basic theory of irreversible investments

under uncertainty to the problem of regulating airborne particulate matter. Policy is de�ned

as a solution to a stochastic control problem for the optimal timing and scope of emissions

reduction. Familiar readers will recognize that such problems can easily become intractable,

except to deeper mathematics or intensive numerical methods. In the interest of keeping

both the theory and the practice accessible, however, the problem is considered here only

in the context of a simpli�ed model of bene�t-cost uncertainty. Optimal policy is then

derived explicitly and studied numerically in a sensitivity analysis across selected decisional

elements. This project is designed for the bene�t of quantitative policy analysts to serve as

an introduction to the framework's potential to improve decision-making when setting air

quality standards.2

The U.S. Environmental Protection Agency's (EPA) new National Ambient Air Quality

Standards for airborne particulate matter of July 1997 underscores the growing concern about

the e�ects of particulate matter on environment and human health. The present analysis is

an opportunity to evaluate the practical importance of this theory and to determine whether

the sunk costs of policy adoption outweigh the sunk bene�ts of environmental preservation.

In the case of the EPA's new standards for particulate matter, a substantial 
ow of bene�ts

are anticipated to be derived directly from the positive health e�ects of improved air quality.

Health e�ects are therefore represented explicitly in the present model, rather than implicitly

as is often done in applications of the theory to the economic analysis of global warming.

The proposed theory can be put in several ways, but perhaps the most accessible for

our purposes is its expression by Pindyck (1996) and the formal treatment here owes its

essential features to his basic theory. Starting from an analogy with irreversible investments,

environmental policy decisions are framed in terms of problems in stochastic optimization

and control. The general framework includes problems of optimal timing of policy and se-

2An exception to this expository standard occurs in the technical demonstration of the main result, where

reference is made to the analytical framework for economic decision-making of Brekke and �ksendal (1991,

1994). Their theory is broadly applicable to the present problem and to more advanced applications.
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quential or incremental policy response. It also provides for a natural analysis of the role

of uncertainty and learning in the design and implementation of policy. Though illustrated

particularly in terms of economic and ecological factors in the context of global CO2 emis-

sions policy, the theory is posed generally enough to cover a broad range of environmental

problems.

A brief history of this approach might begin with a discussion in Weisbrod (1964) about

the `option value' of preserving national parks for later generations who may want to visit

pristine lands. Further elaborations emerged with more than one interpretation of Weis-

brod's notion, but the branch followed here is perhaps best represented analytically by the

contributions of Fisher and co-authors (1972), Arrow and Fisher (1974), Henry (1974), Fisher

and Krutilla (1985), Hanemann (1989) and �nally Pindyck (1996). Their research issued the

development of a statistical theory of optimal decision making in environmental economics

and management. The driving force in this theory is irreversibility. Uncertainty plays a

qualifying but inescapable role. The result today is that, at least in theory, environmental

policy decisions must reconcile certain opportunity costs and bene�ts, the value of 
exible

timing or scope of regulation, and the prospect that the future will in some way bring missing

or incomplete information to light.

The full weight of the theory is beyond the scope and purpose of the present work. A

more sophisticated model would substantially change the results, so only qualitative implica-

tions should be drawn from the present model and the numerical illustrations. At the same

time, though the model highly stylized, the results from the present model may nevertheless

serve as a point of reference, in the manner suggested by Cox (1997), for comparison with

the results of numerical simulations of more detailed models.

Bene�t-cost uncertainty: A simpli�ed model

This section describes a simpli�ed model for economic analysis of timing and scope of

regulation for airborne particulate matter. The model deals only with economic or bene�t-

cost uncertainty; otherwise, the stock of pollutants and the stock of loss-of-health are known

with certainty. That the latter kind of uncertainty plays no role here is a consequence of the

linear structure of the social costs and the nature of the payo� from regulation. Alternative
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models are discussed later as the focus of continuing research.

Readers familiar with Pindyck's work on global warming will recognize the model. It is

one among several models considered in his work for which there exists an explicit analytical

solution, a solution which may be readily examined for its sensitivity to the key elements of

decision. The purpose of this discussion is to introduce the decision-making framework for

environmental regulation in the context of an environmental health regulation where the reg-

ulatory payo� may also be derived from the anticipated bene�ts to the public health. In the

case of regulating airborne particulate matter, this means reduced rates of upper respiratory

diseases like asthma. A new feature in the present model, therefore, is the representation of

health factors in addition to ecological factors among the decisional elements de�ning policy.

The results will also examine the e�ects of these factors on the distribution of the optimal

timing of policy.

First, suppose that pollution enters the environment at the equilibrium rate � and decays

at the rate �. In a world of certainty the stock of pollutant converges in the long run to the

ratio �=�. Second, suppose conceptually that there is an underlying stock of loss of human

health and that ~� is the rate of incidence or production of loss-of-health while ~
 is the rate of

loss-of-health decay. The stock of loss-of-health converges in the long run to the ratio ~�=~
.

Next, suppose that society chooses to adopt a policy at calendar time T with the e�ect of

reducing the emissions rate by 100u%, for 0 < u � 1. In this case, suppose that the stock of

pollution, M , follows the trajectory given by:

Mt =

8><
>:

�
�
(1� e��t) +M0e

��t for t < T

(1�u)�
�

(1� e��t) +MT e
��t for t � T .

(1)

Suppose further that as policy takes e�ect a marginal increase in the optimal health tra-

jectory is anticipated in response to the positive health e�ects associated with a drop in

pollution. In particular, suppose that the production rate decreases to ~�e�du, for some

positive elasticity d. In this case, suppose that the stock of loss-of-health, ~H, follows the

trajectory given by:

~Ht =

8><
>:

~�
~

(1� e�~
t) + ~H0e

�~
t for t < T

~�e�du
~


(1� e�~
t) + ~HT e
�~
t for t � T .

(2)
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Policy then e�ects a downward shift in both the equilibrium level of the stock of airborne

particulate matter and the stock of human loss-of-health. The presence of knock-on health

e�ects is particularly important to bene�t-cost analysis of policy for airborne particulate

matter.3

For the purpose of economic analysis, let A denote the unit cost of emissions in monetary

terms as given by the Itô equation:

dAt = �Atdt+ �aAtW (dt); or At = A0e
�t� 1

2
(�a)2t+�aWt(3)

where W is a Wiener process and � and �a are �xed parameters. As a geometric Brownian

motion with appreciate rate � and volatility �a, unit cost of emissions is the only source of

bene�t-cost uncertainty in the problem. Suppose that the 
ow of social costs of pollution,

Xu;T , is given by the linear expression:

Xu;T
t = �At(Mt + � ~Ht);(4)

where � denotes the cost basis for a unit of loss-of-health per unit cost emissions. This is con-

sistent with one of the models for bene�t-cost analysis introduced and developed by Pindyck

(1996). The new feature in the present model is the explicit abstraction of health e�ects.

The idea is that A responds to tastes and preferences, while M +� ~H expresses damages due

to pollution in the environment and human loss-of-health, the chief externalities of economic

activity in the model. The basic idea for this expression is derived from the conceptual

framework for economic analysis in Nordhaus (1991), where consumptive preferences arise

from a utility function and the damages from the disutility of pollution.4

The model is interpreted to say that society derives the fruits of economic activity in

part by burning fossil fuels and so on. The economic process, A, responds to shifts in tastes,

3Grossman (1972) �rst developed the notion of health capital, H say, as associated with its productive

element `healthy time.' There is then a parameter, 
0 say, representing the maximal available capital, so

that 
0�H expresses the present notion of loss-of-health stock. In wage studies in econometrics, for example

the work of Cropper (1977, 1981), there are 365 healthy days available so that loss-of-health amounts to the

number of unhealthy or sick days without work.
4This conception, as pointed out in Pindyck (1996), has enormous potential for the purpose of generalizing

the approach. Directions for this are discussed later in this work.
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technologies, and patterns of resource and health-care utilization. Its appreciation rate, �,

is that of the underlying rate of growth of consumption in the economy. Chief among the

externalities in the model is the stock of pollutants, M , which accumulates with economic

activity at rate � and decays at rate �. The parameter � speci�es the ambient rate of removal

by the environment, so a strictly positive removal rate indicates that the e�ect of pollution

on the ecology is at least partially reversible. Next, the knock-on health e�ects of pollution

are at least partially responsible for the production of a loss stock of human health, ~H, which

accumulates at rate ~� with the incidence of mortality, morbidity, and respiratory disease like

asthma. At the same time, with gains in health capital, the stock of loss-of-health decays

at the underlying rate ~
. The model says that only the production of lost health, and not

its decay, depends on the emissions rate of airborne particulate matter. In this case, the

control of emissions has the potential to modify the trajectories of the loss-of-health stock

by permanently lowering the rate of production of emissions-related illness and disease.5

A policy that reduces stock levels of pollutant by �M say incurs a bene�t given by A�M

in ecological terms and, assuming a knock-on reduction � ~H(�M) in lost health stock, a health

bene�t given by �A� ~H(�M), where � is the cost basis for a unit of loss-of-health per unit cost

emissions. The net bene�t of such a policy is then given by the present value of the 
ow

of social bene�t, A(� ~H(�M) + �M), minus the adoption cost of the policy. The tradeo� here

is then between the costs of the reduction and society's willingness to pay for the bene�ts,

re
ecting both the value placed on income or consumption and the anticipated improvements

in public health.

The policy problem is to devise a strategy or control for regulating the rate of emissions of

airborne particulate matter. According to the model, each control may be represented by a

pair (u; T ), say, where T is a stopping time with respect to the �ltration or history generated

by the economic process A and u is a level of reduction in [0; 1]. The implied regulation

typically entails a commitment to an adoption cost amounting to the (random) variable

Ku;T or simply Ku when such costs depend only on the level or scope of the reduction.

Unless policy is reversible, the adoption cost is completely sunk as for example would be the

5While it may also be natural to expect a pollution e�ect on the rate of loss-of-health decay, such an

e�ect signi�cantly complicates the analysis of the model beyond the scope and intention of the present work.
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cost of retro�tting a production facility with an emissions control device. Suppose �nally

that the social value of time is given by the discount rate r, which strictly exceeds the

appreciation rate, �, of unit cost of emissions. In this case, the net present value of policy is

given by

V u;T (A0; ~H0;M0) = IE0

Z
1

0
Xu;T

t e�rtdt� IE0K
ue�rT ;(5)

expressing the monetary value associated with a particular emissions policy, that is (u; T )

from the class of admissible controls. Notice that IE0 is the conditional expectation given

the initial data (A0; ~H0;M0). The value, V
�, of an optimal policy is then given by

V �(A0; ~H0;M0) = sup
u;T

[IE0

Z
1

0
Xu;T

t e�rtdt� IE0K
ue�rT ];(6)

as an expression of the monetary value of an optimal policy for the control of emissions of

particulate matter.

Ordinarily, the optimal control, (u�; T o) say, at which maximal value is attained, is dif-

�cult to characterize explicitly. Not so for the simpli�ed model of bene�t-cost uncertainty

being considered here. The discussion therefore will focus on characterizing the solution in

terms of optimal timing of optimal levels of reduction and on providing numerical illustra-

tions of the main result.

Elements of decision and optimal policy in a world of certainty

This section contrasts the present model with a traditional bene�t-cost analysis. The

contrast exposes the key elements of decision-making in the formulation of optimal policy.

The phrases \sunk costs" and \sunk bene�ts" express a central concept in the analysis of

irreversible decisions. A sunk cost is the irrecoverable cost of adopting an environmental

policy, such as the cost of installing new scrubbers on factories, scrapping old machinery for

new fuel-e�cient models, or paying higher prices for better-grade fuels. A sunk bene�t, in

contrast, is a negative opportunity cost or preventive bene�t of adopting an environmental

policy, such as the bene�t of avoiding irreversible environmental damage, of preserving fragile

ecosystems, of saving human lives, or of reducing morbidity. Understanding the trade-o�s

imposed by such costs and bene�ts is key to understanding a modern bene�t-cost analysis.6

6This section is again designed for the bene�t of the quantitative policy analyst who may not be entirely
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The basic themes are demonstrated here in a world of certainty. This is achieved in the

present model by removing the economic uncertainty from the picture, namely taking �a

equal 0 so that the economic process, A, is given by t ! A0e
�t. A traditional bene�t-cost

analysis compares the value of adopting policy now (T = 0) with the value of never adopting

policy (T =1). For this purpose, let r denote the social discount rate, where r exceeds �.

The net present value, NPV0, of the proposed regulation is then given by:

NPV0 =
�A0(~� � ~�e�du)

(r � �)(r + ~
 � �)
+

A0u�

(r � �)(r + � � �)
�Ku(7)

where Ku denotes the sunk cost of adopting the policy now. The leading term on the right-

hand-side of Equation 7 represents the present value of the anticipated bene�ts of mitigating

adverse e�ects of pollution on the public health. The second term represents the present

value of the ecological bene�t of reduced emissions to the environment. Society adopts the

policy whenever NPV0 is positive, meaning the bene�ts of pollution abatement now exceed

the sunk cost of adoption. In this case, the scope of policy or level of response, u, is derived

by equating the marginal cost of adoption to the marginal bene�t. If u! Ku where linear,

for example, the optimal scope would be 100%.

In addition to the adoption cost, Ku, Equation 7 introduces two other key elements

of decision-making for environmental health policy: the terms E and ~H as given by the

expressions

E =
u�

(r � �)(r + � � �)
; and ~H =

(~� � ~�e�du)

(r � �)(r + ~
 � �)
:(8)

The ecological factor, E , �gures prominently in the work of Pindyck (1996). The health

factor, ~H, appears here because of the explicit abstraction of health e�ects of pollution on

the 
ow of social costs. Expressed in monetary terms, these elements of decision give rise to

the value of the ecological bene�t of policy, namely A0E , and the value of the health bene�ts

of policy, namely A0� ~H.
familiar with the notion of irreversibility and its consequences for environmental policy. Readers familiar with

these ideas may choose to skip ahead. The analogy between irreversible investments and environmental policy

is already familiar to readers of the literature on global warming; see for example Birge and Rosa (1995),

Conrad (1997), Nordhaus (1991), and especially Pindyck (1996) from this large and fast moving literature.

Readers interested in an entirely nontechnical discussion of these ideas for the bene�t of environmental health

professionals may wish to consult Phelan (1998).
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Evidently the value of ecological plus health bene�ts provides an incentive for society to

act now in the face of the sunk costs of adoption. The value of the incentive decreases in

ecological terms with a rising removal rate, �, and in health terms with a rising decay rate,

~
, indicating in both cases the partial reversibility of damages. On the other hand recall

that the social costs of pollution are appreciating at rate �. The e�ects of irreversibility then

imply, even in a world of certainty, that it may be optimal for society to delay policy until

such time as discounting lowers su�ciently the present value of the sunk costs of adoption.

In particular, suppose society contemplates delaying policy until time � , representing

some �xed calendar date in future. The net present value of policy that waits until time �

rather than adopt policy now is given by:

NPV� = Ku(1� e�r� )� A0(E + � ~H)(1� e�(r��)� )(9)

where the factors E and ~H are those of Equation 8. Society will delay policy whenever NPV�

is positive, which depends on the interplay between the opportunity costs and bene�ts of

doing so. Notice that the sunk cost of adoption, Ku, will always provide an incentive to

wait. This is measured by the savings brought about by the di�erence between adoption

costs today and the present value of adoption costs tomorrow, namely the opportunity cost of

early exercise of society's option to adopt policy. In contrast, ecological bene�ts and health

bene�ts present a general disincentive to wait in terms of the negative opportunity costs of

delaying sunk bene�ts.

The exhibit entitled \A numerical illustration" treats these decisional elements in terms

of a hypothetical scenario. The discussion illustrates tradeo�s between sunk costs and

sunk bene�ts that are typical of environmental problems, re
ecting the role particularly of

irreversibility|a role further quali�ed by uncertainty|which signi�cantly shifts the grounds

for decision making and the ultimate design of policy.7 Responding to problems today or

7A basic insight is that the omission of sunk bene�ts from traditional bene�t-cost analysis biases now-

or-never decisions against adoption of policy, while the omission of sunk costs biases now-or-never decisions

toward adoption of the policy. The timing of policy on the other hand involves an interplay between the

negative opportunity costs of delaying sunk bene�ts, since waiting entails the realization of ecological damage

to the environment and adverse e�ects to the public health, and the depreciating present-value of adoption

costs.
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A numerical illustration

This numerical illustration of the elements of decision is not an attempt at an actual analysis
of policy, nor is there pretense to justify the particulars on objective grounds.The values chosen
for illustration may be more-or-less consistent with �gures from various sources.

First, the rate of emissions, �, of particulate matter (PM) is given by 10 megatons per annum.
The initial social cost, A0, is $25 per ton per year, which cost appreciates at � equal 2.5% per
year. The emission �gure includes about 6.9 megatons of direct PM plus a very modest indirect
contribution from the annual emissions of selected precursors among SO2, NOx and various
volatile organic compounds. The removal rate, �, is taken to be a fairly e�cient 0.045. The
equilibrium level of stock is then about 222 megatons.

Next, the initial social cost, �A0, per `unit loss-of-health capital' is $5 million per unit loss-
of-health per year, which cost then appreciates at 2.5% per year. The parameter d for health
e�ects is taken to be 0.7 per unit of emissions reduction. The rate of loss-of-health decay, ~
,
is taken to be 0.025, and the rate of loss-of-health production, ~�, 6.5 units per annum. This
means, for example, that the equilibrium is initially 260 units of loss-of-heath capital.

There is an open problem here of how best to calibrate the unit cost of emissions for the human
loss-of-health capital. For the present purposes, the social cost of a unit of loss-of-health scales
essentially, though not literally, to about 22 statistical years of life saved at $229,000 per year.
This conception of loss-of-health capital is an imperfect composite folding together various
categories of human su�ering in a diverse mixture of people and costs. The 50% reduction
contemplated below yields about 1,700 of these `year-units' per annum with a present-value
bene�t of $16 billion.

A second, no less sticky problem lies with the notoriously elusive health e�ects of PM, which are
di�cult to establish, tend to be relatively small and appertain to large numbers of individuals.
The choices made here suggest a moderate e�ect on loss-of-health production. Some of this
moderate e�ect might be obtained by virtue of a cleaner environment, even in the absence
of demonstrable e�ects of particulate matter on either the incidence or severity of respiratory
disease. In response to the cleaner environment, some argue, greater public participation in
outdoor recreation might incur the health bene�ts of a more active population.

Suppose that society contemplates halving the rate of emissions from its current rate of 10
megatons to 5 megatons per annum. The cost of adoption, K0:5, is given by $70.5 billion. For a
social discount rate, r, of 4% per year, the decisional elements A0E and A0� ~H are given by $139
billion and $16 billion, respectively, as derived from Equations 8. According to Equation 7, the
net present value, NPV0, is given by:

NPV0 = $141b;

so conventional bene�t-cost analysis would suggest that immediate control at 50% reduction is
better than no regulation at all. On the other hand, according to Equation 9, the net present
value of waiting 6 years, NPV6, is given by:

NPV5 = $1:7b;

so there is greater value in waiting. In fact, according to these data, the optimal timing for
a 50% reduction of emissions is about 7.7 years. By contrast, the optimal timing for a 40%
reduction turns out to be 2.5 years, so the value of waiting 6 years, or 3.5 years too late, turns
out to be negative.
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at full levels incurs certain opportunity costs that put value on waiting for new information

or employing 
exible approaches. Recognizing these e�ects leads the analysis toward the

optimal policy in terms of timing and scope of regulation.8

Optimal timing in a world of certainty involves maximizing the value function of Equa-

tion 5, speci�cally maximizing over T for �xed u. The result here is that the optimal time,

To, for the adoption of policy in a world of certainty is given by:

To =
1

�
ln[

rKu

(r � �)A0(E + � ~H) _ 1];(10)

where all terms are as de�ned above. The formula clearly indicates that the value of the eco-

logical bene�t plus the health bene�t hastens the time for policy adoption. It also indicates

that delaying e�ects of rising adoption costs.

The table entitled \Elements of Decision and Optimal Timing" illustrates the elements

of decision and optimal timing for a range of controls or levels of reduction. The parameter

values are taken from the earlier exhibit \A numerical illustration," where the case of a 50%

reduction was treated speci�cally, and contrasted with the case of a 40% reduction. The

overall results show, for example, that reductions between 20% and 40% lead to relatively

early adoption, but reductions near 10% or those beyond 50% lead to later adoption. At low

levels of reduction, the ecological and health bene�t is relative small, while at high levels

of reduction, the adoption cost are steep. Incidentally, for the purpose of this illustration,

adoption costs increase (exponentially) from a base of $12.25 billion at a rate of 3.5% per

percent reduction. Regardless of how one views this illustration politically in terms of the

projection of adoption costs, the problem of projecting adoption costs econometrically is

always among the critical problems of bene�t-cost analysis.

Figure 1 provides a graphical illustration of optimal timing for the 40% level of control.

The optimal timing is shown to be 2.5 years, which time maximizes the present value of

the 
ow of social costs over all times � using Equation 5 and the formula of Equation 10.

8The present work looks only at one-time reductions of emissions. Sometimes a sequential policy is

warranted by various incentives for gradual policy adoption. For example, the traditional treatment foregoes

the possibility that new information, whether it be scienti�c, economic or biomedical in nature, will come to

light in ways that signi�cantly impact the best regulatory response. Add the prospect of learning about the

future or resolving some uncertainty and the value of 
exibility takes on additional practical signi�cance.
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Elements of Decision and Optimal Timing

A Numerical Illustration

Level of Reduction Ku A0E �A0
~H NPV0 NPV6 Optimal Timing To

10% 17.4 27.8 3.7 18.9 1.00 15.5 yrs
20% 24.7 55.6 7.1 49.8 -0.13 2.0 yrs
30% 35.0 83.3 10 80.4 -0.59 0.0 yrs
40% 49.7 111 13 111 -0.10 2.5 yrs
50% 70.5 139 16 141 1.71 7.7 yrs
60% 100 167 19 171 5.40 14.5 yrs
70% 142 194 21 201 11.7 22.5 yrs
80% 201 222 23 230 21.9 31.3 yrs
90% 286 250 25 260 37.3 40.7 yrs
100% 405 278 27 289 60.3 50.6 yrs

These summary calculations are in accord with the context given in \A numerical illus-

tration." For each level of reduction, the decisional elements are expressed in billions of

dollars, while the optimal timing of policy, To, is expressed in years. Each combination of

level of reduction and optimal timing constitutes a control policy. The situation depicted at

the row labeled 50% reduction recalls the details behind the earlier numerical illustration,

where the claim was made for optimal timing at year 7.7 in the face of the various costs

and bene�ts. Notice that NPV6 is negative whenever year 6 surpasses optimal timing. This

indicates that the incentive to wait has passed. Figure 1 provides a graphical illustration

behind the maximization leading to the control policy as associated with the 40% reduction

at year 2.5. Figure 1 also illustrates the optimal policy, taken over all reductions and times,

to be about the 74% reduction at year 26. The details for this policy lie roughly between

the constellation of decisional elements in the rows labeled by the 70% and 80% level of

reduction.

Often, however, policy makers might aim at simultaneous optimization of timing and scope.

This is accomplished by maximizing the value function over u and � . As depicted in Figure

1, the present scenario yields approximately 74% for the optimal level of reduction with a

corresponding timing at year 26.
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2 5 8
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($1.00)

($0.80)

($0.60)
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($0.20)
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$0.20

Net Present Value

40% reduction

Optimal timing 2.5 years

20.0% 50.0%

$0.00

$20.00

$40.00

$60.00

$80.00

$100.00

Value of Optimal Timing

Optimal timing and scope

74% reduction at year 26

Figure 1. The lefthand exhibit shows the graph of the net present value, � ! NPV� ,

associated with the 40% level of reduction. Though NPV0 is a positive $11 billion, there

is still value in waiting for the optimal time, To, at about 2.5 years. The righthand

graph shows the value of an optimally timed policy over all levels of reduction; the value

function itself is given in the next section as the present value of the 
ow of social costs.

For a decision taken at the optimal time, the optimal control, u�, is indicated at the

74% level of reduction. The corresponding optimal timing is year 26.

Such is optimal policy in a world of certainty. The balance of this work treats the problem

of optimal timing and scope of environmental health policy in the context of the simpli�ed

model of bene�t-cost uncertainty.

Optimal policy in a world of uncertainty: Timing and scope of emissions reduction

This section describes the decision rule for optimal policy for the reduction of emissions

of airborne particulate matter in a world of bene�t-cost uncertainty. Policy is characterized

by the optimal timing of an optimal reduction of emissions, as policy makers contemplate

one of three actions: to act now, to wait until a later time or to never act at all. The timing

of policy depends on the stochastic evolution of unit costs of emissions, while the scope of

policy depends on maximizing the expected payo� at the time of adoption of policy.
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Formally, each policy is determined by its timing and scope. This refers to a pair of

numbers, namely (u; T ), indicating a fractional reduction of emissions by an amount u as

imposed at time T . The timing, T , denotes a stopping time that marks the beginning of

a regulatory epoch as given by the interval [T;1). The scope, u, of policy is a fractional

reduction of emissions for the duration of the regulatory epoch. Recall that policy has

the e�ect of both reducing emissions by 100u% and of reducing the rate of loss-of-health

production by 100(1 � e�du)%. These e�ects lower the equilibrium level of the stock of

pollution to (1� u)�=�, and the equilibrium level of loss-of-health stock to ~�e�du=~
.

Notice that, as the control variable in the problem, the emissions rate of particulates is

the direct object of regulatory action. Health e�ects may be considered knock-on e�ects

of the reduced emissions. Readers familiar with the National Research Council's Report to

Congress, NRC 1998, recognize that the magnitude or even the presence of health e�ects

constitutes a key source of scienti�c uncertainty for airborne particulate matter. For this

reason, decision-makers may choose to investigate the e�ects on policy of a range of health

e�ects in a sensitivity analysis.9

The next proposition describes the decision rule for the optimal timing of policy with an

a priori �xed scope in a world of economic uncertainty.

11 Proposition: Optimal policy in a world of uncertainty. Consider the case of a �xed

level of reduction, u, for 0 < u � 1. Suppose that economic uncertainty, �a, lies within
p
2�,

the square root of twice the appreciation rate. Let Ku denote the strictly positive expected

cost of adoption and p; Ê, and ~̂H the following set of coe�cients:

p =
�(�� (�a)2=2) +

q
(�� (�a)2=2)2 + 2r(�a)2

(�a)2
> 1;

Ê =
p� 1

p

u�

(r � �)(r + � � �)
and ~̂H =

p� 1

p

(~� � ~�e�du)

(r � �)(r + ~
 � �)
:

Notice that p depends explicitly on bene�t-cost uncertainty, namely �a, and that Ê and ~̂H
represent simply rescaled versions of the decisional elements E and ~H of Equation 8.

9This is done in part below. Another approach, beyond the scope of this work, makes health e�ects the

object of a (Bayesian) learning policy.
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To describe policy, let D denote the open interval given by (0; Ku=(Ê + � ~̂H)). The set

D is the continuation region for the problem. The optimal timing of a level-u reduction of

emissions is given by the stopping time TD, where

TD = inf
t>0
fAt =2 Dg = inf

t>0
fAt � Ku=(Ê + � ~̂H)g;

namely the �rst time that the unit-cost of emissions, A, attains or exceeds the trigger cost

as given by the cost-bene�t ratio Ku=(Ê + � ~̂H).
Finally, the value function for the problem, #, is given by the function:

#(a; ~h;m) =
Ku

p� 1

0
@aÊ + a� ~̂H

Ku

1
A
p

� am

r + � � �
� a�

(r � �)(r + � � �)

� a�~�

(r � �)(r + ~
 � �)
� a�~h

r + ~
 � �
;

for m > 0, ~h > 0 and a in �D, the closure of D. For a in IR+ n �D, # equals the payo� function

g, where g is given by

g(a; ~h;m) = � a(1� u)�

(r � �)(r + � � �)
� am

r + � � �
� a�~�e�du

(r � �)(r + ~
 � �)
� a�~h

r + ~
 � �
�Ku:

The payo� is simply the value of policy upon immediate adoption. 2

Proposition 11 describes the policy for optimal timing of emissions reduction having a

priori �xed scope. Policy makers monitor unit costs of particulate emissions until such time

as they appreciate to the level of the trigger cost, Ku=(Ê + � ~̂H), or the critical cost-bene�t
ratio. Policy is thus triggered when the marginal opportunity bene�ts of action o�set the

marginal opportunity costs of delay. The actual rate of unit-cost appreciation is uncertain,

so the trigger cost involves an in
ation factor, p=(p� 1). The in
ation factor is particularly

sensitive to the value of the parameter �a or the amount of bene�t-cost uncertainty. The

parameter p tends to 1 from above as uncertainty increases, thus in
ating the trigger cost

needed for adoption of policy. This in turn pushes the timing of policy (statistically speaking)

further in the future. The origin of the parameter p emerges below, as does the origin of the

leading term in value function, #, for the problem. This latter term values society's option to

adopt the policy based on current unit costs of emissions, a central notion in all irreversible

decisions.
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This solution is consistent with related results from the basic theory in Pindyck (1996).

There is a new element, however, represented by the health-bene�t factor, ~̂H, as the explicit
accounting for the knock-on health e�ects of policy. A formal demonstration of the main

result is given below, in part to draw attention to a theory of Brekke and �ksendal (1991,

1994) for optimal stopping and sequential stochastic control. This theory is of general interest

to bene�t-cost analysts because it is both broadly applicable and adapted especially to the

needs of economic decision-making. The formal demonstration is followed in the next section

by discussion of a numerical illustration of the main result. The illustration includes an

investigation of the distribution of the optimal timing of policy. These results are of special

interest to the quantitative policy analyst.

The �rst task is to show that the timing of policy falls within the class of optimal stopping

problems considered for economic analysis in the work of Brekke and �ksendal (1991). To do

so, let Y 0 denote the post-regulatory process, namely (A; ~H;M) with constant emissions rate

given by (1� u)� and constant rate of loss-of-health production given by ~�e�du. These are,

of course, the rates prevailing during the regulatory epoch. Next, let g denote the function

on IR3
+ given by

g(y) = IE 0y
Z
1

0
�(Y 0

t )e
�rtdt�Ku;(12)

where IE 0y denotes conditional expectation with respect to the distribution of Y 0. The entry

point, y, is some triple (a; ~h;m) in IR3
+ and the function � denotes the linear social costs of

pollution as de�ned at Equation 4. The second term, Ku, as before denotes the expected cost

of policy adoption as some function of u only. Now let Y denote the pre-regulatory processes,

namely (A; ~H;M) with constant emissions rate given by � and constant rate of loss-of-health

production given by ~�. These are, of course, the rates prevailing during the pre-regulatory

epoch. For each policy (u; T ), by virtue of the construction of the stock variables M and ~H,

an elementary calculation reveals that the value function, V u;T , of Equation 5 is given by

the equation

V u;T (y) = IEy

"Z T

0
�(Yt)e

�rtdt+ g(YT )e
�rT

#
;(13)

where IEy denotes expectation with respect to the distribution of Y with entry point y,

namely some entry point (a; ~h;m) in IR3
+ for the pre-regulatory process (A; ~H;M).
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Optimal timing is therefore equivalent to the optimal stopping problem for the pre-

regulatory process Y with cost function �, payo� g and discounting at rate r. For �xed

reduction u, the value function in this case, V �(u), is given by the equation

V �(u; y) = sup
T

IEy

"Z T

0
�(Yt)e

�rtdt+ g(YT )e
�rT

#
;(14)

for every starting point y in IR3
+. Proposition 11 exhibits the unique solution to this problem.

Demonstration of Proposition 11. The demonstration consists of verifying the conditions

of Theorem 2 in Brekke and �ksendal (1991). Regarding the correspondence of notation,

the payo� function g has the same designation in both settings. Otherwise, the functions

h and f in Brekke and �ksendal correspond respectively to the functions # and � in this

setting. The open sets W and D in Brekke and �ksendal correspond respectively to the

open sets (0;1)3 and D� (0;1)2 in the present model. The fact that �� is always positive,

and the monotone convergence theorem, replaces Brekke and �ksendal's Condition (60) on

appeal to their Generalized Dynkin formula. For purposes below, let A denote the Markov

Generator belonging to the process Y . Let L denote the Markov Generator A � r for the

process Y with killing at rate r. The latter process corresponds to the process X in Brekke

and �ksendal.

As suggested above, de�ne W as the strictly positive octant of IR3 and rede�ne the

continuation region, D, of the present model as a subset of this W . Notice �rst that the

boundary, @D, namely the set f(a; ~h;ma) : aÊ + a� ~̂H = Kug, is manifestly C1. At the same

time notice that the Markov Generator A is elliptic on W . Therefore, on every su�ciently

small ball centered on the boundary set @D \ W , the Markov Generator A is uniformly

elliptic. Finally, starting from any point in W , the stopping time TD is almost surely �nite,

since A is a Geometric Brownian motion and 2� strictly exceeds (�a)2. This is demonstrated

in detail for example in Karlin and Taylor (1975), page 362, for the Brownian motion lnA

having strictly positive drift, given here by �� 1
2
(�a)2.

Next, as a polynomial on the closure of the continuation region, the candidate # for the

value function belongs to the set of smooth functions C1( �D) \ C2(D), again with D viewed
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as a subset of IR3
+. And as the payo� function g satis�es the equation

g(m; ~h; a) = � a(1� u)�

(r � �)(r + � � �)
� am

r + � � �
� a�~�e�du

(r � �)(r + ~
 � �)
� a�~h

r + ~
 � �
�Ku;

for every (a; ~h;m) in W , it too is evidently C1 on W and C2 on W n �D. At the same time,

by de�nition of D, a brief algebraic exercise shows that the function #� g is positive on the

open set D.
Regarding the payo� function, it remains only to show that the function Lg is bound

by �� on W n �D, where � refers to the linear social cost of Equation 4 and where L is the

Markov Generator A� r. To wit, by de�nition of g and L, the function Lg is seen to satisfy

the equation

Lg(m; ~h; a) = ��(m; ~h; a) + rKu � au�

r + � � �
� a�(~� � ~�e�du)

r + ~
 � �
:

Now apply the de�nition of D and use that r > r�� > 0 to show algebraically that Lg � ��
for every (a; ~h;m) in W n �D.

It remains, �nally, to demonstrate the optimal stopping criteria for the underlying free

boundary problem, including the `smooth pasting' and `high contact' conditions. For this

purpose, let OV denote the mapping given by a! (Ku=(p� 1))
�
(aÊ + a� ~̂H)=Ku

�p
: Now

apply the Markov generator L to # and observe that the resulting function L# satis�es the

equation

L#(a; ~h;m) = [p(p� 1)(�a)2=2 + �p� r]OV(a) + am + a�~h = ��(m; ~h; a);

which equation uses that r = p(p�1)(�a)2=2+�p and the de�nition of �. Next, for (a; ~h;m)

in @D, the function #� g satis�es the equation

(#� g)(a; ~h;m) =
Ku

p� 1
� p

p� 1

�
aÊ + a� ~̂H

�
+Ku = 0;

since a equals Ku=(Ê+� ~̂H) on the boundary. This veri�es `smooth pasting' or the continuity

between the value function and the payo� function on the boundary of the continuation

region. Finally, equating the partial derivatives @a# and @ag, observe that

pKu

p� 1

0
@aÊ + a� ~̂H

Ku

1
A
p

=
p

p� 1
(aÊ + a� ~̂H);
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for every point on the boundary @D. This veri�es the `high contact' condition and completes

the demonstration. 2

Such is policy for a priori �xed scope. Policy makers, on the other hand, may also be

interested in the optimizing the scope as well the timing. The value function for optimal

timing and scope, V �, is given by the formula

V �(a; ~h;m) = sup
u;T

IEa;~h;m

"Z T

0
Xu;T e�rtdt+ g(AT ; ~HT ;MT ; u)e

�rT

#
;(15)

for every starting point (a; ~h;m) in IR3
+, where the payo� function, g, is shown to be explicitly

dependent on the scope, u, of policy. The solution to this problem may be described as a

modi�cation of the solution to the optimal stopping problem in Proposition 11.

That is, for each a;m; and ~h, notice from Proposition 11 that the function u! g(m; ~h; a; u)

is a continuous function over the compact domain [0; 1]. There is therefore a point �u(a) in

[0; 1] such that g(m; ~h; a; �u(a)) satis�es the equation

g(a; ~h;m; �u(a)) = max
u

g(a; ~h;m; u):

The mapping a! �u(a) then records the payo� maximizing scope, which can at most depend

on a and the ecological and health bene�t factors E and ~H. The function �u may be shown

to be continuous and monotone, but it may possess points of non-di�erentiability. This may

happen, for example, whenever 0% or 100% reductions are optimal over a range of costs per

unit emissions. These points of non-di�erentiability in turn compromise the (everywhere)

di�erentiability of the mapping �g, namely (a; ~h;m) ! g(a; ~h;m; �u(a)), which is the payo�

attained at optimal scope. The same issue regarding di�erentiability arises for the value

function # of Proposition 11, once replaced by the new value function �#, namely the value

attained by simultaneous optimization of timing and scope.

There is a new payo�-maximizing trigger cost to be constructed by �rst replacing the

parameter u with the function �u in the coe�cients Ê, ~̂H and Ku. This way the trigger cost is

given by the bene�t-cost ratio taken at optimal scope. The claim is that the optimal timing

of policy is given by the �rst time that the unit-cost, A, of emissions reaches a trigger cost,

a� say, at which time the optimal scope of policy, u� say, is given by the optimal level of

reduction �u(a�).
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A formal demonstration of this result in not given here. The natural approach to a formal

demonstration, however, is to pass �rst to the equivalent stochastic control problem over a

class of Markov controls. The demonstration would then follow the outline of the statement

and proof of the converse to the celebrated Hamilton-Jacobi-Bellman equation.10

Optimal policy in a world of uncertainty

This section illustrates numerically the basic elements of decision-making for the optimal

timing and scope of policy under uncertainty. The values for the elementary parameters

are given by those of earlier numerical illustrations: r; �; ~
; �; �; �; d; and � are given by

0.04, 0.025, 0.025, 0.045, 10 megatons per year, 200,000 unit cost loss-of-health per unit

cost emissions, 7% health e�ect per percent reduction, and 6.5 units loss-of-health per year,

respectively. Adoption costs appreciate exponentially from a base of $12.25 billion at a rate

of 3.5% per percent reduction. The level of uncertainty, �a, is typically given by 20%, but it

will be varied below. So will the elasticity, d, for the health e�ect.

The most basic decisional element is the continuation region for optimal timing of policy.

For an a priori �xed level of reduction, the continuation region is given by an interval between

$0.00 and $pKu=(p � 1)(E + � ~H)) per ton of emissions per year. For purposes of decision

making, policy analysts would monitor unit cost of emissions, namely the process t ! At,

until such time as it �rst reaches or exceeds $pKu=(p�1)(E+� ~H)), the so-called trigger cost
for the adoption of policy. As derived from the table \Elements of Decision and Optimal

Timing," for example, the trigger cost for a 50% reduction is given by the �gure $49.95 per

ton per year and for a 40% reduction by the �gure $43.84 per ton per year. The in
ation

factor, p=(p� 1), is 4.39.11

10One caveat is that a formal demonstration would involve a venture into the technical territory of a

generalized Dynkin formula for stochastically jC2 functions, because the value and payo� functions may not

be di�erentiable everywhere. The required theory may be found, for example, in the work of Brekke and

�ksendal (1994). In this theory the di�erentiability of the value and payo� functions need only hold almost

everywhere with respect to the Green's measure for the problem. The exceptional sets in the present case

refer simply to sets of Lebesgue measure zero on the positive half line.
11Recall that optimal timing in a world of certainty leads to a deterministic stopping time given by that

time � such that A0e
�� �rst reaches or exceeds $rKu=(r � �)(E + � ~H) per ton per year. Thus, the trigger
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The �rst exit time from the continuation region is, of course, a random variable that

depends on the stochastic behavior of A. For the Geometric Brownian motion it is possible

to calculate analytically the distribution of the optimal timing of policy. Figure 2 illustrates

two such distributions for the timing a 40% reduction, one for 11% uncertainty and the

other for 16% uncertainty. These graphs depict densities of the so-called inverse Gaussian

distribution, where this application exhibits two members of a family of distributions marked

by a strong dependence of both the mean and the variance on the single parameter, �a,

for economic uncertainty. As �a decreases, the distribution of optimal timing of policy

concentrates peakedly about 2 to 3 years. As �a increases toward
p
2�, in contrast, the

distribution becomes increasingly heavy tailed while the mean tends toward in�nity.

5 30 55 80 105 130 155
Years

0.00

0.04

0.08

0.12

de
ns

ity

Distribution for Optimal Timing

40% Reduction

sigma^a=0.11

sigma^a=0.16

14 35

mean increases with sigma

Figure 2. This graph depicts the density of the distribution of the optimal timing of

a 40% reduction for �a equal 11% and 16%. These distributions exhibit instances of

what are commonly called inverse Gaussian distributions. These distributions illustrate

a family of cases in which the mean and variance are functionally related through the

parameter �a. As �a decreases, the distribution becomes more peaked near 2 or 3 years,

the timing of policy in a world of certainty from the table \Elements of Decision and

cost for a 40% reduction in a world of certainty is about $26 per ton per year. This is about 40% less than

the $43.84 trigger cost in a world of 20% uncertainty.
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Optimal Timing." As �a increases, the distribution grows increasingly heavy tailed and

the expectation becomes unbounded.

The distribution for optimal timing as well as expressions for the mean and variance are

easily derived using martingale methods. This is illustrated for example in Karlin and Taylor

(1975), pages 357-363. For �a <
p
2� and for pKu=(p � 1)(E + � ~H) � A0, the expected

timing of a level-u reduction is given by

IE0T
o = lnfpKu=(p� 1)(A0E + A0� ~H)g=(�� (�a)2=2);(16)

while the variance of timing is given by

VarT o = (�a)2 lnfpKu=(p� 1)(A0E + A0� ~H)g=(�� (�a)2=2)3:(17)

These expression show, for example, that the expected timing of policy rises to 1 as �a

approaches the critical point
p
2�. Although the mean and the variance provide some

expectation for the optimal timing of policy, notice from Figure 2 that the distribution

of optimal timing is rather right skewed. this suggests that the median and interquartile

range would provide a better indication of typical timing and its variability. The quartiles,

however, need to be approximated. An analytical approximation, suggested in Johnson,

Kotz and Balakrishnan (1994), pages 261-270, is given by

q(v;T o) = IE0T
oe(�

�1(v)�0:5
p

(�a)2=(��(�a)2=2))
p

(�a)2=(��(�a)2=2))(18)

where ��1 denotes the inverse of the standard Gaussian distribution function. Simply choose

v equal to 0.5, 0.25, and 0.75 for the median, the lower quartile and the upper quartile

respectively.

Some discretion is required in applying this approximation, because it is particularly

sensitive to the magnitude of the coe�cient of variation. For present purpose, the approx-

imation is satisfactory for �a within about 16%. Beyond that point, it is better to rely a

numerical approximation using the underlying distribution function. Figure 3 illustrates the

result of applying the approximation at Equation 18 for a 40% reduction. As �a ranges from

0.5 to 16% uncertainty, the median timing of policy increases from a low of about 2 to 3

years, roughly the timing in a world of certainty, to a high of about 12 years or so. Twelve
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years and four months corresponds roughly to the median timing at 22.4% uncertainty. This

level of uncertainty corresponds to the critical case, �a =
p
2�, at which the mean timing

is in�nite. For modest uncertainty, say �a in the range between 5 and 8%, notice that the

middle half of the distribution of optimal timing for a 40% reduction lies more or less in the

interval between about 5 and 11 years. As the level of economic uncertainty increases from

8% to 16%, in contrast, the interquartile range increases some two-to-six fold.

The results of Figure 3 illustrate an example of a sensitivity analysis for optimal timing

as a function of uncertainty. Policy makers may also use this device for other elementary

parameters and show, for example, that the median timing of policy is a decreasing function

of the health bene�t. An example of such an e�ect is examined below in the context of

simultaneous optimization of the timing and scope of policy.
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Figure 3. This �gure graphs the quartiles of the distribution of optimal timing for a 40%

reduction as a function of uncertainty. The quartiles are based on the approximation

given by Equation 18. Uncertainty ranges from a low of about 0.5% to a high of about

16%, beyond which point the approximation of Equation 18 breaks down. As uncertainty

increases, the median timing rises from a low of about 2 to 3 years to a high of about

12 years. Twelve years corresponds roughly to the median timing at 22.4% uncertainty

or the point at which the mean timing is in�nite. For uncertainty within about 8% or
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so, the middle half of the distribution lies within a range of no more than about 6 to

8 years. For greater uncertainty, the spread of the distribution increases considerably

to as much as 20 to 30 years. The graph of the mean timing of policy is also shown

for reference. The mean, of course, increases rapidly to 1 as �a approaches
p
2� or

22.4%.

The extremal case, where �a =
p
2�, is a special one in which the expected timing is

actually in�nite; timing itself, though, is �nite with probability one. The median timing of

policy, on the other hand, is given by

MedT o = (lnfpKu=(p� 1)(A0E + A0� ~H)g)2=(�a)2��1(3=4):(19)

The lower quartile is given by replacing the fraction 3/4 in Equation 19 with 7/8, the upper

quartile by replacing 3/4 with 5/8. These expressions may be derived from the re
ection

principle for the Brownian motion; see for example Karlin and Taylor (1975), pages 346-347.

For �a >
p
2� the optimal timing may technically be in�nite with positive probability. In

this event, the demonstration of Proposition 11 breaks down.

The value and payo� functions are the next basic elements of decision-making under

uncertainty. Figure 4 depicts the graphs of the value function, #, and the payo� function, g,

of Proposition 11 for an emissions reduction policy of 50%. Notice that the value function

dominates the payo� function for cost below $54.30 per ton per year, the point of high contact

and smooth pasting. This is where the bene�ts of emissions reduction to the ecology and

human health combine to equal the social costs of adoption. It is also where the marginal

payo� of policy exactly o�sets the marginal value of holding the option to adopt policy. In

the theory of Proposition 11, though not depicted in Figure 4, the value function technically


attens out and follows along the graph of the payo� function for costs in excess of the

trigger cost.
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Figure 4. This �gure graphs the value function and the payo� function for decision-

making under uncertainty as a function of the cost of emissions per ton per year. The

level of uncertainty, �a, is given by 20%. The initial values for the pollution stock,

m, and the loss-of-health stock, ~h, are given by their respective equilibrium values of

222 megatons and 260 units loss-of-health. The value function dominates the payo�

function for costs in the continuation interval, namely [0; $54:30). Policy is triggered

when costs �rst reach or exceed $54.30 per ton per year, the point of high contact

and smooth pasting. Thereafter, technically, though not depicted graphically, the value

function tracks the payo� function. The nonlinearity in the value function is a measure

of the value of society's option to adopt the emissions reduction policy, that is, the so-

called option value.

Option value refers to a measure of the value of society's option to reduced emissions at

such time as costs warrant the adoption of policy. This measure refers analytically to the

function, OV say, given by the equation

OV(a) = Ku

p� 1

0
@aÊ + a� ~̂H

Ku

1
A
p

;(20)

for all costs a per ton of emissions per year. The in
uence of option value is evidenced in

Figure 4 by the curvature in the value function. Its principle determinant is the characteristic
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root, p, and the bene�t-cost ratio, namely (aÊ + a� ~̂H)=Ku, of the sunk bene�ts (ecological

plus health) of policy to the sunk cost of adoption. he irreversibilities behind these sunk

bene�ts and cost were �rst introduced in a world of certainty, where a similar ratio, without

the e�ects of uncertainty, played the important role in optimal timing of emissions reduction.

Notice that the motivation for optimal timing of policy is present in both worlds of cer-

tainty and uncertainty and, in essence, for the same reasons: the presence of irreversibility.

The presence of economic uncertainty, for its part, serves to make the timing of policy uncer-

tain and to in
ate the ultimate cost needed to trigger its adoption. The latter e�ect is derived

in part from the option value with its introduction of the parameter p and, more importantly,

the in
ation factor, p=(p� 1), itself an increasing function of economic uncertainty.

Finally, consider the simultaneous optimization of timing and scope of policy and the

payo�-maximizing reduction. The payo�-maximizing reduction refers analytically to the

function �u given by the equation

�u(a) = argmax
u

g(m; ~h; a; u);(21)

where g is the payo� function of Proposition 11. While �u will often be a continuous function,

it will generally have points of non-di�erentiability, accounting partly for the need of a more

complicated mathematical treatment of policies for optimal timing and scope.

Figure 5 graphs numerical approximations to two payo�-maximizing reductions as a

function of the cost of emissions. In the top panel, the level of uncertainty is 20% and

the health e�ect parameter is 0.7 as before. In the bottom panel, in contrast, the level of

uncertainty is 10% and the health e�ect parameter is 7 or an order of magnitude larger than

before. The payo� maximizing reduction rises fairly steeply in each case to 100% somewhere

between $125 and $130 per ton per year. Beyond these costs, the payo� maximizing reduction

remains 100%. In scenario one, characterized by high uncertainty and a small (relatively)

health e�ect, optimal policy triggers at about $158.70 per ton per year and the optimal scope

is 100%. If initial costs of emission per ton per year are about $25 per ton per year, the

median timing of policy approaches 126 years. In scenario two, characterized in contrast by

half the uncertainty and ten times the health e�ect, optimal policy triggers at about $46.80

per ton per year and optimal scope is about 72%. If initial costs of emissions are about $25,
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the median timing of policy in scenario two is closer to 24 years.12
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Figure 5. This �gure graphs the payo� maximizing reduction, �u, under two scenarios.

The top panel depicts the case where uncertainty is 20% and the health e�ects parameter

is set to its normative value 0.7. The bottom panel depicts the case where uncertainty

is 10% and the health e�ects parameter is 7, that is half the uncertainty and ten times

the health e�ect of scenario one. Each curve depicts a smooth, increasing function of

costs with at least one point of non-di�erentiability. That cost is roughly $120 per ton

per year in scenario one and roughly $130 per ton per year in scenario two. Optimal

policy under scenario one triggers at $158.70 per ton per year with 100% the optimal

scope. Optimal policy under scenario two, in contrast, triggers at $46.80 with 72%

the optimal scope. If initial costs are about $25 per ton per year, the median time to

policy adoption in scenario one is 126 years. The median timing in scenario two is in

contrast 24 years. The present value of adoptions costs under the two scenarios would

then be about $36 billion and $60 billion, respectively.

12The policy di�erences between scenario one and two are largely due to the di�erence in uncertainty.

That is, for 20% economic uncertainty, large increases in the health e�ect bring about only modest changes

in timing and no change in scope. But the combined e�ect of reducing uncertainty and, say, discovering

larger health e�ects of policy is considerable.
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In each of these two scenarios the timing of policy is motivated in part by the desirability

of lowering the present value of the adoption costs. These costs are approximately $400

billion for the 100% reduction and $152 billion for the 72% reduction. Using the Laplace

transform of the optimal timing of policy from Equation (5.5), page 362, in Karlin and Tay-

lor (1975), the expected present value of the adoption costs are given by $36 billion and $60

billion, respectively. Though larger in scenario two, the tradeo� revolves around the accu-

mulated years of sunk bene�ts to the ecology and human health brought about (statistically

speaking) by earlier adoption of policy. Nevertheless, either policy may best be seen as a

long term goal rather than a one-time rule. Given the many uncertainties here, prudence

might prefer to resolve some uncertainty with for example better estimates of health e�ects.

Perhaps a sequential policy would be a course worth investigating beyond the scope of the

present work.

Discussion and continuing work

This work presents a simpli�ed model for timing and scope of emissions reductions for

airborne particulate matter under conditions of economic uncertainty. The model is derived

from the basic theory for the economic analysis of environmental policy developed by Pindyck

(1996). An added feature of the present model is the representation of health e�ects, which

were added to ecological e�ects as an additional source of sunk bene�ts of regulation. A

numerical illustration of the main results was given not for the purpose of prescribing policy,

but for the purpose of introducing quantitative policy analysts to the nature, potential and

scope of Pindyck's basic theory for the analysis of environmental health regulation.

The model is naturally an idealization of the problem. It does allow abstraction of the

essential elements of decision-making under uncertainty, best used for establishing guidelines

for policy makers, rather than for setting binding rules. One e�ective use of these results is to

subject each of the decisional elements to a sensitivity analysis over the relevant parameters{

such as �a and p for OV, and so on. Another e�ective use is in the manner suggested by

Cox (1997), where it serves as a benchmark against which to refer the results of numerical

simulations of more detailed models.

One direction for continuing research is to introduce stock e�ects of the pollutant, the
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loss-of-health or both on optimal policy. Expressions of stock e�ects signi�cantly complicate

the analytical treatment of the problem, but some expressions may be tractable to numerical

solution. A second direction for continuing research concerns the representation of health

e�ects, speci�cally in light of modern developments in the econometric valuation of health

and in light of the modern approaches to the epidemiology of upper respiratory disease.

Health e�ects may be chief among the three sources of uncertainty|economic, ecological

and biomedical|in the analysis of regulation for airborne particulate matter. In recom-

mending the PM2:5-rule, the EPA was acting on recent epidemiological evidence linking

particulate matter to adverse health e�ects, particularly asthma and other upper respiratory

diseases. Setting the new standards required that EPA o�cials forge a policy decision with

potentially far reaching implications for the U.S. economy from their assessment of the best

available scienti�c evidence. \Even as the new standards were being promulgated," the Na-

tional Research Council's Committee on Research Priorities for Airborne Particulate Matter

reported in 1998, \scientists and policymakers recognized that further research was needed

to address key uncertainties." In addition to scienti�c uncertainty about the spatio-temporal

characteristics of airborne pollution, a critical, medical uncertainty remained about the exact

health e�ects if any of human exposure to small-sized pollution particles.

This suggests a third, perhaps more vital, direction for continuing research. There is a

need in the present case for sequential approaches or learning policies for the regulation of

airborne particulate matter. This way signi�cant uncertainties, such as the magnitude and

scope of health e�ects, can be addressed gradually and scienti�cally as part of an overall

policy response to the problem.
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