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Abstract

Much of the evidence for health e�ects of particulate air pollution has come from ecologic

time series studies that regress mortality or morbidity event counts on pollutant data

routinely collected for other purposes. The modelling approach typically involves selecting

both a lag at which the e�ect of particulates should be evaluated and a level of �ltering to

remove long term associations confounded with seasonal variations and secular trend. In

this paper we investigate the bias introduced by model selection and residual confounding

using simulations based on a previous analysis of data from King County, Washington. We

�nd that the bias is small in absolute terms but of the same order as the estimated health

impacts.



1 Introduction

The 1990 Clean Air Act mandates that EPA set and review standards for ambient air

pollutants to protect the public from adverse e�ects. Much of the evidence for air pollu-

tion health e�ects has come from epidemiologic studies of short-term associations between

pollutant levels and mortality or morbidity events in a de�ned geographic area. These

are typically ecologic time series studies that regress event counts on pollutants from data

obtained from routine sources. Mortality or morbidity counts are tallied from death cer-

ti�cate or hospital admissions databases. Often compilation of the the exposure data is

fairly ad hoc: researchers will assemble all available pollutant measurements over a speci�c

geographic area and then average the measurements by date for each pollutant. The usual

approach to analysis involves �tting an overdispersed Poisson regression model with ap-

plication of generalized additive models for control of time-varying covariates with smooth

functions. The relative risk estimates obtained from these studies tend to be quite small

(e.g. 1.05 for an interquartile range change). While the ubiquity of the exposure makes

the public health importance of any true health e�ect undeniable, such small relative risk

estimates from observational studies should naturally lead us to carefully examine the role

of potential biases.

In this paper we will assess potential biases in an existing dataset. We will limit our

attention to particulate matter (PM) as the air pollutant of interest. PM is subject to

regulation as one of EPA's criteria pollutants (along with carbon monoxide, ozone, sulfur

dioxide, and nitrogen dioxide). Unlike the gases, PM is a generic term for a broad class

of particles originating from a variety of sources, existing in a range of sizes, and having

chemically diverse properties. Given ambient air pollutants tend to coexist in the atmo-

sphere, a single air pollution time series cannot provide good data for distinguishing the

e�ects of di�erent pollutants. Pollutants emissions from a common source, such as car

exhaust or wood smoke, are highly correlated over time. Even when ambient levels of these

pollutants are not highly correlated, the variation in correlation over time may be largely
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due to varying meteorological conditions which are in themselves an important confounding

factor. For these reasons, we will focus on PM while regarding it as a marker for a source

or set of sources that produce a mix of pollutants whose relative health impact must be

established from other data. We thus refer to the `air pollution hypothesis' to describe

increased risk of health outcomes due to increases in ambient air pollutants indexed by

PM. Our perspective is consistent with others such as a simulation study con�rming in

the air pollution setting the well-known theoretical problem of distentangling the e�ects

of highly correlated predictors (Chen et al., 1999), a critical review of the epidemiologic

evidence for the PM hypothesis (Moolgavkar & Lubeck, 1996), and an examination of the

uncertainties in attributing health e�ects to speci�c pollutants (Lipfert & Wyzga, 1995).

One important di�culty in evaluating even the weaker air pollution hypothesis is that

there are seasonal variations in mortality and morbidity and in air pollution that are

partially confounded. Another di�culty is that there is no a priori reason to specify any

particular induction period for the e�ects of air pollution, so a search must be conducted

over a number of possible models. The potential biases that may result from removal

of seasonal confounding by �ltering or smoothing techniques together with the e�ects of

searching over a handful of possible lags would usually be regarded by statisticians as

relatively minor problems since they are expected to only cause very small biases. When

studying the health e�ects of air pollution, however, the observed excess risks are typically

a few percent per interquartile range of a pollutant. In this case biases that are ordinarily

negligible can be of great importance. The relative risks are similar to those seen in very

large clinical trials of treatment for myocardial infarction (eg The GUSTO investigators.,

1993; The GUSTO III Investigators, 1997) rather than in typical observational studies, and

the examination of possible bias in design and analysis must be correspondingly acute.

In this paper we will assess the magnitude of some potential biases. Rather than

attempt to remove these biases by statistical manipulation we decide to perform a controlled

experiment by using the same model selection and adjustment procedures in a situation
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where the true association is known to be zero.

Sheppard et al. (1999) presented a study of the associations between hospital admis-

sions for asthma in non-elderly residents of greater Seattle and various components of air

pollution. They introduced the idea of a separate control analysis by also studying associ-

ations between air pollution and admissions for appendicitis over the same period. Using

the same model selection procedure for asthma admissions and for appendicitis admissions,

where no association was expected, they could conclude that the associations were larger

than could be explained by the multiple testing involved in model selection. The main

limitation of their control analysis is that asthma and appendicitis do not have the same

pattern of variation with season and temperature. The two analyses thus do not have the

same pattern of potential confounding by season.

In this paper we extend the control analysis performed by Sheppard et al. (1999) to

include the e�ects of confounding as well as model selection. We use the observed asthma

admissions and meterological data together with simulated air pollution time series. With

this approach we preserve the potential for confounding by modelling the relationship

between temperature at various lags, calendar date and particulate air pollution and using

this model to induce an association between season and the simulated air pollution data.

The simulation does not include any association between particulate air pollution and

the outcome, so any apparent association will be due entirely to confounding and model

selection biases. For comparison, we also conduct a positive control analysis in which a

speci�ed non-zero excess risk is added to the simulation, to examine the extent of bias

when a true association is present.

We also perform two simpler control analyses, regressing asthma admissions on PM2:5

from a di�erent year or a di�erent location. Again, there can be no causal assocation, so

any apparent health impact is the result of residual confounding or statistical artifact.
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2 Methods

2�1 Data sources

Data on hospital admissions for asthma in people under 65 in King County, Washington,

were obtained from the Comprehensive Hospital Abstracts Reporting System database,

which records every hospital discharge in Washington State. The air pollution exposure

measurements were averaged over the three monitors in the Seattle area. Meteorological

information was measured at the Seattle{Tacoma International Airport. The data are

described in detail by Sheppard et al. (1999), including the imputation techniques used

when one or more monitors had missing data.

2�2 Simulation methods

The basis of the simulation design is a model for generating realistic PM2:5 series based

on season and current and recent temperature. There are two components to this model.

The systematic component involves a linear regression model for logPM2:5; the random

component is a model for the autocorrelated residuals.

After smoothing, Seattle temperatures vary seasonally in a way that is well approxi-

mated by a sine wave. For this reason the seasonal component of the model was based

on a sine and cosine term. Additional higher frequency terms were also investigated. To

account for variation in PM2:5 at shorter time scales we used an indicator variable for each

day of the week and smooth functions of temperature. Initially a smoothing spline with

four degrees of freedom for current temperature was used, and similar smooth functions

were added for lagged temperatures whenever they caused a substantial reduction in the

residual variance, starting with one day lag and working back to 30 days. Finally, the

smooth functions of temperature were reduced to 1 or 2 degrees of freedom, which did not

have a substantial impact on prediction.

The resulting model included 2-df smooths of temperature on the same day and with

a three day lag, and linear terms for temperature at 6 and 21 day lags as well as the
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day-of-week and seasonal sine wave terms. The random part of the model for log PM2:5

is a Gaussian AR-1 process with autocorrelation 0.6 and standard deviation 0.556. The

observed PM2:5 series and three simulated realisations are shown in Figure 1.

In the simulation study we generated 400 realisations of this model and calculated

the log relative risk for a 1 unit increment in PM2:5 at each of lags 0{6. This analysis

was performed unadjusted, adjusted for a 64df regression spline (8df/year) in time and

adjusted for both this regression spline and a 4df spline in current day's temperature. The

degrees of freedom match those previously used for these data. The latter two models gave

extremely similar results in all cases and so only the unadjusted and fully adjusted models

are presented here. Using 400 realisations allows a reasonably accurate estimate of the

upper and lower 2.5 percentiles, each of which excludes 10 observations.

A second study added extra simulated events to the outcome to achieve a relative risk

of 1.1 over the interquartile range of PM2:5. This is a positive control study designed to

estimate the bias when a true association is present. It is worth noting that to create this

relative risk, which is larger than that actually seen in King County, required adding less

than one extra asthma case every two days.

3 Results

Table 1 gives a summary of all simulation results, while for each condition the distribu-

tion of simulation estimates is shown in Figures 2-5. In all the analyses, the log relative

risks estimated without adjusting for season and temperature are positively biased. This

indicates that the uncontrolled PM2:5 e�ect estimates incorporate the important seasonal

confounding that is present in the data. Both PM2:5 and asthma morbidity are higher in

the winter than in the summer, causing a spurious association over and above any true

e�ect of pollution.
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Figure 1: PM2:5 (�gm
�3) series from Seattle, Washington, and three simulated series. The

genuine data are in the lower left panel.
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Table 1: Median and upper and lower 2.5 percentiles of 400 log relative risks (per �gm�3)

from simulated data sets with and without a true association between PM2:5 and outcome.

Simulation Adjustments Median log(RR) True log(RR) Observed data estimate

(2.5%, 97.5%)

Current day lag

No association none 0.0026 0 0.0055

(0.0014, 0.0038)

season & �0:0002 0 0.0027

temperature (�0:0030,0.0021)

Association none 0.011 0.0083 |

(0.009, 0.013)

season & 0.008 0.0083 |

temperature (0.006, 0.010)

Best of 7 lags

No association none 0.0038 0 0.0055

(0.0019, 0.0057)

season & 0:0013 0 0.0027

temperature (�0:0003,0.0032)

Association none 0.011 0.0083 |

(0.009,0.013)

season & 0.008 0.0083 |

temperature (0.006, 0.010)
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3�1 Known lag structure

The 400 log relative risks for simulations including only the association estimated at lag

0 are shown in Figure 2. In this case the bias in the adjusted analysis is small, with the

median estimated log relative risk being -0.00021. In only two of the 400 realisations does

the estimate exceed the log relative risk of 0.00275 estimated from the observed data, giving

a Monte Carlo p-value of (2+1)/(400+1)=.007.

In the positive control model, where the true log relative risk is 0.0083, the bias is

negligble, with the median estimated log relative risk being 0.0084. These 400 estimates

are shown in Figure 3.

3�2 Data-dependent lag structure

To select the best lag in the simulations we �tted models with each lag from 0 to 6 days

and chose the one that gave the largest relative risk for PM. The 400 log relative risks for

simulations including the association estimated at the best lag are shown in Figure 4. When

the largest relative risk at any lag from 0 to 6 is estimated, the bias in the adjusted analysis

is substantially larger, with the median estimated log relative risk being 0.0013�g�1m3.

This median bias is approximately half the log relative risk of 0.002746 estimated from

the observed data, and in 32 of the 400 realisations the simulated estimate exceeds the

observed log relative risk giving a Monte Carlo p-value of (32+1)/(400+1)=.08.

In the positive control model, where the true log relative risk is 0.0083, the bias is still

negligible, with the median estimated log relative risk being 0.0082. These 400 estimates

are shown in Figure 5.

3�3 Control data

We also examined two sources of real control data. The �rst was to use PM from the same

area but a di�erent year. We �tted the same models to data sets using the �rst seven,

six or �ve years of health outcomes and the last seven, six or �ve years of PM data. The
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Figure 2: Histogram of 400 estimated log relative risks for 1�gm�3 increment in in current

day's PM2:5 when the true log relative risk is zero. The vertical line indicates the estimate

from the observed data.
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Figure 3: Histogram of 400 estimated log relative risks for 1�gm�3 increment in in current

day's PM2:5 when the true relative risk is 1.1 over the interquartile range. The vertical line

indicates this true log relative risk � = 0:0083 per 1�gm�3.
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Figure 4: Histogram of 400 estimated log relative risks for 1�gm�3 increment in PM2:5,

choosing the lag that gives the greatest estimate, when the true log relative risk is zero.

The vertical line indicates the estimate from the observed data.
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Figure 5: Histogram of 400 estimated log relative risks for 1�gm�3 increment in PM2:5,

choosing the lag that gives the greatest estimate, when the true relative risk is 1.1 over the

interquartile range. The vertical line indicates this true log relative risk � = 0:0083 per

1�gm�3.

0.006 0.008 0.010 0.012 0.014

0
20

40
60

80
12

0

log RR (unadjusted)

0.006 0.008 0.010 0.012 0.014

0
20

40
60

log RR (adjusted for temp and season)

12



Table 2: Assocations (log relative risk per �gm�3) between asthma admissions and PM2:5

one, two and three years in the future, unadjusted and adjusted for season and temperature.

Adjustments

none season &

temperature

One year o�set:

Lag 0 0.0048 �0:0005

Best lag 0.0048 �0:0005

Two year o�set:

Lag 0 0.0048 �0:0005

Best lag 0.0062 0.0021

Three year o�set:

Lag 0 0.0044 �0:0003

Best lag 0.0057 0.0018

causal assocation in these analyses, between asthma on a given day and PM2:5 one to three

years in the future must be zero, providing a valid negative control. The results are given

in Table 2.

These results are consistent with the simulations. The bias at a �xed lag in the adjusted

analyses is negligible. When the lag is selected from the data the bias is still negligible at

a one year o�set, but more than half as big as the observed association at two and three

year o�sets.

The second control analysis used PM data from Portland, Oregon. Portland is approxi-

mately 140 miles south of Seattle and has a similar climate, lifestyle and population density.

The weather in the two cities is broadly similar but weather patterns that a�ect one may

miss the other, or arrive at a di�erent time. We obtained nephelometry data from Port-
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Table 3: Assocations (log relative risk per �gm�3) between Seattle asthma admissions and

Seattle and Portland PM based on nephelometry, unadjusted and adjusted for season and

temperature.

Adjustments

none season &

temperature

Seattle:

Lag 0 0.0048 0:0017

Best lag 0.0052 0:0020

Portland:

Lag 0 0.0018 0:0003

Best lag 0.0020 0.0007

land for the same time period as the Seattle study. Nephelometry, which measures light

scattering, gives readings highly correlated with direct measurements of PM2:5 at least in

Seattle. Table 3 shows the best lag and current day relative risks for an increase of 1�gm�3

in PM2:5 based on the nephelometer readings, both unadjusted and adjusted for time and

temperature.

This analysis shows a similar pattern to the others. The additional bias from model

selection is again noticeable.

4 Discussion

We have presented three additional negative control analyses to allow the level of statistical

uncertainty in the results of Sheppard et al. (1999) to be further assessed. These analyses

indicate that the bias from a combination of residual seasonal confounding and model

selection is not negligible. It is well-known that the bias due to model selection increases
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with the number of candidate models. We found that whene selecting the best of only

seven candidate model, the log relative risk based on the Seattle data is about twice the

mean bias, and is only at the 90th percentile of the bias distribution in these control

analyses. This demonstrates that in investigating the extremely weak associations between

PM and health outcomes we need to be concerned about levels of statistical bias that would

ordinarily be negligible.

Our positive control analyses indicate that the bias is much smaller when the true

association is moderately large. This suggests that in most epidemiologic studies we would

not need to be concerned about bias caused by selection from a handful of candidate

models, and that even in studying PM the bias may be less important if we can identify

more sensitive populations or re�ne our characterisation of exposure.

In creating data where the association between PM and health outcomes is known

there is necessarily some distortion from reality. In simulations we assume that the e�ect

of season and temperature on asthma incidence is not mediated by PM to any important

degree and we rely on the extent to which we can duplicate the short-term patterns of PM by

our simulation model. The lagged analyses and the Portland nephelometry analysis do not

require modelling of PM. The lagged analyses will have somewhat weaker confounding than

the true data, since PM and weather are linked only through their seasonal relationship.

Confounding by weather in the Portland data is less likel to be removed since the cities

share large-scale weather patterns. These analyses, in contrast to the simulations, provide

only a small number of comparison estimates rather than a complete bias distribution.

We have not addressed the important issues of measurement error and of multiple pol-

lutants. For these issues the ecological time series study cannot stand on its own. Measure-

ment error modelling requires at least some information on actual exposures to calibrate a

measurement error model. Disentangling the e�ects of multiple pollutants from the same

source will always be di�cult in a single time series, and either more basic toxicological

information or comparisons of relative risks between cities with di�erent pollution pro�les
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are more appropriate methods.

Investigators in this area need to be aware of the potential for bias from model selection,

and it must be taken into account for analyses to be interpretable. One way to remove

the bias is to select the model a priori, as is being done for the 100 largest US cities

by the National Morbidity and Mortality Air Pollution Study. This will sometimes be

too inexible an approach. Control analyses, such as that in Sheppard et al. (1999), or

those presented here are a valuable tool if control data or suitable simulated data can

be produced. Bayesian model averaging techniques(Clyde & DeSimone-Sasinovska, 1999;

Madigan & Raftery, 1994) provide another potentially valuable tool. Model averaging

allows a large number of models to be �tted and the di�erences in conclusions between them

to be incorporated explicitly in the statistical conclusions, though the bias characteristics

of Bayesian model averaging in this context have not been thoroughly evaluated.
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