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Abstract

The case{crossover study design in principle allows testing for an acute health e�ect of an
exposure such as air pollution with restriction in time to remove seasonal confounding. We
argue that much thinking about this design has been based on false analogies with matched
case{control studies, and show that the usual design and analysis of case{crossover studies
introduce a previously unrecognised bias by not conditioning correctly on the sampling
scheme. We show that the usual conditional logistic regression analysis is a valid maximum
likelihood method for a simple modi�cation of the case{crossover design that divides time
into strata. However, the bias from standard case{crossover designs will typically be small.



1 Introduction

The case{crossover study design proposed by Maclure (1991) is suited to the study of a
transient e�ect of an intermittent exposure on the subsequent risk of a rare acute-onset
disease hypothesized to occur a short time after exposure. The health e�ects of �ne par-
ticulate matter air pollution is a topical epidemiologic issue for which the case-crossover
design may be especially useful. Fine particulate matter air pollution (PM) is an exposure
which varies over time and there is concern that PM may a�ect the incidence of acute
cardiovascular and respiratory disease events. The principle of Maclure's case{crossover
design is that the exposures of cases just prior to the event are compared using matched
case-control methods to the distribution of exposure estimated from data for the case from
some separate time period. This separate referent time period should be representative
of the expected distribution of exposure for follow-up time that does not result in a case.
Many di�erent referent selection strategies will likely be available in any one study. The
best strategy may depend on the quality of the data in any particular study, and involve
trade-o�s between bias and precision (Mittelman et al., 1995).

A disadvantage of the case{crossover design is the potential for bias due to time trends in
the exposure time-series. Since case{crossover comparisons are made for each case between
di�erent points in time, the case{crossover analysis implicitly depends on an assumption
of stationarity of the air pollution time series. If the exposure time-series is non-stationary
and case exposures are compared with referent exposures systematically selected from a
di�erent period in time, there may be a bias introduced into estimates of the measure of
association for the exposure and disease. Greenland (1996) has identi�ed this as a form of
selection bias. Short term autocorrelation in the exposure time-series may introduce a bias
analogous to over-matching in a case-control study when exposures proximal in time to the
index case exposure are used as referents. Characteristics of time-series of PM, including
long term time trend, seasonal trends, and short term autocorrelation, require that referent
selection in a case{crossover study be considered carefully and adapted to minimize bias.

Navidi (1998) suggests that when subsequent exposures are not inuenced by failures,
as in studies of environmental exposures such as air pollutants, it is possible to determine
at times postfailure what a subjects level of exposure would have been had the subject not
failed. He proposes that ambidirectional sampling | sampling referents from time both
before and after failure times | would control for linear long-term time trend.

We had undertaken simulations to explore the nature and degree of time-selection bias
and to examine the ability of various referent selection strategies to counter biases in a
case{crossover analysis of the association of PM and out-of-hospital primary cardiac arrest
in Seattle, Washington. We felt that the problem of seasonality and long-term time trend in
the PM time-series might be be dealt with by restriction of the sample frame for referents to
a period short enough to be free of signi�cant seasonal transitions. Our simulation studies
to compare di�erent referent selection designs showed that the gross biases from trend
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and season e�ects were indeed removed. However, we found persistent small to moderate
biases, prompting us to review the theoretical justi�cation for conditional logistic regression
analysis of case{crossover designs. We found that the standard justi�cation of conditional
logistic regression in these designs was not correct and that in some cases the estimators
were inconsistent.

In section 2 we explain why the justi�cation of conditional logistic regression by analogy
with case{control studies is not valid. In section 3 we analyse the conditional logistic
regression estimating functions and show that there is only one standard case{crossover
design in which they are unbiased, one which is undesirable in our problem for other
reasons. We show that a slight modi�cation of standard ambidirectional case{crossover
studies does produce an unbiased analysis.

In section 4 we study various forms of the standard case{crossover design and the biases
from conditional logistic regression analysis and from using referent data from after a ter-
minal event. We show by simulation and direct calculation that designs can be constructed
for which these biases are while not zero, are reliably small. Either by using these designs
or by computing and adjusting for the bias the standard case{crossover design can still
be used when ambidirectional assessment of exposure is not possible. In particular, when
the exposure series for di�erent individuals are independent the bias will be asymptotically
negligible.

2 Case{control and case{crossover designs

The case{control and case{crossover designs can both be analysed in terms of a proportional
hazards model for a rare disease. The case{crossover design, in order to compare hazards
for the same person at di�erent times, requires a parametric assumption about the baseline
hazard, which is invariably that it is constant over time for each individual. We also allow
this constant baseline hazard to vary arbitrarily between individuals, thus incorporating
the e�ects of any time-constant covariates. The resulting model for the hazard �i(t; zit) of
person i at time t based on time-varying covariates zit is

�i(t; zit) = �i exp(�
0zit):

These analogies between the matched case{control and case{crossover designs are relied
on by many people wanting to think heuristically about the design properties. However
these analogies are much weaker than seems to be appreciated. Although both designs can
be considered as sampling from a full cohort there are a number of fundamental di�erences
between case{control and case{crossover design schemes. Some of these are general and
others are important speci�cally in studing air pollution.

First there is the role of time and the resulting autocorrelation. In a matched case{
control study the exposure observations within each stratum are independent given the
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choice of stratum. In a case{crossover study there will typically be autocorrelation in the
exposure over time. Also, in the case of air pollution and similar environmental exposures
two cases that occur on the same day must have the same or similar exposure, a between-
stratum constraint that is not present in case{control studies.

In an ambidirectional case{crossover study of an event such as death that can only
occur once some of the referent information is taken from times when the subject is not at
risk for the event. In a case{control study all controls must be at risk for the event.

Finally, in a matched case{control study the division of the population into strata
depends only on covariates and not on the response. As we will show in section 3�2, in a
case{crossover design the division into strata depends on the response. This is related to
\overlap bias", discussed by Austin et al. (1989) in that failure to use disjoint strata that
partition the population can invalidate assumptions about independent sampling.

All four of these di�erences can in principle lead to bias. The last, the improper cre-
ation of strata, is responsible for the inconsistency of conditional logistic regression. The
autocorrelation of the exposure series a�ects the size of the bias. The correlation between
individuals produces a bias which is non-zero conditional on the observed exposure series
but may be zero unconditionally. The use of control days when a subject is not actually at
risk turns out to produce negligible bias in any realistic situation.

The bias is zero, apart from the negligible contribution from sampling controls after an
event, when there is no association between response and exposure, but can be towards or
away from the null hypothesis when there is a true association.

3 The conditional logistic regression analysis

The data for the case{crossover design for a rare or terminal event consist of the exposure
process hzitiT;nt=1;i=1, the case response times htiini=1 and the referent sets, which we denote
either Wi or W(ti) to emphasize the dependence on individual or on event time. The
estimating equations are the conditional logistic regression equations for a matched case{
control study, but the expectations are taken over di�erent variables, so the theory does
not go through automatically.

We will initially ignore the potential for bias caused by using exposures after a death,
and will assume that all subjects remain at risk for the entire time period but that the
outcome is rare enough that no multiple events are observed.

3�1 Navidi's design

Navidi (1998) described a case{crossover analysis in which the referent window for each case
is the entire available time period: Wi = f1; 2; 3; : : : ; Tg. Conditioning on the exposure
series and on exactly one event being observed creates a conditional likelihood that is

3



formally identical to that for a matched case{control study, showing that conditional logistic
regression is valid in this case.

It is informative to consider the relationship of this design to a Poisson time series
analysis based on the same cases. We begin with Navidi's estimating equations, which can
be written as

nX
i=1

Ui(�) �
nX
i=1

 
ziti �

TX
t=1

zit
e�

0zitPT
s=1 e

�0zis

!
= 0:

There are no individual-level time-constant covariates, as their coe�cients are unidenti�able
under Navidi's model. If we also assume that there are no individual-level time-varying
covariates then zit � zt. De�ning Yt to be the number of events on day t we have

nX
i=1

 
ziti �

TX
t=1

zit
e�

0zitPT
s=1 e

�0zis

)
=

nX
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(
zti �

X
t

zt
e�

0ztP
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�0zs
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T

e�
0ztP

s e�
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Now we observe that n=T
P

s exp(�
0zs) is a constant and so may be dropped at the cost of

including an intercept parameter. The estimating function is then

TX
t=1

zt
�
Yt � e

~�0zt
�

where an intercept has been added to � to get ~�. These are the estimating functions for
a Poisson regression model. Similar analysis shows that the covariance estimate is the
nominal-dispersion parametric covariance estimate from Poisson regression.

This case{crossover design can be validly analysed by conditional logistic regression but
has the same sensitivity to seasonal confounding, overdispersion and autocorrelation in the
outcome variable as a naive Poisson time series design. Its advantage over a time series
analysis is that it o�ers a convenient way to incorporate information on individual-level
e�ect modi�ers, whether time-varying or time-constant.

3�2 Referent window designs

Here we use a �xed number of referent days before and possibly after the case in a short time
frame. The motivation for this design is to restrict the referents in time to reduce seasonal
confounding. This di�ers from the usual approach to seasonal confounding by restriction
in the frequency domain, either explicitly by Fourier decomposition (Kelsall et al., 1999)
or implicitly by smoothing (eg Samet et al., 1995).

The conditional likelihood approach used by Navidi does not translate to this design.
Knowing the referent windowWi completely determines the case time ti, so the conditional
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likelihood of ti given exactly one case in Wi contains no information about �. What
the design actually does is sample referent windows from the �xed exposure series with
probability proportional to the case risk function at the window center exp(� 0zti + ti),
where zti are the covariates of interest and t represents the season and trend e�ects that
we wish to exclude by restriction. Using a narrow referent window means that t is roughly
constant on the window.

The likelihood of the full data, and thus the score equation, is the same as in Navidi's
design (except that we now explicitly include the unmeasured and low-frequency covariate
e�ects t) as the model generating the cases is the same. The score function is

Ui(�) = ziti �
TX
t=1

zite
�0zit+tPT

s=1 e
�0zis+s

:

This score function depends on all the data, and involves the unwanted confounders t. We
approximate it by

~Ui(�) = ziti �
X
t2Wi

zite
�0zit+tP

s2Wi
e�0zis+s

whereWi is the referent region for a case at ti and now assume t is approximately constant
over Wi to get

~Ui(�) = ziti �
X
t2Wi

zite
�0zitP

s2Wi
e�0zis

:

This is an appealing estimating function as it depends only on � and data nearby in time,
and is identical to the conditional logistic regression score equation that would arise if
this were a matched case{control study. It is not, however, the derivative of an actual
loglikelihood so we cannot automatically assume it has mean zero. Its expectation is given
by integrating out the discrete random variable ti. We will assume that t is roughly
constant on each window Wi. This is reasonable if the referent windows are not too long.
This ensures that t and zit are approximately independent within each window.

Eti
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This is not identically zero, so the estimating functions are not unbiased conditional on
the exposure history hziti as they would be in a true maximum likelihood analysis. Note
that if the referent window W(t) is the same for all t, as in Navidi's design, the last term
factors into a sum over W(t), which equals the �rst term, and a sum over 1; : : : ; T , which
reduces to 1. The estimating equations are thus unbiased if W(t) is the same for all t.

Further insight into the reasons for this bias can be obtained by comparing it to a
related conditional likelihood score equation. If we partition the times 1; : : : ; T a priori

into disjoint strata S(t) we can condition on there being exactly one event in the stratum
S(t). This is di�erent from the case{crossover design where the referent window W(t) is
di�erent for every t and in the ambidirectional design is centered at t. The score function
for this conditional likelihood is

Ui(�) = zti �
X

t2S(ti)

zit
e�zitP

s2S(ti) e
�zis

This unbiased score function is formally identical to the biased estimating function for the
case{crossover design. The di�erence is that the strata S(t) do form a partition, whereas
the referent windowsW(t) are overlapping and di�erent for each t. The choice of which days
go together in a referent window depends on the outcome ti and is not a valid strati�cation.

The bias can thus be removed by dividing time into strata and using the remainder of
the days in each stratum as the referents for a case in that stratum. Navidi's design is
given by the special case of a single stratum. When ambidirectional sampling of exposure
is possible we recommend this strati�ed design as a simple modi�cation that makes the
conditional logistic regression analysis valid.

Although the bias can be removed by proper strati�cation it is still of interest to in-
vestigate the size of the bias in the referent window case{crossover designs. As the bias of
the estimating functions has a known form depending only on � and hziti it is possible to
remove it either by direct computation or by the parametric bootstrap. In the latter case
simulations are used to compute the bias in �̂ directly rather than in ~U(�).

For this purpose we treat hziti as a realisation of some random process and ask what con-
ditions on this process would make the bias small with high probability, so that conditional
logistic regression approximates the distribution of �̂ conditional on hziti. Alternatively if
the conditional bias has close to zero mean, inference could be done using the unconditional
distribution of �̂ if this can be calculated.

In air pollution epidemiology the exposures of interest and the most important potential
confounders are identical or very similar for di�erent people at the same time, so we focus
primarily on this situation.
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4 Design and analysis to reduce bias

The attributable risk due to air pollution is thought to be small for most health outcomes.
If the same is true for other covariates then � 0z is small and we can approximate exp(� 0z)
by 1 + � 0z. Now if hZiti is a realisation of an independent sequence the bias in ~Ui(�) is
oP (�=

p
T ) and so will be negligible with high probability. When the process generating

hZiti is autocorrelated the bias for small � is Op(���) where �� is the average autocorrelation
between a case and its referents.

When � 0z is not small the bias is harder to characterise, but it may still be computed
easily from the formulae derived in section 3�2. This allows us to explore the bias of ~Ui(�)
without requiring extensive simulation.

Figure 1 shows estimates of � from simulations based on the King Country cardiac
arrest data. The exposure series is approximately 6 years (2092 days) of the daily PM10

series averaged over three monitors in and near Seattle. 362 cases, the number observed
in the study by Siscovick et al. (1995) that provided our case data, are simulated from a
proportional hazards model

logE [Y (t)] = �+ � � PM10(t)

where � = 0:795 is chosen to give a relative risk of 1.5 between the upper and lower quartiles
of air pollution and � is the individual baseline hazard. Conditioning on the number of
observed cases makes the value of � irrelevant. Varying numbers of controls were taken
from the referent window of �30 days with days within �6 days of the case excluded.
Conditional logistic regression was used to estimate � and Figure 1 shows the mean of �̂
over 1000 simulations and a 95% con�dence interval. There is a de�nite bias ranging from
about 2.5% to nearly 10%. This bias is not due to residual confounding by season, which
is not present in this simulation, but to the bias in the estimating functions.

The referent selection strategies of Figure 1 are not directly comparable with a strat-
i�ed design. In Figure 2 we compare the mean of �̂ for referent window case{crossover
designs with 2, 4, 6 and 8 controls at weekly intervals centered around the case day and
for strati�ed designs with 3, 5, 7 and 9 days at weekly intervals in each stratum, based
on 15000 simulations. We can see from this picture that in this particular example the
�nite-sample bias, present in both methods, is of similar magnitude to the bias from the
incorrect analysis with 2 or 4 controls but is smaller with 6 or 8 controls. Figure 3 compares
the mean of the standardised estimating function

�U(�) =
1p
n
U(�)

for the referent window and strati�ed designs in the same 15000 simulations. This con�rms
that the referent window design does give rise to biased estimating functions but that the
strati�ed design does not.
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Figure 1: Mean and 95% con�dence interval of regression coe�cient � simulated from King
county air pollution data and a true value of � = 0:795.
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We also used simulated exposure series to examine the range of bias that could be
obtained from di�erent sets of data. We present the bias in the standardised estimating
function

�U(�) =
1p
n
U(�)

rather than in �̂ as this avoids confusing the qualitatively di�erent e�ects of biased es-
timating equations and small-sample deviations from asymptotic behaviour. For ease of
interpretation we note that the bias in �̂ is roughly 10 times that in the estimating func-
tions.

The data were generated to �t the roughly lognormal distribution and 1 week short-term
autocorrelation observed in PM series. Independent Normals with standard deviation 0.1
were generated and a six-term moving average with coe�cients (0:1; 0:2; 0:2; 0:3; 0:6; 1) was
taken. The resulting variables were exponentiated to give 1000 days of simulated exposures
Z(t). A proportional hazards model

E [Y (t)] = � exp(�Z(t))

was then used to generate 100 cases. The regression coe�cient was set at � = 1. We
examined eight possible referent selection methods. The �rst three use all days from an
outer limit of 30 days to an inner limit of 8, 18 or 28 respectively, in either direction. The
next three use the same day of the week for the following and preceding 4, 2 or 1 weeks.
The �nal two use the case day �2 days and �1 day respectively.

Figure 4 shows boxplots of the bias based on 50 realisations of the exposure series. In
these simulations, and others not reported here, the bias is typically small when the 1, 2
or 4 week controls are used. In most cases the bias can be either towards or away from
the null. Bias is still present when the exposure series is a realisation of an independent
sequence, but is small and is equally likely to be towards or away from the null. The bias is
smaller when the regression coe�cient is smaller, and is zero when the regression coe�cient
is zero.

When there are multiple covariates it is possible that bias in the estimating function
for one covariate will cause bias in the parameter estimate for other covariates correlated
with it, even if their true regression coe�cients are zero. This means that adjustments for
meteorological factors or for copollutants such as sulfur dioxide, while important to remove
confounding, may introduce additional bias.

We have considered the situation where the main exposure of interest is common to
all subjects. In other areas of epidemiology where the case{crossover design is used the
exposure histories for di�erent subjects may be independent. In this case if there is also
independence over time the biases conditional on the di�erent exposure histories will be
symmetrically distributed about zero and will average out over subjects. More precisely,
as both the number of cases and the length of the time series increase the bias in the
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estimating function �U(�) is Op(n
�1=2) times the bias in an individual estimating function

Ui(�). In this case it may be more natural not to condition on the observed exposures. The
unconditional distribution of �̂ is unbiased, and we can regard the problem as an incorrect
variance estimate for this unconditional distribution.

When exposure is independent across individuals the unconditional variance of �̂ can
be consistently estimated by the familiar sandwich method

dvar h�̂i = I�1JI�1

where I is the derivative of the estimating functions, so that I�1 is the usual variance
estimate, and

J =
nX
i=1

Ui(�̂)Ui(�̂)
T :

When there is a single exposure series or a correlation between individuals it is not possible
to estimate the unconditional variance without further assumptions that decompose Zt into
deterministic parts that will be common to all realisations and stochastic parts that vary
across realisations.

In our example we could assume that the air pollution measurements can be decom-
posed into a deterministic seasonal component and a stochastic component with short-term
autocorrelation that would be independent across realisations.

5 Ambidirectional sampling and fatal events

To avoid serious selection biases from trends in exposure or risk over time both these
methods use as referents some days after the event has occurred. Our analysis, and that
of Navidi, have assumed that subjects are at risk even after an event. This is unreasonable
for many interesting events such as death or primary cardiac arrest.

Navidi argues informally that as the air pollution history is known and �xed it cannot
be a�ected by the occurence of an event and no bias is created by using this information.
We �nd this argument plausible, but not completly compelling. The di�culty is that on
referent days before a fatal event the subject was exposed and at risk but did not experience
an event, whereas on referent days after the fatal event the subject was not exposed and
was not at risk. In Navidi's analysis this distinction is ignored. The reason why this is
valid is not explained, but is hidden in the rare disease assumption.

We can most easily consider this question analytically by introducing a model in which
subjects are at risk at all times but the risk depends on the number of previous events. The
situation of primary interest is then the limiting case where the risk drops to zero after an
event. We can formulate this model as

log
pit

1� pit
= �i + �zt + �Nit (5�1)
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where pit is the probability that subject i has an event on day t, �i is the constant baseline
log odds for subject i, Zt is air pollution on day t and Nit is the number of events subject
i has experienced before time t.

When � = 0 a subject is at the same risk after an event as before and the analysis
reduces to exactly the single event analysis described in section 3�1, as would be expected.

A fatal event, where the subject is no longer exposed and at risk is represented by the
limiting case as � ! �1. When there is a trend in exposure Nit is correlated with Zt

and with the response and so is a potential confounder. If we �t the true model with Nit

included then as � ! �1 observations after the event receive less and less weight. In the
limit the referents taken after the event are ignored, and the protection from selection bias
is lost.

The usual model, where Nit is omitted, is misspeci�ed when � 6= 0. It still gives less
biased results in the presence of trend than the model including Nit. When Zt is stationary
there will be no confounding by Nit and �̂ will be at least approximately unbiased. When Zt

tends to increase over time the confounding will bias �̂ downwards; when Zit is decreasing �̂
will be biased upwards. This is the reverse of the usual selection bias described by Greenland
(1996). Estimating the magnitude of the bias requires a more thorough calculation, given
in the Appendix. Under the null hypothesis � = 0 the resulting bias in �̂ is approximately
���zt, where �zt is the correlation between Zt and t, a measure of the degree of trend, and
� is the unconditional probability of death on any given day, which is typically very small.

We conclude that there is a bias from treating dead subjects as if they were still at risk,
but that this bias is very small if the population rate of death is small, even when there is
a trend in the exposure. Using ambidirectional referents can be expected to dramatically
reduce the bias from trends in exposure in all reasonable examples, however the intuitive
feeling that this procedure is not precisely valid is correct.

6 Conclusions

The standard conditional logistic regression analysis of case{crossover studies using restric-
tion in time is not correct. Alternative designs that correctly condition on the exposure
series provide conditionally unbiased relative risk estimates and valid conditional variances
for these estimates. For example, time could be strati�ed by month and by day of week
to create partitions with 3 or 4 referent days for each case. This strati�cation has the
same robustness to trend in exposure as the more usual ambidirectional design. A minor
disadvantage of the strati�ed design is that it gives fewer controls for the same maximum
distance between case and control. A maximum 4 week gap leads to 3 controls in the
strati�ed design and 6 controls in the windowed design.

The conditional logistic regression analysis will be approximately valid when the auto-
correlation in exposure among case and referent days or between individuals is weak. For
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the speci�c case of particulate air pollution choosing 2{6 referent days at weekly intervals,
symmetrically before and after the case day appears likely to give a small bias in the case{
control analysis with the added bene�t of matching on day of the week. In this example the
bias was not much larger than the �nite-sample bias, but in many case{crossover studies
the �nite-sample bias will be much smaller and the design bias may be larger.

It is also important to note that we have only discussed two forms of bias peculiar to the
case{crossover study. Other forms of bias in the sampling of case and referent information,
many of which are common to all observational studies, may be orders of magnitude larger.

This analysis has completely ignored the issue of exposure error and variability, which
may be very important in studies of health e�ects of air pollution. Measurement error
adjustment of the case{crossover design would be analytically challenging and would require
assumptions about within-individual error distributions.
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A Calculation of bias for ambidirectional sampling with fatal events

Navidi (1998, p601) develops the multiple events model and explicitly considers the possi-
bility that the risk may change with a subject's history although his calculations are not
completely correct in this case as we will see. We use his more general model

log
pit

1� pit
= �i + �TXit (A�1)

where Xit is the covariate vector for subject i at time t. In this model events are not
necessarily rare, so we let Ai be the set of days on which subject i experiences an event,
with ni being the number of events. The likelihood of observing Ai is

Pr(Ai) =

0@Y
t2Ai

pit

1A0@Y
t62Ai

1� pit

1A :

At this point it becomes useful to add another index to the daily probabilities and write
pitA for the unconditional probability that subject i has an event on day t if s/he also has
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events on the days in the set A that precede day t. This allows for the fact that Xit may
depend on the subject's history and change as A changes. The conditional probability of
Ai given ni is then

Pr(Ai j ni) =
�Q

t2Ai
pitA

� �Q
t62Ai

1� pitA
�

P
A2Ani

(
Q

t2A pitA)
�Q

t62A 1� pitA
�

where Ani is the set of all sets of ni times. If the risk does not depend on previous events,
so pitA � pit, the conditional likelihood simpli�es to

Pr(Ai j ni) =
exp

�
�T P

t2Ai
Xit

�
P

A2Ani

exp (�T
P

t2AXit)
;

the conditional logistic regression likelihood obtained by Navidi.
When Xit depends on the subject's history, as in our case, this simpli�cation does not

occur. However, as � ! �1 the probability of observing more than one event per person
goes to zero. Returning to the special case of equation 5�1 and assuming that all ni = 1
we can simplify the conditional likelihood to

Pr(Ai = ftg j ni = 1) =
exp (�i + �Zt) =

Q
s�t f1 + exp (�i + �Zs)gPT

u=1 exp (�i + �Zu) =
Q

s�u f1 + exp (�i + �Zs)g
(A�2)

This is still complicated, so we consider the case when the null hypothesis is true: � = 0.
We consider only one subject at a time and write � for exp(�i), suppressing the dependence
on i. The conditional likelihood is then

Pr((Ai = ftg j ni = 1) =
�=(1 + �)tPT
s=1�=(1 + �)s

We are interested in �tting the model in section 3�1, so we calculate the expectation of that
score statistic under the true model

E [U(0)] =
1PT

s=1�=(1 + �)s

TX
t=1

 
zt � 1

T

TX
u=1

zu

!(
�

(1 + �)t

)

� 1

T�

TX
t=1

 
zt � 1

T

TX
u=1

zu

!�
�� t�2

�

=
��
T

TX
t=1

 
zt � 1

T

TX
u=1

zu

!
t

The approximation in the second line comes from a Taylor expansion and is accurate if
T�, the risk of dying during the study period, is small. Using the fact that the information
matrix is the covariance matrix of Z the resulting bias in �̂ is approximately ���zt, where
�zt is the correlation between Zt and t, a measure of the degree of trend.
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