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ABSTRACT 

The field of environmental statistics is one of rapid growth at the moment. Environ-

mental decision making is prevalent in much of the world, and politicians and other decision 

makers are requesting new tools for understanding the state of the environment. In this vi-

gnette some areas of the field are described, and a personal view of important directions is 

outlined. 
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1.  Introduction 

The field of environmental statistics is relatively young. The term “environmetrics” 

was apparently introduced in an NSF proposal by Philip Cox in 1971 (Hunter, 1994). During 

the last decade, the field has achieved some recognition, in that there now are three journals 

wholly or partially devoted to the field (Environmetrics  published by the International Envi-

ronmetrics Society and Wiley; Ecological and Environmental Statistics  published by Klu-

wer, and Journal of  Agricultural, Biological and Environmental Statistics  published by the 

American Statistical Association). The ASA has a section on Statistics and the Environment, 

and the International Statistical Institute is currently discussing such a section. Volume 12 of 

the series Handbook of Statistics   (Patil and Rao, 1994) was devoted to the topic of envi-

ronmental statistics. Its 28 chapters constitute an interesting overview over the field.  

In this vignette I present some of the current areas of research in environmental sta-

tistics. This is of course by no means an overview of the field as it stands, rather, it is a list of 

areas in which I can see the need for, and largely also the tools for, methodological devel-

opments. 

2. Environmental monitoring 

Environmental monitoring design deals mainly with two quite different sorts of de-

sign problems: monitoring for trend, where spatial and temporal dependence is of impor-

tance, and monitoring for “hot spots”, or regions of local high intensity, which is often used 

for monitoring compliance with pollution regulations. The basic theory of optimal design for 

spatial random fields is outlined in Ripley (1981, Chapter 3). Among the popular designs are 

systematic random sampling designs, in which a point is chosen uniformly over the study 

area, and a regular design (consisting of squares, triangles, or hexagons) is put down starting 

at the chosen point. When the sample mean is used to estimate the spatial mean of an iso-
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tropic random field over a region, the regular sampling plans are most efficient (Matérn, 

1960, Chapter 5). The hexagonal design requires fewer sampling sites than a square or trian-

gular one to cover the same area, but does not take into account spatial covariance heteroge-

neity or temporal nonstationarity. The covariance mapping technique mentioned below in 

section 3 can be used to deal with spatial heterogeneity, by implementing a spatial design in 

the transformed space.  

Zidek and coworkers (e.g. Caselton et al., 1992, Guttorp et al., 1993) have developed 

an approach to network design which can deal with heterogeneous random fields. The basic 

idea is to consider a number of potential monitoring sites, some of which are gauged and 

some ungauged. In a multivariate normal setting, the design maximizes the amount of infor-

mation (of Kullback-Leibler type) about the ungauged sites that can be obtained from the 

gauged sites. This can be particularly useful when trying to redesign a current network, by 

adding and removing stations. 

It is frequently the case that data from a monitoring network will serve more than 

one purpose. For example, in analyzing trends in tropospheric ozone (Reynolds et al., 1998), 

the data were collected by the state of Washington to monitor compliance with the Clean Air 

Act. Consequently, the network was aimed at finding areas of high air pollution, and was 

changing over time. Statistical methods for analyzing data from a network adaptively de-

signed to find the extremes of a random field need to be developed. 

The US Environmental Protection Agency (EPA) started in 1989  an ambitious 

monitoring program called EMAP (Environmental Monitoring and Assessment Program). 

This was intended to create a “report card” for the state of the US environment. The basic 

design of the EMAP study (Overton et al., 1990) is a hexagonal grid, with a random starting 
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point and a side of 27 km, resulting in 12,600 grid points over the continental United States, 

of which 25 fall in the Delaware Bay on the US East coast, where EMAP has an ongoing 

study of benthic invertebrates. The EMAP protocol required revisiting some of the sites on a 

rotating 3-year basis. The measurements made at each site (three times each summer) in-

cluded a bottom grab sample of benthic organisms, together with measurements of covari-

ates such as temperature, depth, and salinity. 

The basic biological tenet behind this sampling scheme is that environmental insults 

affect the distribution of organisms, in that pollution tolerant species tend to get a larger pro-

portion of the sample than do pollution sensitive species. In order to deal with species com-

position data, Aitchison (1986) developed a methodology based on transforming the propor-

tions from the unit simplex to Euclidean space. The proportions are then treated as multi-

variate normal data in the transformed space. Billheimer (1995) extended this model to 

space-time data, showed how to estimate parameters using Markov chain Monte Carlo tech-

niques, and how by backtransforming to the simplex the parameters can be given a natural 

interpretation as proportions (Billheimer et al., 1999). In fact, it is possible to develop an al-

gebra of proportions which allows the statement of common models, such as regression, in 

terms of proportions.  In order to account for counts of species from samples, the proportions 

are thought of as hidden state variables,  and the counts are, e.g., conditionally multinomial, 

given the (unobserved) proportions.  Billheimer et al. (1997) analyze the spatial distribution 

of EMAP data from Delaware Bay, and Silkey (1998) looks at changes over time.  

Another example of compositional data in environmental statistics deals with par-

ticulate matter air pollution. Here the chemical analysis determines the distribution of 

chemical species among the particles. Regression on known pollution profiles enables identi-
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fication of sources (Park et al., 1999), but the compositional analysis approach mentioned 

above may yield additional insight, particularly into seasonal patterns. 

3. Spatial prediction 

Environmental monitoring data are often used to develop regional summaries of pol-

lution fields. In order to do so, values at unobserved sites have to be predicted. Geostatistical 

methods, such as kriging, were originally developed to do spatial prediction from a single 

observation of a network of sites. The main difference in the environmental context is that 

we generally have a time series of observations. Where ordinary geostatistical methods are 

forced to make strong assumptions on the spatial covariance structure, such as isotropy, 

these are not needed , and often not warranted, in the environmental context. Methods are 

available to study spatially heterogeneous covariance structures (Guttorp and Sampson, 

1994). Such methods are needed, e.g., when the covariance structure is determined by hy-

drology or meteorology. 

Our preferred approach is to use the class of covariance functions of the 

form ))()((),( 0 yfxfcyxc −= ,where 0c  is an isotropic covariance function and f is a 

smooth mapping taking the geographic coordinates (x,y) into a different space in which co-

variances are isotropic (some facts regarding this class of covariance functions can be found 

in Perrin and Meiring, 1999). The mapping f can be estimated nonparametrically, and current 

work involves implementing the fitting procedure using Markov chain Monte Carlo 

(MCMC) techniques. 

Given a covariance model, spatial prediction traditionally proceeds as a generalized 

least squares problem. The standard error of the least squares prediction has three com-

ponents: one due to the uncertainty about the random field, one due to the uncertainty in 
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the covariance estimation, and one due to the choice of 0c  and f. Traditional geostatisti-

cal work ignores the second and third components. The use of MCMC estimation of the 

covariance function allows direct estimation of the second component. Model uncer-

tainty calculations (e.g., Clyde 1999) can be used to estimate the overall uncertainty by 

estimating the support of the data for each of several potential covariance models 0c . 

4.  Risk assessment 

The US Environmental Protection Agency is committed to assessing environmental 

problems using risk analysis. Traditionally, this has been done by putting down a determinis-

tic model of the relationship between level of pollutant and effect. The typical risk function 

is a differential equation, with parameters that are determined from a variety of sources, such 

as laboratory experiments, measurements on exposed individuals, or scientific consensus. 

When the model has to do with human health effects, the basis for the risk function is more 

often than not experiments on animals, which are then rescaled to provide a risk functions 

for humans using a fairly arbitrary scaling factor. For further discussion of health effects es-

timation, see the vignette by Thomas (2000). 

Recently much emphasis has been put on uncertainty analysis of these risk assess-

ments. Primarily it has been noted that the values of the parameters in the model are subject 

to uncertainty, which then propagates through the whole assessment and results in uncer-

tainty about the final risk. The method of probabilistic risk analysis (Cullen and Frey, 1998) 

assigns what a statistician would call a prior distribution to each of the parameters. Typically 

the parameters are treated as independent a priori, with simple marginal distributions such as 

uniform or normal.  The analysis is done by simulating values from the prior distributions 

and summarized by producing simulated confidence intervals for quantiles from the resulting 

risk distribution. Current work aims at assessing the uncertainty more accurately by looking 
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at the entire model uncertainty (e.g., Givens et al., 1995, Poole and Raftery, 1999). This in-

cludes, in addition to the uncertainty of the parameters mentioned above, uncertainty of the 

data used to fit and/or assess the model, and uncertainty of the model itself. 

5. Environmental standards 

The detailed understanding of the health effects of a pollutant is one of the tools 

needed for setting scientifically valid standards for environmental compliance. As an exam-

ple, the US standard for ozone requires that all sites in a region have an expected number of 

annual maximum daily 1-hour exceedances of 120 ppb of not more than one. Such a standard 

is not enforceable, since the expected number of exceedances is not directly measurable, and 

measurements cannot be taken everywhere in the region. Rather, it describes an ideal of 

campliance, and may be termed an ideal standard. The standard is implemented by requiring 

that each site in an approved monitoring network is to have no more than 3 exceedances in 3 

years. In effect, this rule applies the law of large numbers to n=3.  

The concept of statistically realizable ideal standards was introduced by Barnett and 

O’Hagan (1997). Their idea is to combine an ideal standard with a statistically based rule of 

implementation. A simple approach to the problem of setting scientifically defensible envi-

ronmental standards uses very traditional statistical tools, namely the Neyman-Pearson ap-

proach to hypothesis testing. The basic null hypothesis to be tested is that the region is in 

violation of the regulation, i.e., in the ozone case that the expected number of exceedances is 

more than one per year. Type I errors are more serious, since they indicate unacceptable 

health risks to the population, while type II errors can have serious consequences for the 

state environmental administrators in having to develop control strategies that are not strictly 

speaking needed. When viewing the EPA regulations from this point of view, they entail 

type I error probabilities that would be viewed as unacceptable by statisticians (Carbonez et 
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al. 1999, Cox et al., 1999). In addition, a statistical approach to testing the basic null hy-

pothesis would use test statistics different from the number of exceedances. 

In air quality data, measurements are generally made on multiple pollutants. Stan-

dards are, however, set on individual pollutants (in the United States these are the criteria 

pollutants, carbon monoxide, ozone, particulate matter, sulfur dioxide, and nitrous oxides). It 

is an open problem how to set multivariate standards, taking into account the joint health ef-

fect of several correlated primary and secondary pollutants. 

6. Graphical methods 

An area of considerable importance in all of modern statistics is the management, 

display and analysis of massive data sets. Land use data from satellite-based sensors, auto-

mated air quality sensors, continuous water flow meters are among a variety of new meas-

urement devices producing vast amounts of data. We are lacking tools for displaying spa-

tially expressed data with uncertainty measures (see however Lindgren and Rychlik, 1995 

and Polfeldt, 1999  for two approaches). Recent advances in three-dimensional visualization 

(virtual reality) allows a viewer to immerse herself in spatially expressed multivariate data 

(Cook et al., 1998).  

As in all visualization of multivariate data, the tools of linked plots and brushing are 

extremely useful. There are promising developments in multi-platform graphical systems de-

sign using Java-based tools (e.g., the ORCA system, Sutherland et al. 1999). In particular, 

views of projections of multiple multivariate time series can yield valuable insights into the 

temporal structure of values that are multivariate outliers originating in a particular temporal 

part of the data, something that may not be visible in a rotating scatter cloud, and even less in 

a bivariate scatter plot matrix.  
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7. The future of environmental statistics 

Many of the important environmental problems directly involve multi-dimensional, 

spatially heterogeneous, and temporally non-stationary random fields. My personal belief is 

that the development of statistical research tools for classes of such processes may prove to 

be the most useful development in the field of environmental statistics. The multivariate as-

pect, in particular, is very important, in that there are few symmetries in space and time that 

can be used in setting up models for realistic situations. As an example, if we are studying 

the joint distribution of SO2 and SO4 during situations of similar meteorology, we will find 

different space-time correlations for positive and negative time lags, since most of the SO4  is 

produced from SO2 emissions. As pointed out earlier, tools for looking at the joint behavior 

of several pollutants and for developing control strategies for their behavior are currently the 

focus of intensive research. 

This vignette has focused on examples from the air quality arena. There are equally 

important, and often more complex, issues in water quality, and more generally in ecological 

assessment of natural resources. In the long run, a battery of tools for describing, analyzing, 

and controlling the state of ecological systems must be developed. There are significant chal-

lenges ahead for environmental statisticians. 
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