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Abstract

In this article we develop the �rst component of a spatial predictive distribution for the ambient
space - time response �eld of daily ambient PM10 in Vancouver, Canada. [That component deals
with the prediction of daily levels, the second with hourly levels.] Observed responses have a
remarkably consistent temporal pattern from one monitoring site to the next. We exploit this
feature of the �eld by adopting a response model with two components, a common deterministic
trend across all sites plus a stochastic residual. We are thereby able to whiten the temporal residuals
without losing much of the spatial correlation in the original log-transformed series. This in turn
enables us to develop an e�ective spatial predictive distribution for these residuals at unmonitored
sites. By transforming the predicted residuals back to the original data scales we can impute
Vancouver's daily PM10 �eld for purposes such as human exposure and health impacts analysis.

KEY WORDS: PM10; space-models; autoregressive processes; spatial interpolation; monitoring
networks; spatial correlation.

1 Introduction.

This paper follows that of Li et al (1998) analyzing the hourly PM10 �eld over the Greater Vancouver
Regional District (GVRD). Our paper addresses problems arising from the spatial complexity of that
�eld by turning from hourly to daily levels of this important air pollutant. We describe why our
solution has been adopted and why it is satisfactory for certain purposes.

Interest in this pollutant derives from the recognition that elevated levels are associated with acute
negative health impacts. A panel of experts appointed by the UK Department of the Environment,
Transport and the Regions concludes: (http://www.environment.detr.gov.uk/airq/aqs/particle/, para-
graph 25)

of PM10 and health e�ects, ... that the higher the concentration of particles, the greater
the e�ect on the health of the population and conversely, the lower the concentration, the
smaller the e�ect.

Li et al (1998) analyze hourly ambient PM10 concentrations collected in the Vancouver area from
1994 to 1996. Data come from 10 monitoring stations in the GVRD, di�erent stations starting op-
eration at di�erent times. Tapered Element Oscillating Microbalance (TEOM) monitors generated
the data, the data we use to construct the simple daily averages. (These \continuous" monitors
use a tapered quartz element of conical shape. A detachable impervious �lter is connected at the
larger end and air is drawn onto that �lter. The element oscillates at its resonant frequency when
electrical current is passed through the element. However as the particle loading builds up that
frequency changes unless the current is altered to maintain the resonant frequency. The change in
current needed provides the surrogate measure of particulate concentration that gets converted and
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Table 1: Cross-correlations (�100) for Hourly Average log PM10 de-AR'd Residuals Between Di�erent
Monitoring Stations.

site 1 2 3 4 5 6 7 8 9 10

1 { 16 24 22 11 23 19 16 11 9

2 16 { 17 15 24 22 17 12 7 5

3 24 17 { 17 9 23 22 14 7 8

4 22 15 17 { 12 23 25 27 15 10

5 11 24 9 12 { 14 17 12 9 7

6 23 22 23 23 14 { 29 14 10 9

7 19 17 22 25 17 29 { 18 16 10

8 16 12 14 27 12 14 18 { 17 13

9 11 7 7 15 9 10 16 17 { 15

10 9 5 8 10 7 9 10 13 15 {

Table 2: Cross-correlations (�100) For Hourly Average log PM10 De-trended Residuals Between
Di�erent Monitoring Stations.

site 1 2 3 4 5 6 7 8 9 10

1 { 44 61 55 37 59 53 48 41 41

2 44 { 43 45 58 53 46 40 35 29

3 61 43 { 54 31 63 57 45 33 37

4 55 45 54 { 40 62 67 65 48 39

5 37 58 31 40 { 40 41 40 35 30

6 59 53 63 62 40 { 67 50 40 38

7 53 46 57 67 41 67 { 55 45 36

8 48 40 45 65 40 50 55 { 48 45

9 41 35 33 48 35 40 45 48 { 45

10 41 29 37 39 30 38 36 45 45 {

averaged to yield the measurements. (Environmental Health Department, Warwick District Council,
http://www.warwickdceh.demon.co.uk/equip.htm#DataCapture.)

The analysis of Li et al (1998) was to be a prelude to the development of a spatial prediction
methodology for imputing unmeasured levels of PM10 at 299 additional locations. However, the
intended interpolation methodology of Le and Zidek (1992) requires of the random �eld to be interpo-
lated that its realizations: (1) have Gaussian distributions; and (2) be independent. Neither condition
holds for our particulate �elds. So the data were �rst subjected to logarithmic transformation to
insure approximate attainment of (1). Denote the resulting response by Y (x; t) at site x and time t.

Attaining (2) even approximately proves more challenging. First steps came from the discovery
that the temporal pattern of the log-transformed measurements have a remarkable consistency across
sites. So a trend model T (t) = �+Hhour+Dday+Wweek at time t was �tted across all ten monitoring
sites. The \de-trended residuals" at site x and time t was then computed as E(x; t) = Y (x; t)� T (t):

Next, autoregressive and other analyses of the fE(x; t)g for each �xed x and varying t led to the
adoption of a single AR(3) model for all sites:

E(x; t) = �1E(x; t� 1) + �2E(x; t� 2) + �3E(x; t� 3) + e(x; t) (1)
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where �1, �2 and �3 are the model coe�cients. For expository simplicity we refer to the fe(x; t)g as
the \de-AR'd" residuals to re
ect the fact that the AR structure has been taken out. For �xed x, the
de-AR'd residuals proved to be quite \white" for the 10 sites, having small auto-correlation.

Spatial prediction would then entail imputing the fe(x; t)g for 299 sites x not among the original 10
to obtain say fê(x; tg for such sites. Next the de-trended residuals for those sites would be constructed
by taking them to be 0 at times t = �2;�1 and using (1) recursively to obtain the Ê's for those sites
Finally the trend would be added to these imputed residuals to get series on the original log-PM10

scale.

However, the proposed procedure seemed likely to fail since for �xed t and the 10 stations, the de-
AR'd residuals had not only the expected small auto-correlations but as well they had small between-
site cross-correlations (see Table 1). These small correlations contrasted with their substantially larger
counterparts for the fE(x; t)g (see Table 2) Where had that correlation gone?

We found it had \leaked" into the lag-one hour cross-correlations between sites. Substantial
correlation remained between fe(x; t)g and fe(x0; t� 1)g at any two sites x and x0 for varying t. This
�nding shows the 10 parallel time-series to have a complex spatial-temporal structure that cannot be
modeled through univariate time-series methods applied one site at a time. Moreover, the seemingly
obvious solution of using a multivariate auto-regressive approach cannot be used as we now explain.

The multivariate approach would involve use the de-trended residual series for all of the 10 sites
in the model:

E(t) = A1E(t� 1) +A2E(t� 2) +A3E(t� 3) + e(t) (2)

where the fAig are the 10 � 10 matrices of model coe�cients, E(t) = (E(1; t); : : : ; E(10; t))0 for all t
and the fe(t)g are the multivariate de-AR'd residual vectors.

This approach would block the spatial correlation in the E-series from leaking into lag-1 spatial
cross-correlation in the e-series. With the resulting increased cross-correlation in the lag-0 e-series
success in constructing the ê series for the remaining 299 stations would be assured. To that extent
the multivariate method would succeed.

However this approach makes di�cult the construction of the Ê series. Our 10 � 10 A coe�cient
matrices would need to be extended to 309 � 309 matrices for all the sites. This seems to be an even
more challenging problem than the interpolation of the series themselves. We see no way of solving it
and alternative approaches are required.

The analysis of Li et al (1998) suggests three possible alternatives that we will now describe for
completeness although a detailed description of the results obtained for the latter two must be deferred
to a subsequent paper. The �rst is the subject of this paper and we turn from hourly to daily log
average concentrations of PM10. Generally daily levels of airborne pollutants are of importance in
environmental epidemiology where their association with morbidity and mortality are considered (c.f.
Burnett et al 1994, Zidek et al 1998).

Since the de-trended hourly series was found to have an AR(3) structure it would be expected that
successive de-trended log daily averages would have markedly smaller auto-correlations than their
hourly counterparts. Theoretical considerations (see the Appendix) indicate that the possible lag 1
cross-correlations should be small as well. Thus the spatial-temporal complexities described above for
the hourly series should be circumvented.

However for some purposes such as setting regulatory standards, hourly values may be needed. In
this case one could treat each of the 24 hours one at a time. The AR(3) structure of Li et al (1998)
suggests that these hourly values will be approximately independent since they are separated by 23
hours. Moreover we can �t di�erent models for each hour thereby enabling us to capture such e�ects
as the shifting wind �eld. That analysis will be further enhanced by �tting di�erent models for the
di�erent seasons to allow for seasonal variations in the daily wind �eld. We present the results of that
analysis elsewhere.
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Figure 1: Auto-correlation Functions For De-trended Daily Log Averages At All Monitoring Sites.
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Figure 2: Partial Auto-correlation Functions For De-trended Daily Log Averages At All Monitored
Sites.
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Figure 3: Auto-correlation Functions for AR(1) Residuals At All Monitoring Sites.
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Figure 4: Partial Auto-correlation Functions for AR(1) Residuals At All Monitoring Sites.
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Table 3: Cross-correlation (�100) For De-trended Daily Average log PM10 Residuals Be-

tween Di�erent Monitoring Stations.

site 1 2 3 4 5 6 7 8 9 10

1 { 61 81 75 60 78 75 74 64 63

2 61 { 56 58 79 67 59 60 49 44

3 81 56 { 76 51 84 77 72 54 59

4 75 58 76 { 62 84 87 86 67 53

5 60 79 51 62 { 62 59 62 54 48

6 78 67 84 84 62 { 85 79 62 59

7 75 59 77 87 59 85 { 81 63 53

8 74 60 72 86 62 79 81 { 68 63

9 64 49 54 67 54 62 63 68 { 61

10 63 44 59 53 48 59 53 63 61 {

The one-hour-at-a-time analysis su�ers from the disadvantage that we cannot \borrow strength"
from the hours adjoining that of interest. Therefore the last of our approaches uses the multivariate
method of Brown et al (1994a). As a preliminary step we use the univariate approach above to cluster
the hours according to their degree of similarity. We expect to see one, two or more hour-clusters that
might be grouped into multivariate response vectors for subsequent analysis. That analysis is now
underway.

2 Log PM10 Concentrations In Vancouver.

In this section we show that an AR(1) model describes quite well the daily averages of de-trended
log PM10 concentrations in Vancouver. Hourly PM10 measurements collected by a network of TEOM
monitors across the GVRD in 1996 were used to calculate daily average values used in this analysis.
For any location x and day d, let X(x; d) represent the daily log PM10 average concentration (�g m�3).
Furthermore let S(d) represent the overall trend in these spatial averages for day d, i.e.

S(d) = �0 +Dday +Wweek

where �0 = �+ (H1 + � � � +H24)=24 is the overall mean e�ect in the daily model with � representing
the average over all sites while Hj denotes the corresponding average for hour j = 1; : : : ; 24 once �
has been subtracted from all responses.

To explore the nature of the temporal variation in the daily de-trended residuals D(x; d) =
X(x; d)�S(d) we estimated at each monitoring site x the auto-correlation in the D-series. In Figure 1
we see the resulting auto-correlation function plots. They indicate a strong �rst order auto-correlation
at each site. The corresponding partial auto-correlation function plots (in Figure 2) con�rm this ob-
servation. The latter in particular suggests we can rule out a moving average component in the series.
The consistency across monitoring sites seen in the �gures suggests the adoption of a single time-series
model applicable for all sites.

Our analysis thus led us to �t to the de-trended residuals, a single �rst order autoregressive model

D(x; d) = �D(x; d� 1) + d(x; d);

with estimated coe�cient �̂ = 0:34.
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Figure 5: QQ-norm Plots For the AR(1) Residuals At All Monitoring Sites.

Table 4: Cross-correlation (�100) of AR(1) Residuals for De-trended Daily Average log

PM10 Residuals Between Di�erent Monitoring Stations.

site 1 2 3 4 5 6 7 8 9 10

1 { 66 82 76 60 78 74 74 62 61

2 66 { 64 65 79 71 64 63 56 51

3 82 64 { 78 54 84 77 74 55 59

4 76 65 78 { 64 86 88 87 69 59

5 60 79 54 64 { 64 62 62 57 51

6 78 71 84 86 64 { 86 79 63 62

7 74 64 77 88 62 86 { 81 64 57

8 74 63 74 87 62 79 81 { 69 68

9 62 56 55 69 57 63 64 69 { 63
10 61 51 59 59 51 62 57 68 63 {
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Figure 6: Locations of the 10 PM10 Monitoring Stations in Vancouver.
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To check the quality of this �t we estimated the auto-correlations in the resulting (\de-AR'd")
residual series. We present in Figures 3-4 the counterparts for these residuals, of Figures 1-2. They
show little or no remaining auto-correlation.

The spatial prediction methodology used in the next section assumes a Gaussian joint distribution
for the response �eld being predicted. The veracity of that assumption was examined through the
use of QQ-norm plots, a standard way of diagnosing departures from a normal data distribution. In
such plots sample quantiles are compared against those for a normal distribution, the assumption of
normality being supported when these plots turn out to be linear. Our assumption is well supported
by the strikingly linear QQ-norm plots in Figure 5 for these residuals at all monitoring sites.

We now face the issue of what we called spatial correlation \leakage" in the Introduction. Does
spatial correlation in the AR(1) residual series for daily values leak in the same way as that noted
in the Introduction for hourly series? To answer that question we �rst exhibit Table 3, the spatial
cross-correlations between de-trended residuals at di�erent sites for log-transformed daily averages.

We see in Table 4 the corresponding correlations for AR(1) residuals. It shows the answer to the
question proves to be negative. Little or no decrease in spatial cross- correlation is seen on comparing
the entries in Tables 3 and 4. This allows us to develop in the next section a spatial prediction
methodology for use with the log PM10 data collected by the ten GVRD monitoring stations.

3 Interpolating the Daily Field.

In this section we develop a predictive distribution for unmeasured daily log PM10 concentration
averages given data from 10 monitoring sites in Vancouver (more properly the GVRD). The locations
of these sites may be seen in Figure 6. We will show how the mean of that distribution may be used
to generate imputed values for the unmeasured pollution levels at each of about 300 census tracts.
Its covariance in turn provides an indication of the (joint) reliability of those imputed values. Indeed
that covariance can be used to generate 95% (or other level) credible sets for the unmeasured values.

We now describe the basic elements of the spatial predictor used in this analysis. Technical details
of the method will be presented in Le, Sun and Zidek (1999).

The method was proposed by Le and Zidek (1992) for univariate random �elds like the subject
of this paper. It was extended to multivariate random �elds by Brown, Le and Zidek (1994a) and
further by Le, Sun and Zidek (1997) to enable the theory to contend with situations where data are
systematically missing-by-design.

The method uses a hierachical Bayesian approach. At level one the random �eld, for example
the de-AR'd residual �eld in this paper is assumed to have a joint Gaussian distribution conditional
on a model for the mean surface (and certain covariates in that model). As well at this level the
spatial covariance matrix � is assumed to be known and �xed. � would be of dimension 299 in the
application of this paper since in addition to the 10 monitoring sites an additional 299 unmonitored
sites, centroids of census tracts representing population receptor sites for exposure assessment, are
speci�ed. Daily values for these other sites, are to be predicted.

A conjugate prior distribution is postulated at level 2 to account for uncertainty about � and
other �rst level parameters. That prior for � is the Generalized Wishart distribution proposed by
Brown, Le and Zidek (1994b). It requires the speci�cation of its hyper-covariance matrix 	 of the
same dimension as �. With it speci�ed the resulting predictive distribution becomes not Gaussian
but a Multivariate -t (or matic-t in the multivariate case).

Specifying 	 the hyper-covariance matrix corresponding to to the spatial cross-correlation of the
de-AR's residuals in this paper is a challenging problem. It sub-diagonal matrix corresponding to
the monitoring stations can be estimated by type II maximum likelihood estimation using the EM
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algorithm. However that sub-diagonal estimate 	gg must be extrapolated to an estimate for the whole
of 	.

That is done by using the method of Sampson and Guttorp (1992, hereafter SG). As described
by Le, Sun and Zidek (1999) that method adopts a hypothetical Euclidean \D-plane" with respect to
which the co-ordinates of the f	ijg are isotropic. That is, the covariation between sites is a monotone
decreasing function say � of their D-plane distances. The method estimates that monotone function
and the D-plane location co-ordinates associated with each of the monitored sites di = (di1; di2) for
site i with geographical co-ordinates gi = (gi1; gi2). The method relates the fdig to the fgig through
thin plate smoothing splines f by means of dj = fj(g); j = 1; 2. These splines are �tted to the D-
and G-plane co-ordinate pairs for the gauged or measured sites, the degree of �t depending on the
so-called smoothing parameter � or \lambda" in the �gures below. The fdig are then replaced by the
�ts ff(gi)g, where f = (f1; f2).

Large values of that parameter will entail poor G- to D-plane co-ordinate �ts. However those splines
will more faithfully maintain the character of the G-plane and lead to simplicity of interpretation of
the results of the analysis. At the other extreme, small values can lead to splines that twist the
G-plane into unrecognizable form while ensuring a good �t to the estimated D-plane co-ordinates.

The choice of this parameter is subjective. \Small" tends to be better because the co-ordinates of
the estimated 	gg will tend to be more closely isotropic in the f image of the G-plane. On the other
hand some smoothing is desirable to achieve a degree of interpretability in the relationship between
the resulting plane and its G counterpart.

Once f has been speci�ed, the required extension of 	gg to 	 can easily be made. Represent the
G-plane co-ordinates of sites i and j corresponding to 	ij , gi and gj , by their f images in the D-plane
di = f(gi) and dj = f(gj). Finally estimate 	ij by �(jjdi � dj jj).

In practice the SG method is implemented through the so-called \variogram" in exactly the same
way as described above for the covariance. In general for a random �eld Z(x) the latter is de�ned
for locations x and x0 by V ar[Z(x)� Z(x0)]. It is closely related to the covariance and like the latter
is easily estimated when independent replicates of Z over time are available at the two sites. The
estimate is simply the sample average of squared di�erences in Z between the two sites. Software
has been developed for implementing the SG method and we are indebted to Professors Guttorp and
Sampson for supplying the version used here. Estimates of 	 can easily be found from estimates of
the variogram.

For any pair of the 10 monitored sites in our application we estimate the variogram in the manner
described above. The resulting 45 estimates (for all possible site pairs) are assigned D-plane co-
ordinates in the manner described above. Each of the 45 estimates can be plotted against the D-plane
distance separating them. Of course the D-plane distance between them will depend on the selected
size of the spline smoothing parameter. However, if no smoothing is used one can see that plot in
the right hand panel of Figure 7. The scatter plot shows 45 plotted variogram estimates and the best
�tting variogram plotted against them.

The left-hand panel of that �gure shows two monitoring sites # 5 (Richmond) and # 9 (Abborts-
ford) that must move away from the remaining 8 sites to achieve an isotropic correlation �eld. In
other words, these two stations tend to be un-correlated with the rest so must be moved away in the
D-plane to achieve inter-station distances commensurate with the low spatial cross-correlations they
have with the rest.
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Figure 8: Transformation to the D-plane With No Smoothing.
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Table 5: Location of PM10 Monitoring Sites

Site Location Latitude Longitude

1 Rocky Point Park 49.28083 122.8481

2 Kitsilano 49.26250 123.1625

3 Kensington Park 49.27917 122.9697

4 Surrey East 49.13278 122.6933

5 Richmond South 49.14194 123.1078

6 Burnaby South 49.21667 122.9833

7 North Delta 49.15833 122.9008

8 Langley 49.09611 122.5664

9 Abbotsford Downtown 49.04944 122.2925

10 Chilliwack Airport 49.15111 121.9469

Figure 8 o�ers a di�erent view of the same situation. The scatterplot in that �gure is identical
to that in Figure 7. However it shows in a more pictorial way how the (geographic) G-plane must be
folded to re-organize the G-surface so as to make the variogram separation between sites correspond
to their D-plane distances.

That picture shows the surface must essentially be folded over on itself to achieve the desired state
of isotropy. Interpreting the result is hard because of that folding. So an alternative is o�ered in
Figure 9. There with a small amount of smoothing a 
atter surface results with slight loss in the
quality of the \�t".

Figure 10 o�ers quite a di�erent diagnostic. The bi-orthogonal grid depicted there shows again
how the G-surface must be change to make the inter-station correlations come into line with the inter-
station distances. This diagnostic will prove particularly valuable in the sequel to this report where
the grids will be used to assess the hour-to-hour changes in the wind-�elds that help to determine the
spatial distribution of pollution �elds. The solid curves in Figure 10 show the directions in which the
surface must be contracted to achieve isotropic spatial correlation �elds. In contrast expansion along
the dotted lines is called for.

In any event, with the latter choice of the smoothing parameter we can apply the spatial prediction
methodology described above. Figures 11-14 show the results of doing so for selected days. In par-
ticular, Figure 11 shows the variation in the imputed PM10 �eld over days in two successive summer
weeks (#31 and #32), Day # 7 from the former followed by Days # 1,2 and 3 in the latter. Figure
12 continues this sequence for days # 4, 5, 6 and 7.

The remaining Figures 13-14 show the counterparts for winter days of Figures 11-12.

Notice the substantial temporal and spatial variation in the interpolated �elds in the Figures 11-14.
In particular, the interpolated daily PM10 surface is not 
at on any given day.

4 Validation Study.

Since interpolated spatial �elds can serve important societal purposes, the accuracy of an interpolation
method must be assessable and high. Moreover, its degree of inaccuracy must itself be accurately
assessable.
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Figure 10: The Biorthogonal Plot After Moderate Smoothing.

Table 6: Coverage Probabilities and RMSPE

site 1 2 3 4 5 6 7 8 9 10

Coverage 94.8% 96.2% 94.0% 95.1% 95.4% 94.5% 94.5% 95.1% 94.0% 93.2%

RMSPE 0.161 0.174 0.161 0.123 0.201 0.133 0.145 0.150 0.224 0.258

13



-123.2 -123-122.8-122.6-122.4-122.2-122

Week 31
49.1

49.2

49.3
Day 7 of the week

8
9

10
11

12
D

ay
 2

17
 o

f t
he

 y
ea

r

-123.2 -123-122.8-122.6-122.4-122.2-122

Week 32
49.1

49.2

49.3
Day 1 of the week

12
13

14
15

16
17

18
19

D
ay

 2
18

 o
f t

he
 y

ea
r

-123.2 -123-122.8-122.6-122.4-122.2-122

Week 32
49.1

49.2

49.3
Day 2 of the week

18
20

22
24

26
28

30
32

D
ay

 2
19

 o
f t

he
 y

ea
r

-123.2 -123-122.8-122.6-122.4-122.2-122

Week 32
49.1

49.2

49.3
Day 3 of the week

20
21

22
23

24
25

D
ay

 2
20

 o
f t

he
 y

ea
r

Figure 11: Interpolated PM10 Field For Selected Summer Days in 1996.
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Figure 12: Interpolated PM10 Field For Selected Summer Days: Continuation of Figure 11.
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Figure 13: Interpolated PM10 Field For Selected Winter Days in 1996.
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Figure 14: Interpolated PM10 Field For Selected Winter Days: Continuation of Figure 13.
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Table 7: Cross-correlation (�100) of De-trended Residuals Before Removal of Their AR(1)

components: Daytime Series

Site 1 2 3 4 5 6 7 8 9 10

1 { 50 80 71 47 78 71 65 65 58

2 50 { 51 47 71 55 46 46 52 40

3 80 51 { 75 44 85 73 68 53 56

4 71 47 75 { 49 80 84 86 64 54

5 47 71 44 49 { 48 48 49 48 38

6 78 55 85 80 48 { 82 71 62 59

7 71 46 73 84 48 82 { 75 60 51

8 65 46 68 86 49 71 75 { 63 62

9 65 52 53 64 48 62 60 63 { 62

10 58 40 56 54 38 59 51 62 62 {

We now present the results of a preliminary empirical validation study of our interpolation method-
ology. We assess accuracy and the accuracy of our assessments of inaccuracy. A more extensive study
is currently underway.

Table 5 lists the 10 stations in our study. Note for future reference that the \Chilliwack Airport"
station is well separated from the other 9 (see also Figure 6). In contrast, "Burnaby South" lies well
within their geographical envelope.

In our validation study we �tted and �xed once and for all the 10 � 10 spatial covariance matrix
of the de-AR's residuals. [We comment on this fact in the next section.] We then commenced to
remove the stations from the network one at a time. After a single station was removed we used the
remaining 9 to develop the spatial predictive distribution for the missing site. The predicted values at
the missing station could then be compared with the actual values, day-by-day throughout the year.

Table 6 shows the root mean square prediction error (RMSPE in log �m�3) of the predictive
distribution's mean over all the days of the year. Not surprising the de-AR'd residuals prove most
di�cult to predict at the two most remote stations, \Chilliwack Airport" and \Abbotsford Downtown."
While not geographically remote \Richmond South" values also prove di�cult to predict. Though
close geographically to the other stations it remains a outlier as our analysis of spatial correlation
patterns in the last section has shown. Its values are not well-correlated with the remaining stations,
making it hard to predict.

Figures 15-16 show the interpolated values themselves compared with the actual raw data values
(�m�3). Notice the di�culty encountered in predicting extremely large and small values in both cases.
Although stations prove di�cult to predict, their 95% prediction credibility intervals seem to correctly
re
ect that di�culty. Table 6 shows the actual coverage frequency of the 95% prediction credibility
intervals are close to their nominal 95% level. \Chilliwack Airport's actual level of 93.3% deviates
most among the 10 stations from 95%.

We look more closely at results for \Burnaby South" (a proximate station) and \Chilliwack Station"
(a remote station that challenges the prediction methodology). Their 95% error bands and actual de-
AR'd log data series are plotted in Figures 17 and 18, respectively for just the particularly important
summer months (so that details in the plots are more visible). By and large, the error bands do
\bracket" the actual results in both cases.
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Figure 16: Estimated means and the true values (Burnaby South).
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Figure 17: Validation of Chilliwack Airport - 95% con�dence band and the true values of the de-AR'd
residuals, June - September 1996.
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Figure 18: Validation of Burnaby South - 95% con�dence band and the true values of the de-AR'd
residuals, June - September 1996.
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Figure 19: Scatter plot of the original against the estimates (Burnaby South).
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Figure 20: Scatter plot of the original against the estimates (Chilliwack Airport).
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Table 8: Cross-correlation (�100) of Detrended Residuals After Removal of Their AR(1)

Components: Daytime Series

Site 1 2 3 4 5 6 7 8 9 10

1 { 53 79 70 48 75 69 65 63 54

2 53 { 56 52 71 59 50 49 55 44

3 79 56 { 75 48 85 74 68 53 54

4 70 52 75 { 52 80 85 85 66 57

5 48 71 48 52 { 52 51 51 51 41

6 75 59 85 80 52 { 82 71 62 58

7 69 50 74 85 51 82 { 75 62 53

8 65 49 68 85 51 71 75 { 65 63

9 63 55 53 66 51 62 62 65 { 63

10 54 44 54 57 41 58 53 63 63 {

Table 9: Cross-correlation (�100) of Detrended Residuals Before Removal of Their AR(1)

Components: Nighttime Series

Site 1 2 3 4 5 6 7 8 9 10

1 { 71 78 71 60 78 73 72 61 60

2 71 { 63 67 74 80 74 66 52 48

3 78 63 { 67 45 82 74 62 49 55

4 71 67 67 { 59 81 83 83 66 46

5 60 74 45 59 { 62 63 63 60 46

6 78 80 82 81 62 { 87 75 60 51

7 73 74 74 83 63 87 { 80 65 49

8 72 66 62 83 63 75 80 { 70 56

9 61 52 49 66 60 60 65 70 { 55

10 60 48 55 46 46 51 49 56 55 {

Figures 19-20 show this di�culty in another way. While the predictor is able to predict well actual
values when they are small or moderate, it under-predicts large value demonstrating the regression
e�ect anew. [We comment on this issue in the next section.]

5 Discussion.

The results of Section 3 demonstrates the use of a spatial predictive distribution for airborne particulate
pollution �elds. The validity of the assumptions leading to that distribution is demonstrated in Section
2. Section 4 suggests the method works reasonably well. It predicts the actual measurement �eld well
unless unless the unmonitored stations are well separated from the primary domain of the data.
Moreover it seems to quantify correctly its own level of prediction error.

However, we emphasize that we did not extrapolate the spatial covariance matrix from that of 9
stations to the 10th each time we constructed that distribution in Section 4. A proper cross validation
study (the subject of current investigation) would require that. So the predictive distribution may
not perform as well as our preliminary �ndings suggest. Nevertheless, we are fairly con�dent that out
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Table 10: Cross-correlation (�100) of De-trended Residuals After Removal of Their AR(1)

components: Nighttime Series

Site 1 2 3 4 5 6 7 8 9 10

1 { 74 79 72 60 79 74 72 61 60

2 74 { 68 70 74 82 76 69 56 52

3 79 68 { 70 47 84 76 65 52 56

4 72 70 70 { 60 82 84 83 68 52

5 60 74 47 60 { 62 62 63 62 45

6 79 82 84 82 62 { 88 75 62 55

7 74 76 76 84 62 88 { 80 66 53

8 72 69 65 83 63 75 80 { 72 60

9 61 56 52 68 62 62 66 72 { 57

10 60 52 56 52 45 55 53 60 57 {

Table 11: Lag One Cross-correlation Leakage of Hourly Data - Spatial Cross-correlation

(�100) Between deAR'd and Detrended Residuals

site 1 2 3 4 5 6 7 8 9 10

1 -3 10 15 13 10 15 14 10 9 8

2 10 1 9 12 16 11 11 11 10 8

3 11 11 1 13 10 17 13 8 7 7

4 10 12 15 2 12 16 19 14 11 9

5 9 12 7 10 4 7 10 12 9 9

6 9 12 13 13 13 -1 14 11 9 8

7 10 12 13 15 9 14 3 11 8 8

8 10 9 14 13 8 13 15 -5 8 9

9 11 10 11 13 9 12 12 12 -5 11

10 16 9 15 14 9 14 13 15 13 5

�ndings do not exaggerate performance quality unduly. The cross-validatory studies of Sun (1998)
and Sun et al (1998) in other contexts generally agree with those above.

Figures 7-9 (Section 3) demonstrate how unrealistic the assumption of spatial non-stationarity
can be. Clearly Vancouver's 10 PM10 stations would have to move around a lot to get their inter-
station geographic distances to correspond to their inter-station covariances. In our experience with
environmental �elds such non-stationary would be the rule rather than the exception since the monitors
are designed mostly for compliance monitoring or ambient exposure assessment purposes.

Note that the interpolated surfaces in Figures 11-14 are not 
at. Their irregularly comes in the
�rst instance from variation in the daily levels of PM10 at the 10 monitored stations; the interpolated
values must approximate the actual values at monitored stations, the \nugget e�ect" being quite small.
However between stations the interpolated surface must regress towards the mean. The inevitable
\regression-toward-the-mean" e�ect thus contributes to the impression of irregularity of the ambient
particulate pollution �eld.

This �nding shows that this interpolator under-predicts the extreme values in the pollution �eld.
This could be quite signi�cant in the analysis of population exposures and human health e�ects, for
example. Here the contrast in pollution levels between geographical sub-regions should be preserved
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Table 12: Lag One Daily Data Cross-correlation (�100) Between de-AR'd and De-trended

Residuals

site 1 2 3 4 5 6 7 8 9 10

1 -1 -14 -2 -5 -11 -2 -1 -6 -5 -1

2 3 6 -2 -1 3 6 2 2 -7 -3

3 1 -16 2 -2 -13 1 1 -6 -7 1

4 4 -13 2 3 -10 2 2 -3 -8 -8

5 9 0 4 2 -3 6 4 3 -4 3

6 0 -14 -3 -6 -16 -3 -4 -7 -12 -7

7 -4 -17 -6 -8 -18 -7 -7 -10 -14 -11

8 1 -10 -2 -4 -9 -2 -2 -7 -11 -8

9 12 -9 6 2 -6 7 7 2 0 2

10 12 -9 6 -4 -7 4 2 -3 -1 10

to maximize the power of the method to detect association between air pollution exposures and health
outcomes, such as admission to hospitals for respiratory morbidity. However because we have based
our interpolation methodology on a spatial predictive distribution, the methodology recognizes these
extremes (implicitly) and allows for our uncertainty about their size in health impact analysis.

To conclude we consider one other issue concerning the strategy we have developed for space-time
analysis. That issue revolves around the level of temporal aggregation needed to avoid the spatial
correlation leakage e�ect described in the Introduction. To that end we experimentally reran our
analysis for 12-hour aggregates rather than 24-hour aggregates as in this paper. The result is the
same: no leakage through lagged cross-correlation. We can see this by comparing Tables 7-10 for the
the residual series before and after the AR(1) e�ect has been removed. We see in particular only a
small resulting drop in the spatial correlation between stations. The result is the same whether we
look at the daytime or nighttime series.

We should add a �nal point that much to our surprise the Sampson-Guttorp spatial covariance
model for day- and nighttime series were quite similar when a moderate amount of smoothing is
done. Our surprise stems from our prior belief that the big di�erences between day and night in the
atmospheric processes would induce di�erent levels of spatial correlation for the two periods.

In contrast we have found in current work on hourly levels of PM10 that the SG spatial covariance
estimates change quite dramatically from one hour to the next particularly during the period of 12
hours following 3am.
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Cross-correlation leakage

Let
E(x; t) = �E(x; t � 1) + e(x; t)

be an AR(1) model, with
�2E = var[E(x; t)]; �2e = var[e(x; t)]:

It follows that
(1� �2)�2E = �2e :
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We now look at the spatial cross-correlations between x0s:

cov[E(x; t); E(x0 ; t)]

= cov[�E(x; t � 1) + e(x; t); �E(x0; t� 1) + e(x0; t)]

= �2 cov[E(x; t � 1); E(x0; t� 1)]

+ � cov[E(x; t � 1); e(x0; t)]

+ � cov[e(x; t); E(x0; t� 1)]

+ cov[e(x; t); e(x0 ; t)]:

Thus
�2Ecor[E(x; t); E(x

0; t)] = �2 �2Ecor[E(x; t � 1); E(x0; t� 1)]

+ � �E�ecor[E(x; t � 1); e(x0; t)]

+ � �E�ecor[e(x; t); E(x
0; t� 1)]

+ �2ecor[e(x; t); e(x
0; t)]:

It turns out that

cor[E(x; t); E(x0; t)] = cor[e(x; t); e(x0; t)]

+
�p

1� �2

�
cor[E(x; t � 1); e(x0; t)] + cor[e(x; t); E(x0; t� 1)]

�
:

To implement these results we need the spatial cross-correlations in Table 12.

In search of spatial cross- correlation leakage we now present the compute correlations in the
following table.

A Descriptive plots.

In this section we present some of the exploratory analysis that underlies the work reported in this
paper. In Figure 21 we see a plot of ambient levels of untransformed hourly concentrations of PM10

at 10 Vancouver stations.

The same display for just the summer, a period of particular interest, appears in Figure 22.

The boxplots for the data in Figure 21 appear in Figure 23. These show the data distribution to
be skewed at all sites, justifying the log-transformation used in our analysis. The distinctive nature
of the Richmond (# 5)and Abbotsford (# 9) is revealed anew in this display.

Figures 24-26 are the counterparts of 15-17 for log-transformed daily PM10 concentrations. In
particular, Figure 26 reveals the symmetric distributions achieved by the logarithmic transformation
of the (geometric) daily averages.
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Figure 21: Ambient Hourly PM10 Levels at 10 Sites in 1996.
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Figure 22: Ambient Hourly PM10 Levels During the Mid-August to Mid-September Period.
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Figure 23: Boxplots of PM10 Levels in 10 Sites, 1996.
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Figure 24: Daily Averages in 10 Sites, 1996.
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Figure 25: Log-transformation of PM10 Daily Averages in 10 Sites, 1996
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Figure 26: Boxplots of the Log-transformed Daily PM10 in 10 Sites, 1996.

31


