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Abstract and Key Words

We present two new statistics for estimating the number of factors underlying in a multivariate

system.  One of the two new methods, the original NUMFACT, has been used in high profile

environmental studies.  The two new methods are first explained from a geometrical viewpoint.  

We then present an algebraic development and asymptotic cutoff points.  Next we present a

simulation study that shows that for skewed data the new methods are typically superior to

traditional methods and for normally distributed data the new methods are competitive to the best

of the traditional methods.  We finally show how the methods compare by using two

environmental data sets.

KEY WORDS: Correlation Matrix; Resampling; Eigenvectors; Eigenvalues; NUMFACT.



1

1. INTRODUCTION

Selecting the number of underlying factors is often the most difficult step in building a

multivariate model.  The methods most commonly used to estimate the number of factors usually

disagree.  As a result, practitioners typically build several models varying the number of factors

over the range given by their favorite methods.  The “best” model is the one that makes most

sense in the context of the application.  The present work was motivated by the second author’s

experience modeling air quality data (Henry, Lewis, and Collins 1994; Henry 1997; Henry,

Spiegelman, Collins, and Park 1997).   This issue has also been investigated in many other

contexts.   For example, in education see Kaiser (1992), and Cattell and Vogelmann (1977), in

environmetrics see Juntto and Paatero (1994), in psychology see Everett (1983), and in chemistry

see Malinowski (1977).

In this environmental application, the variables are a series of concentrations of airborne gases

or particles measured over time, and the number of factors in the model is the number of air

pollution sources impacting the sampling site.  Of course, if there was no error in the

measurements, and there were enough chemical compounds measured and enough observations

then the rank of the correlation matrix of the measured chemical compounds would be the number

of sources.  Air quality data, like most environmental data, has high levels of measurement and

sampling uncertainties, so estimating the number of factors by looking for a break in the

eigenvalues of the correlation matrix is frequently unproductive.  The smaller eigenvalues due to

real sources are overwhelmed by the eigenvalues dominated by error.  In addition, even if

minuscule sources contribute to the data it is not likely that they can be successfully modeled.  

The NUMFACT algorithm described in this paper was developed to determine the number of

factors that can be seen above the noise level in the data.  It does this by using a resampling

technique to estimate the stability of the eigenvectors of the correlation matrix.  Here we present

two statistics, the original NUMFACT statistic S and the modified NUMFACT statistic MS, and

their associated cutoff values to determine the number of factors in the data that are
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distinguishable from random errors.  Next, we give a heuristic development of the method,

followed by simulation studies comparing our methods to established procedures.  Examples

using air quality data are also given.

The inspiration for our method, which we call NUMFACT, is geometrical.  Assume there are

q factors in the data set with p variables, then the first q eigenvectors of the resampled data will

span nearly the same q-dimensional subspace as the first q eigenvectors of the original data.  This

is true even though the individual eigenvectors of the resampled data may not look like the

original eigenvectors or be in the same relative order.  Thus, the first q eigenvectors of the

resampled data will have a large projection on the space spanned by the original eigenvectors.

However, this will not be true of the remaining p-q eigenvectors.  Since these are dominated by

errors, the directions of these eigenvectors are random and the projection on the space spanned by

the same number of the original eigenvectors will often be small.  Thus, our method is to resample

the data and calculate the signal, which is the length of the ith eigenvector of the resampled data, as

projected into the space spanned by the first i original eigenvectors.  This is done a number of

times, 40 – 50 are usually sufficient for a moderate sample size (for a very small sample size such

as 50 or 60 it needs to be done many more times), and the average squared signal for each

eigenvector is calculated.  This is identified as the fraction of the eigenvector associated with the

common variability in the data.  The length of the ith eigenvector of the resampled data projected

into the space spanned by the remaining p-i original eigenvectors is identified as the noise.  The

ratio of the average squared signal and the average squared noise, W, is  a basis for defining the

statistics used to estimate the number of factors in the data.  Thus W is conceptually related to F

statistics used in forward variable selection in regression.  Our NUMFACT statistics, which we

call S and MS, start with the value of W.  We assume that for the ith eigenvector

W signal noisei i i= ( )2
.  Furthermore, assume that the eigenvalue  li = signali + noisei.  Then,

solving these two equations for signali  and noisei gives

signal
l W

Wi
i i

i

=
+1

 and noise
l

Wi
i

i

=
+1

.
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∑  be a reasonable estimate of the average noise level.  Thus we let

"noise" be the average for values of noisei over i = 1 to p-1.  We assume that the degrees of

freedom of the average noise is p-q-1 and “noiseM” be noise noise p p qM = −( ) − −( )1 1 . Finally

we calculate S signal noisei i=  and MS signal noisei i M= .  The asymptotic cutoff value of these

statistics is 2.  The value of 2 is typical for statistics of the form ˆ ( ˆ)θ θSE .  We not only derive the

asymptotic cutoff value but also show by simulation studies and the real data, that 2 is a good

critical (cutoff) point.  By this we mean that the number of factors is the number of eigenvectors for

which Si (or MSi) is greater than 2.  All the results show that the new estimators work better for

lognormal data than do standard tests for rank such as Bartlett’s test.  In addition they are

competitive for normal data.

2. NOTATION AND DEFINITIONS

Let X denote the n×p data matrix (n iid observations, p-variate, and ℜ  denote the population

correlation matrix.  The eigenvectors of population correlation matrix are denoted by β1, ... , βp

and the corresponding eigenvalues are λ1, ... ,λp.  We now define sample estimates of the

parameters.  The sample correlation matrix is denoted as R.  Let b1, ..., bp denote the

corresponding eigenvectors of R and let l1, ..., lp denote the corresponding eigenvalues.  Next we

define the corresponding bootstrap quantities.  Bootstrap analogs to the sample estimates have a

superscript *.  For example X*  (of size n×p ) denotes a bootstrap sample (drawn independently

from X with replacement) and b1
*, ..., bp

* denote eigenvectors of the bootstrap correlation matrix

R*.  Finally we let N denote the number of independent bootstrap resamples.  In particular Xj
*

denotes the  jth bootstrap sample and b1j
*, ..., bpj

* denote the eigenvectors of sample correlation

matrix of Xj
*.  
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The NUMFACT statistics depend upon the ratios of the average squared projections of the

resampled eigenvectors on the spaces spanned by the original eigenvectors, which can also be

viewed as the regression sum of squares and the error sum of squares.  The ith ratio is defined as

  

W
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  i p= −1 1, ,L ,  and   Wp ≡ 0 , where avg denotes the average over the N samples and P

denotes a projection.

The ith original NUMFACT statistic is denoted by Si where
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  i p= −1 1, ,L , and  Sp = 0,  

and the ith modified NUMFACT statistic is denoted by MSi where

MS
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noise
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  i p= −1 1, ,L , and  MSp = 0.

Both of the original and the modified NUMFACT statistics increase with W.  In addition they

are bigger for statistics corresponding to relatively big eigenvalues.

Remark 1.  Note that here the bootstrap samples are used to define the statistics themselves not

to approximate the distribution of some statistics.
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3. HYPOTHESES AND ASYMPTOTIC RESULTS

Let q be the number of major factors.  We are interested in testing a series of nested

hypotheses:

H0q:  There are q major factors, for example, major pollution sources.  That is,

λ1 > λ2 > ... > λq > λq+1 = λq+2 = ... =λp,

where 0 ≤ q < p-1.

Under the hypothesis H0q we expect the first q Si’s (or MSi’s) are greater than some cutoff

value and the remaining p-q are less than it.  This sequence of tests starts with q=1 (or 0) and

increases q until a hypothesis H0q is accepted.  Later we will derive the asymptotic cutoff points, cSq

and cMSq,  for q source case.  If S1 through Sq are greater than cSq (or cMSq), and Sq+1 through Sp are

less than or equal to cSq (or cMSq), we accept the hypothesis H0q that there are q major sources.

Under the assumptions A1 and A2, we obtain the asymptotic values for Si and MSi, as given in

Result 1.  The proof is given in the Appendix.

A1.  If a matrix has some nondistinct eigenvalues then the corresponding eigenvectors are

chosen randomly according to a uniform distribution over the permitted directions.

A2.  The statistics are calculated on a computer that computes using a finite number of digits of

precision.  Thus if the computer has 8 digits of accuracy, 1234567.8 = 1234567.83.

Note that A1 and A2 are a work around that allow us to handle the equal eigenv  case cleanly, a

case that has not been solved in the theoretical literature.  How equal eigenvalues are handled would

vary with computer programs.  Assumption A1 is a reasonable way to handle the equal eigenvalue

case.  Our simulation studies and real examples show that our work around allows the calculation

of effective critical values for our statistic.  This is true even for sample sizes that are considered

moderate.  We demonstrate this by simulation and scientific examples.
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Result 1: Under H0q: λ1 > λ2 > ... > λq > λq+1 = λq+2 = ... =λp (= θ), suppose l1 > l 2 > ... > lq

> l q+1  ≅   lq+2  ≅   ... ≅   lp.  Then as N → ∞ and n → ∞ ,

a1. S
p

p qi
p i → −

− −
2 1

1
λ

θ
( )

( )
,   i q= 1, ,L .

a2. S p q

p

i
p

i q
p i

i q
p i →

+
− −

−

−
−

−
−

2

1
1

1

,   i q p= + −1 1, ,L .

b1. MSi
p i → 2λ

θ
,   i q= 1, ,L .

b2. MSi
p

i q
p i

i q
p i

 →
+

−
−

−
−

2

1
,   i q p= + −1 1, ,L .

Remark 2.  We know that with probability one, the ordered sample eigenvalues {l i, 1 ≤ i ≤ p}

are distinct and positive for any finite n (see Okamoto, 1973).   As the sample size increases,

however, it can be shown that the sample eigenvalues converge to the corresponding population

eigenvalues regardless of the multiplicity of the population eigenvalues (see Henry, Park, and

Spiegelman, 1997).  From simulation experiments we have seen that it needs a very large value for

the sample size n for the near equality of the sample eigenvalues to be satisfied.  Nonetheless, we

shall see from our simulation study that this approximation is useful.  From Table 1 we can see that

the NUMFACT statistics corresponding to the equal eigenvalue case are not even close to the

critical value 2.  We expand upon this point later.    

Remark 3.  It seems difficult to derive the limiting distributions of the statistics rather than the

asymptotic values.  Both of S and MS depend on W, which is based on the inner product of

bootstrap eigenvector and the sample eigenvector.  For the eigenvector associated with the simple

root, this inner product has a degenerate distribution.  For the eigenvector associated with the

multiple root, the distribution is unknown.  Although Anderson (1963) discussed the distribution of
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the eigenvectors of the covariance matrix of the normal data when there is the multiplicity among the

eigenvalues, his result cannot be directly applied in our case that uses the sample correlation matrix.

To the best of our knowledge this limiting distribution remains one of the open and hard problems

in multivariate analysis.  Note that in Result 1

j q
p j

j q
p j

i

−
−

−
−+

< <
1

1
λ
θ

,   i q= 1, ,L ,   j q p= + −1 1, ,L .

For the purpose of estimating the number of factors, our main asymptotic results can be restated as

follows:

Result 2: Under H0q: λ1 > λ2 > ... > λq > λq+1 = λq+2 = ... =λp(= θ), for large enough n and

N,

a1.
  
S

p

p qi > −
− −

2 1

1

( ),   i q= 1, ,L .

a2.
  
S

p

p qi < −
− −

2 1

1

( )
,   i q p= + −1 1, ,L .

b1.   MSi > 2,   i q= 1, ,L .

b2.   MSi < 2,   i q p= + −1 1, ,L .

That is, all we require is that these asymptotic inequalities hold rather than the convergence of

each statistic to its limiting value.  

Remark 4.   Since 
2 1

1

( )p

p q

−
− −

 ≈ 2 if p is large and q is small, 2 is used as an asymptotic cutoff

point in q source case for both of the original and the modified NUMFACT statistics.

Remark 5.  There are some cases that the hypothesis of interest is equality of the eigenvalues of

the population covariance matrix (not of the population correlation matrix), e.g., all measurements

are made in the same units (Anderson 1963).  If this is the case, then the NUMFACT statistics need

to be calculated based on the sample covariance matrix not on the sample correlation matrix.
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4. EVALUATION

Our asymptotic cutoff values in section 3 are examined by numerical comparisons.  The data

matrix X is generated using two different methods.  Eastment and Krzanowski (1982) introduced

the method of generating n×p data matrices of known structure.  We first employ their method,

which can be described as follows: a set of eigenvalues,   l lp1, ,L , are selected and the square roots of

the products of n-1 and these eigenvalues are used as the diagonal elements of a diagonal matrix T.

An n×p matrix Y of independent uniform entries is generated and decomposed into USVt via the

singular value decomposition.  The data matrix X to be used in the simulation is then obtained by

setting X = UTVt.  As noted by Eastment and Krzanowski (1982), “X can be viewed as an

observation from the set of all n×p data matrices with the required eigenvalue structure”.  Note that

l i’s are actually the sample eigenvalues, and in this case they can be forced to be equal to the

population eigenvalues by using    l l lp1 2 1= = = =L  for example.  Since equal sample eigenvalues

may be unrealistic, we also add some perturbation to reflect more realistic sample eigenvalue

pattern. Let ε  be the difference between the subsequent eigenvalues, i.e., l li i− =+1 ε

(  i p= −1 1, ,L ).  Table 1 shows how the approximations are affected by adding some perturbation

to li ’s.  The asymptotic values for S and MS based on the matrix 
  

1

1n
X Xt

−
, and the sample means

of the statistics over 200 replications are presented for n = 500, p = 10, q = 0, and ε = 0, .001, .01,

.05.  Note that MS is the same as S in this case (q = 0).  When li ’s are different by only .001, the

approximations are still very good.  As ε gets bigger, the deviations between asymptotic values and

the sample means of the statistics get bigger, but all the sample values are still less than the cutoff

value 2 for no source (q = 0) case.  The last two columns of the table show the results for the

eigenvalue pattern (of no source case) obtained from the sample correlation matrix of normal

random matrix of sizes 500 by 10 and 100,000 by 10, respectively.  
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Secondly, we generate the data matrix X by the model

X = AP + Error (1)

where A and P are n×q matrix and q×p matrix, respectively.  We assume that the rows of A are

random.  Note that the hypothesis H0: λ1 > λ2 > ... > λq = λq+1 = λq+2 = ... = λp  (λ i’s are the

eigenvalues of ℜ ) is equivalent to H0q: Σ Ψ= + K  where Σ is the population covariance matrix,

rank(Ψ) = q, K diag kii= ( ) , and kii  is proportional to the ith diagonal element of Ψ  (see

Anderson 1963).  Under our model, Ψ is the covariance matrix of the rows of AP.  An n×p matrix

G of independent standard normal entries is generated, and the data matrix X to be used in the

simulation is obtained by setting

X = AP + 
  
c G diag k kpp⋅ ⋅ ( )11 , ,L     (2)

where c is a constant, kii ’s are the diagonal elements of P S Pt
A , and SA is the sample covariance

matrix of A.  The asymptotic values for S and MS based on the sample correlation matrix R and the

sample means of the statistics over 200 replications are presented in Table 2 for n = 500, p = 10,

and q = 0, 2, 4.  There are deviations between asymptotic value and the sample mean for individual

statistics, but the approximations for hypothesis testing are close enough.  All that we require is that

the statistic values associated with the simple roots are larger than the cutoff value and the statistic

values associated with the multiple roots are less than the cutoff value.  Our simulations support the

use of our asymptotic cutoff values.  When p = 10, the decision rule associated with any of S and

MS works well for a relatively large range of q.

{Insert Tables 1-2 here}

5. COMPARISONS WITH OTHER METHODS

We compare our results to many of the number of factor estimating methods that are widely

used.  These are: the method of choosing enough eigenvalues to account for a suitable proportion
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(say 90%) of p tr R= ( )  (90 percent trace), the method of choosing only eigenvalues which are

greater than one (Rule-of-One), Bartlett’s modification (1951) of the likelihood ratio test,

Malinowski’s indicator function (see Malinowski 1980), and Wold’s cross validation approach

(1978).  These methods are described in more detail in Henry, Park, and Spiegelman (1999).  In

this section, the above five methods, and the original and modified NUMFACT, are compared

through the simulations and real data examples.

5.1 Simulations

Three factors are considered in generating the simulated data.  The factors considered here are

distribution of error (normal, lognormal), sample size (n = 30, 60, 90, 120, 150, 200, 500, 2000),

and number of sources (q).  For our simulation q is chosen within the range 1 ≤ q ≤ q* where q* is

the largest integer satisfying p q p q−( ) − − ≥2 0  (see p. 565 Anderson 1984 for an example of this

choice for q*).  Each simulation is repeated 200 times, and the Root Mean Squared Error (RMSE)

of the estimator over the 200 replications is computed.  The results are displayed in Figures 1-3.

RMSE is calculated by

RMSE q q pq
q

= −( )∑ ˆ ˆ
ˆ

2

where pq̂ represents the sample proportion that the value q̂  is selected over 200 replications.

For each factor level combination the data is generated by model (1) X = AP + Error  of

Section 4.  In environmental application, A is called a source contribution matrix and P is called a

source composition matrix.  The number of variables (chemical species) p is fixed to be at a

commonly used value of 15, q varies within the range 1 ≤ q ≤ 10.  The source composition matrix P

is obtained from the uniform random number generator in MATLAB.  To avoid getting a source

composition matrix with high collinearity, the condition number (the ratio of the smallest and the

biggest eigenvalues of the correlation matrix of Pt) is examined first, and P is redrawn if the

condition number is bigger than some threshold (15 is used here).  The source composition matrix

P is fixed over 200 replications and the same P is used for the different sample sizes or different
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error distributions.  The source contribution matrix A is regenerated at each replication using the

uniform random number generator in MATLAB.  As in (2), error matrices are generated so that the

error variances are proportional to the systematic variances (to satisfy the hypothesis H0q) according

to Anderson (1963).  Throughout the simulations the error standard deviation is about 12~20% of

the model standard deviation.

Seven methods, 90 Percent Variation (denoted as TA), Rule-of-One (denoted as TB), Bartlett’s

method (denoted as BA), Malinowski’s indicator function (denoted as MA), Wold’s cross

validation method (denoted as CV), S, and MS, are compared.

Figure 1 contains comparisons of the methods (for n = 200, 500, 2000) in terms of RMSE

under normal errors.  For a sample size n = 2000, CV is not included due to the computational

burden of the method.  The traditional methods TA and TB  are perfect (RMSE is 0) when q is very

small like 1 or 2.  As q increases, however, they seriously underestimate q and RMSE increases

with q.  The 5% level (not an overall level) Bartlett’s test, BA, works fine in general with these

sample sizes.  The Malinowski’s indicator function (applied to standardized data), MA, performs

very well if q is moderate (RMSE is 0).  But at some point (here q = 7), it starts to underestimates

q, and RMSE goes up rapidly (for q ≥ 8 , it always returns 1 as the estimate for q).  The CV method

works fine when q is small (less than 4), but the bias gets bigger as q gets bigger.  F it seriously

underestimate q.  The S and MS methods work fine unless q is very large for sample sizes n = 200,

500.  For a large q, they tend to underfactor but the bias is much smaller than TA, TB, MA, or CV.

As the sample size gets larger, the performance of both S and MS improves.  For a very small q

such as 1 or 2, MS works slightly better than S, and for a large q, S works generally better than MS. 

When n = 2000, S performs constantly better than BA (RMSE for S is 0 in the entire range of q).

Summarizing the result for normal error case, S and MS are comparable to the best of the traditional

ones, BA.

When the distribution of errors is lognormal (Figure 2), TA and TB generally fail in detecting

the right number of factors except when q is only 1 or 2 as in the case of normal error.  Now BA

completely fails regardless of the number of factors or the sample size.  It always overfactors (It
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selects ̂q  among the values   q p+ −1 1, ,L  uniformly over 200 simulations.)  As a result, RMSE

decreases as q increases as opposed to all the other methods.  Poor performance of BA is a natural

consequence of violation of the normality assumption under which BA was developed.  The MA

method and CV method show almost the same performance regardless of the sample size as in the

case of normal error.  For lognormal error, S and MS yield significantly better results than the

traditional ones.  For these new statistics the results improve even more as the sample size gets

bigger, which is not true for the traditional ones.

We also calculated the average RMSE (avgRMSE) over the range of q (1 ≤ q ≤ 10) with

varying n (n = 30, 60, 90, 120, 150, 200, 500, 2000 where avgRMSE  is defined to be

avgRMSE q q pq
qq

= −( )∑∑
=

1
10

2

1

10

ˆ ˆ
ˆ

.

Figure 3 contains plots of avgRMSE  for each of seven methods under two different error

distributions.  From the plots we can see overall performance of each method and the effect of

sample size.  TA, TB, MA, and CV show high avgRMSE regardless of type of error distribution and

show basically no improvement as the sample size increases.  Surprisingly, BA  does not work at all

even under normal error when the sample size is as small as 30 or 60 (see Figure 3a).  Note that the

exact cutoff value for BA is unknown for correlation matrix case and as an approximation the cutoff

value for covariance matrix case is used.  Figure 3a indicates that this approximation could be very

poor with a very small sample size.  As the sample size increases, BA shows expected performance.

Both of S and MS show much better performance as n increases.  Although it is not shown in the

plot, for n = 2000, avgRMSE of S and MS are 0 and 0.49, respectively (avgRMSE of BA is 0.39 in

this case).  For small sample sizes, they still do better than the traditional methods (other than BA)

and they do not show sudden breakdown (BA does) even when n is as small as 30, i.e., when

n p ≤ 2 .  

When error distribution is lognormal (Figure 3b), none of traditional methods shows

improvement as n increases.  Also note that BA shows the highest avgRMSE in this case.  Small
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sample behavior of S and MS is better than any traditional statistics, and avgRMSE of these two

methods decreases as n gets larger.  Again for a sample size n = 2000, avgRMSE of S is 0.08, and

avgRMSE of MS is 0.54 though they are not plotted.

{Insert Figure 1-3 here}

Remark 6.   When the error distribution is lognormal, one might consider log-transforming the

data before applying Bartlett’s test.   We found, however, the log-transformation did not help in this

case.  Though it is not reported in detail here, the simulation result showed no improvement over the

results given in Figure 2 and Figure 3b.

Remark 7.  In most examples scientists want to find the number of major factors and not the

number of factors.  For example, in pollution studies people, plants, and animals are pollution

sources but typically they are minor pollution sources.  A statistic that indicates additional sources

for grass, and dogs in addition to major pollution sources would typically lead scientists and

regulators to an unnecessarily complex model.  In our experience the additional complexity leads to

multicollinearity and poor model performance.  For this reason we have not included the following

variation of NUMFACT statistic

VS

l W

W

l

W
p q

i

i i

i

k

kk q

p
=

+

+






− −

=

−

∑

1

1
1

1

( )

.

In simulation experiments it outperforms all the methods presented in this study, but in scientific

data it finds too many factors and leads to too complex models.  In private communication S. Wold

indicated that he modified his CV procedure so that it worked better in practice but worse in

simulations due to the similar reasons that we indicated above.

5.2 Examples

5.2.1 Air pollution composition data

The original data consists of 538 hourly averaged concentrations of 37 volatile organic

compounds (after screening out the missing values) from the 1990 Atlanta Ozone Precursor Study
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(see Henry, Lewis, and Collins 1994).  It is known that there are three types of vehicle-related

sources specific to Atlanta during the summertime of 1990: emissions from vehicles in motion,

evaporation of whole gasoline, and gasoline headspace vapor, i.e., q = 3.  Eight vehicle-related

species our of 37 species are selected.  Natural breaks in the sample eigenvalues indicate 1 or 3

factors as shown in Table 3.  The 90% trace method, TA, gives 1 factor.  The rule-of-one method,

TB, gives 1 factor.  Bartlett’s chi square test, BA, gives 7 factors at the 5% level.  Malinowski’s

method, MA, gives 4 (when applied to raw data) or 3 (when applied to standardized data), and

Wold’s cross validation method, CV, gives 1.  Table 3 also shows the output of S and MS.  The

cutoff value for S and MS is 2.  In this case, both S and MS choose 3 factors.

5.2.2 Air pollution spatial data

As the second example we consider measurements on PM2.5 (the airborne particulate matter

less than 2.5 micrometers in aerodynamic diameter) collected from 11 monitoring sites in the

nearby Grand Canyon National Park during the summer of 1992.  The resulting data set consists of

53 observations on 11 variables (here monitoring sites).  A major constituent of PM2.5 is often

sulfate formed in the air by oxidation of sulfur dioxide gas.  Physically, there are three known

source regions of sulfur dioxide gases in the region, i.e., q = 3.  These sources are believed to

correspond to pollution sources in southern California, copper smelters in southern Arizona and

northern Mexico, and electric power plants in the desert southwest.  For this data, TA gives 4, TB

gives 3, and BA gives 8, MA gives 2 (when applied to raw data) or 3 (when applied to standardized

data), and CV gives 2, respectively, as the number of factors.  Table 4 shows the output of S and

MS.  Both statistics give 3 as the number of sources.

{Insert Tables 3-4 here}

5. CONCLUSIONS AND OPEN PROBLEMS

In this paper we presented a  resampling method for determining the number of major pollution

sources used with success by the second author in high profile environmental applications.  We
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presented a base level statistical theory for it as well as for new related statistic.  We showed by

simulation study that the new methods are frequently better than traditional number of factors

estimators for skewed data and highly competitive for normal data.

We did not address the issue of optimality of the new estimates.  The important issue of how to

accurately link the number of factors to the degree each factor affects the data must be addressed.

The receptor modeling references by the second author and his co-authors are only examples of

how this important information can be used.  At this time, the successful handling at a deep level, of

the variation in statistics such as  S and MS in model building remains an open problem.   Another

crucial question is how to select variables for NUMFACT or other number of factors estimator.  In

many applied problems some variables have a few common factors and some have many more.  If

the variables used by number of factors estimator come from different sets of factors each with

different number of factors the estimated number of factors is not likely to be interpretable.   For

environmental applications, this issue is partially addressed in the first author's dissertation, where

several variable selection algorithms are developed.
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APPENDIX: PROOF OF RESULT 1

The result depends on the following lemmas.

Lemma 1.   Let  λ1 ≥ λ2 ≥ ... > λ i > λ i+1 ≥ λ i+2 ≥ ... ≥ λp be the eigenvalues of the population

correlation matrix P and β1, ... , βp be the corresponding eigenvectors.  And, let  l1 ≥ l2 ≥...  ≥  lp be

the eigenvalues of the sample correlation matrix R and b1, ... , bp be the corresponding eigenvectors. 

Then for large enough n,

n b b Ni i i( ) ~ ( , )∗ − 0 Γ , i = 1, ... , q

where bi
*  is the ith eigenvector of the sample correlation matrix of X* and

Γ i = { bi
t⊗ b(liI-L)+bt } Ψn{ bi⊗ b(liI-L)+bt }

where b=[b1  ...  bp],    L = diag( l1, ... , lp) and

Ψn = {I-1/2(I+K)(I ⊗ R)Kd}(Sd
-1/2⊗ Sd

-1/2)Vn(Sd
-1/2⊗ Sd

-1/2){1/2Kd(I⊗ R)(I+K)}

where Vn = M4n(x) - (vec S)(vec S)t , and S is the sample covariance matrix.

Proof. It follows easily from theorem 8 (actually, from a slightly generalized version of theorem

8) of Kollo and Neudecker (1993) and the asymptotic normality of the bootstrap sample correlation

matrix R*.

Lemma 2.     Under the definitions of Lemma 1,

Γ i bi = 0, i = 1, … ,q

where 0 represents p-dimensional zero vector.

Lemma 3.   Under the hypothesis H0q: λ1 > λ2 > ... > λq > λq+1 = λq+2 = ... =λp (= θ),

E b bi
t

k k
t

i
nβ β( )  → →∞ 0,            k q=1, ,L ,     i q p= +1, ,L

and
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E b b
p qi

t
k k

t
i

nβ β( )  → 
−

→∞ 1
,     k q p= +1, ,L ,     i q p= +1, ,L .

Proof.     By the consistency and orthonormality of the sample eigenvectors, we get,

    β βk
t t

q q
t

k
nbb b b( )1 1 1+ +  → →∞L ,      k q=1, ,L ,  in probability.

This and the fact that     β βk
t t

p p
t

k
nbb b b( )1 1 1+ +  → →∞L , implies

          β βk
t

i i
t

k
nbb →∞ →  0,    (A1)

  i q p= +1, ,L ,       k q=1, ,L   in probability.

Thus

     ( )β β β β1 1 0t
q q

t
i

nb+ +  → →∞L ,    (A2)

  i q p= +1, ,L ,  in probability.

Since     b bi
t t

p p
t

i( )β β β β1 1 1+ + =L , (A2) implies

    b bi
t

q q
t

p p
t

i
n( )β β β β+ +

→∞+ +  → 1 1 1L ,      i q p= +1, ,L ,  in probability.

Further

E b b
p qi

t
k k

t
i

nβ β( )  → 
−

→∞ 1
,     k q p= +1, ,L ,     i q p= +1, ,L

as there is no preferred orientation among βq+1, ..., βp under H0q.  It follows directly from (A1) that

E b bi
t

k k
t

i
nβ β( )  → →∞ 0,     k q=1, ,L ,     i q p= +1, ,L .

Remark A.1.  When the sample size, n, is extremely large, the sample eigenvalues would be nearly

equal, i.e.,   l l lq q p+ +≈ ≈ ≈ ≠1 2 0L , and we expect the same sort of result holds for the bootstrap

eigenvectors as above.  That is, when n→∞,

E b b b b Xi
t

k k
t

i
∗ ∗( ) ≈ 0,     k q=1, ,L ,      i q p= +1, ,L ,

and
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E b b b b X

p q
k q p i q pi

t
k k

t
i

∗ ∗( ) ≈
−

= + = +1
1 1, , , , , ,L L .

Note that the assumption A2 in Section 3 guarantees that in the limit the equality holds.

Lemma 4.    Under H0q: λ1 > λ2 > ... > λq > λq+1 = λq+2 = ... =λp (= θ), suppose l1 > l 2 > ... >

lq > lq+1  ≅   lq+2  ≅   ... ≅   lp.  Then as N → ∞ and n → ∞ ,

(a) Wi  is stochastically unbounded, i.e., given any large M > 0,

P W Mi >( )  → 1,   i q= 1, ,L .

(b) W
i q

p ii
p → −

−
,   i q p= + −1 1, ,L .

Proof.

(a) It immediately follows from Lemma 1 and Lemma 2 and the weak law of large numbers.

(b) By the weak law of large numbers and Remark A.1, we get as N→ ∞, n → ∞,

  
W

i q p q
i q p q

i q
p ii

p → − −
− − −

= −
−

( )( )

( )( )1

for     i q p= + −1 1, ,L .

Proof of result.

Note that the statistics Si and MSi are the continuous functions of Wi’s and the sample

eigenvalues l i’s.  It is well known that the sample eigenvalues are consistent estimators of the

population eigenvalues when the population eigenvalues have multiplicity 1.  For the eigenvalues

with multiplicity greater than 1, it can also be shown that the sample eigenvalues converge to the

common root (see Henry, Park, and Spiegelman, 1997).  

The results follow from direct use of the continuous mapping theorem and  Lemma 4.  The

following lemma is useful in calculating the asymptotic cutoff values of Si’s and MSi’s.
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Lemma 5.     
1

1

1

21

1

+ −
−

= − −
= +

−

∑ i q

p i

p q

i q

p

.

Proof.   
1

11

1

+ −
−

= +

−

∑ i q

p i
i q

p

 can be rewritten after rearrangement as a sum of terms

1

1

1

1 1
1

+
+

+
=

a ai i

 (where a
i q

p ii = −
−

 when i = q+1, ..., p-1) and 1 (when i = q).    

When p-1-(q+1)+1= p-q-1 is even,

1

11

1

+ −
−

= +

−

∑ i q

p i
i q

p

 =
1

1

1

1 11

1

2

+
+

+





= +

+ − −

∑
a ai ii q

q
p q

 = 
p q− −1

2
.

When p-q-1 is odd, there are (p-q-2)/2 ones and the middle term that occurs when

i q p q= + +− −2
2 1.  Thus

1

11

1

+ −
−

= +

−

∑ i q

p i
i q

p

=
1

1

1

1 11

2

2

+
+

+

















+

= +

+ − −

∑
a a

MiddleTerm
i ii q

q
p q

.

The result follows from

Middle Term  =
1

1
1

1

1

1
2

2

1

22
2

2
2

+
+ +( ) −

− + +( )

=
+

−( )
−( )

=
− −

− −

p q

p q

q q

p q

p q

p q /

.
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Table 1. Comparison of the asymptotic and sample mean values for S (=MS ) when data are generated according to Eastment and Krzanowski (1982)

h (# of replications) = 200:, n = 500, p = 10, q = 0

Asymptotic value Sample meana Sample meanb Sample meanc Sample meand sample meane sample meanf

S1

S2

S3

S4

S5

S6

S7

S8

S9

    0.5000
    0.6667
    0.7913
    0.8990
    1.0000
    1.1010
    1.2087
    1.3333
    1.5000

0.4978
0.6660
0.7913
0.8994
1.0010
1.1042
1.2085
1.3343
1.4992

0.4937
0.6750
0.8037
0.9100
1.0112
1.1050
1.2057
1.3258
1.4888

0.6176
0.7861
0.8857
0.9647
1.0265
1.0910
1.1627
1.2489
1.3825

1.2673
1.3110
1.2764
1.2551
1.2281
1.1947
1.1659
1.1399
1.1531

1.0707
1.1889
1.1551
1.1948
1.2021
1.2329
1.2004
1.2723
1.2980

0.5201
0.6999
0.8272
0.9280
1.0143
1.1047
1.1960
1.3066
1.4644

Note: 1. ε = − +l li i 1 , i = 1,…, p-1; aε = 0; bε = .001; cε = .01; dε = .05.
el1 = 1.1802, l2 = 1.1476, l3 = 1.0945, l4 = 1.0755, l5 = 1.0328, l6 = 0.0095, l7 = 0.9481, l8 = 0.9246, l9 = 0.8458, l10 = 0.7413.  This
eigenvalue pattern is obtained from the sample correlation matrix of normal random matrix of size 500 by 10.
fl1 = 1.0141, l2 = 1.0111, l3 = 1.0091, l4 = 1.0044, l5 = 1.0013, l6 = 0.9982, l7 = 0.9936, l8 = 0.9919, l9 = 0.9904, l10 = 0.9858.  This
eigenvalue pattern is obtained from the sample correlation matrix of normal random matrix of size 100,000 by 10.
2. MS is the same as S when q = 0.
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Table 2. Comparison of the asymptotic and the sample mean values for S, and MS when data are generated according

to X = AP+Error

h (# of replications) = 200,   n = 500,  p = 10

q = 0 * q = 2 q = 4
Asymptotic

value
Sample mean Asymptotic

value
Sample mean Asymptotic

value
Sample mean

S1

S2

S3

S4

S5

S6

S7

S8

S9

    0.5000
    0.6667
    0.7913
    0.8990
    1.0000
    1.1010
    1.2087
    1.3333
    1.5000

    1.3225
    1.2468
    1.2221
    1.2021
    1.1841
    1.1752
    1.1625
    1.1542
    1.2012

147.1440
  29.4275
    0.7053
    0.9412
    1.1224
    1.2857
    1.4490
    1.6302
    1.8661

117.8816
  22.7918
    1.2954
    1.2263
    1.1884
    1.1579
    1.1423
    1.1395
    1.1641

192.4710
   31.6392
   19.9085
   10.3813
    1.1125
    1.4912
    1.8000
    2.1088
    2.4875

104.8975
   16.1102
   10.1393
    5.2264
    1.2585
    1.1829
    1.1538
    1.1537
    1.1719

MS1

MS2

MS3

MS4

MS5

MS6

MS7

MS8

MS9

    0.5000
    0.6667
    0.7913
    0.8990
    1.0000
    1.1010
    1.2087
    1.3333
    1.5000

    1.3225
    1.2468
    1.2221
    1.2021
    1.1841
    1.1752
    1.1625
    1.1542
    1.2012

114.4453
  22.8880
    0.5486
    0.7321
    0.8730
    1.0000
    1.1270
    1.2679
    1.4514

91.6857
   17.7270
    1.0075
    0.9538
    0.9243
    0.9006
    0.8885
    0.8863
    0.9054

106.9283
   17.5773
   11.0603
    5.7674
    0.6180
    0.8284
    1.0000
    1.1716
    1.3820

58.2764
    8.9501
    5.6329
    2.9036
    0.6992
    0.6572
    0.6410
    0.6409
    0.6511

* When q = 0, X = Error = Normal random matrix of size 500 by 10.



25

Table 3. Atlanta air pollution composition data

Number Eigenvalue S M S
    1
     2
     3
     4
     5
     6
     7
     8

7.5054
    0.2448
    0.1623
    0.0309
    0.0296
    0.0140
    0.0105
    0.0027

520.8791
   14.1598
   10.6843
    1.2351
    1.8425
    0.6655
    0.6986

         0

297.6452
    8.0913
    6.1053
    0.7058
    1.0529
    0.3803
    0.3992

         0
NOTE: The data consists of 538 observations on 8 chemical compounds.  The original NUMFACT statistic, S,

with cutoff value 2 gives 3 sources;  The modified NUMFACT statistic, MS, with cut-off value 2 gives 3
sources;  The Malinowski’s indicator function (applied to raw data) gives 4;  The Malinowski’s indicator
function (applied to standardized data) gives 3;  The cross validation approach gives 1 (for both standardized data
and raw data);  Bartlett’s test gives 7 sources at the 5% level;  The rule-of-one gives 1 sources;  The 90% trace
method gives 1 source.

4. Air pollution spatial data

Number Eigenvalue S M S
  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11

    6.5176
    1.9843
    1.2352
    0.3300
    0.2769
    0.2211
    0.1983
    0.1126
    0.0604
    0.0354
    0.0281

31.7507
    8.0852
    5.3748
    0.9588
    0.7287
    0.6865
    0.7297
    0.4088
    0.2190
    0.1169

         0

22.2255
    5.6596
    3.7624
    0.6712
    0.5101
    0.4805
    0.5108
    0.2861
    0.1533
    0.0818

         0
NOTE: The data consists of 53 observations on 11 variables.  The original NUMFACT statistic, S, with cutoff

value 2 gives 3 sources;  The modified NUMFACT statistic, MS, with cut-off value 2 gives 3 sources; The
Malinowski’s indicator function (applied to raw data) gives 2;  The Malinowski’s indicator function (applied to
standardardized data) gives 3 sources;  The cross validation approach (applied to standardized data) gives 2
sources;  Bartlett’s test gives 8 sources at the 5% level;  The rule-of-one gives 3 sources;  The 90% of trace
method gives 4 sources.
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Figure Titles and Legends

Figure 1.  Root Mean Squared Error (RMSE) of traditional methods (TA, TB, BA, MA, CV) and

NUMFACT statistics (S, MS) based on 200 replications when error distribution is normal for

sample sizes n = 200 (Figure 1a), 500 (Figure 1b), and 2000 (Figure 1c).  The lines are

interpolations between symbols that correspond to RMSE.  The CV method is not included in

Figure 1c due to computational burden to implement it.

Figure 2.  Root Mean Squared Error (RMSE) of traditional methods (TA, TB, BA, MA, CV) and

NUMFACT statistics (S, MS) based on 200 replications when error distribution is lognormal for

sample sizes n = 200 (Figure 2a), 500 (Figure 2b), and 2000 (Figure 2c).  The lines are

interpolations between symbols that correspond to RMSE.  The CV method is not included in

Figure 2c due to computational burden to implement it.

Figure 3.  Average Root Mean Squared Error (avgRMSE) of traditional methods (TA, TB, BA, MA,

CV) and NUMFACT statistics (S, MS) over the range of q (1 ≤ q ≤ 10) with varying n (n = 30, 60,

90, 120, 150, 200, 500), based on 200 replications.  The lines are interpolations between symbols

that correspond to avgRMSE.
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(a) Normal error (n=200, p=15)
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(b) Normal error (n=500, p=15)
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(c) Normal error (n=2000, p=15)
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Figure 2
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(a) Lognormal error (n=200, p=15)
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(b) Lognormal error (n=500, p=15)
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(c) Lognormal error (n=2000, p=15)
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