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1 Introduction : The scienti�c problem

To assess damage to biological systems, it is important to describe in qualitative and quan-
titative terms how complex biological and ecological systems respond to speci�c activities
of human society. A �rst step in doing so is to develop indices (metrics) that can capture
the e�ect of human disturbance. At least three multimetric indices have been proposed for
benthic invertebrates: the invertebrate community index (ICI: Ohio EPA 1988; Yoder and
Rankin 1995 a, b); the rapid bioassessment protocol III (Plafkin et al. 1989) and the benthic
index of biological integrity (B-IBI : Karr and Kerans 1992; Kerans and Karr 1994; Fore et
al. 1996; Rossano 1996; Karr 1998).We are going to focus here on the metrics composing the
B-IBI. For the Puget Sound study, Karr and Chu (1994) suggested the use of the following
metrics :

� Metric 1 : Total number of taxa

� Metric 2 : Number of Ephemeroptera taxa

� Metric 3 : Number of Plecoptera taxa

� Metric 4 : Number of Trichoptera taxa

� Metric 5 : Number of long-lived taxa

� Metric 6 : Number of intolerant taxa

� Metric 7 : Percentage of individuals of tolerant taxa

� Metric 8 : Percentage of predator individuals

� Metric 9 : Number of clinger taxa

� Metric 10 : Percentage dominance of �rst three taxa
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The B-IBI is simply the sum of all these metrics. However, since seven of them are
discrete variables (counts) and three of them are continuous (percentages), the metrics are
�rst transformed into variables of the same type, categorical in this case. Following Karr
and Chau 1997, we consider three levels for each variable. The criterion according to which
we �nd the splits in the range of each metric is therefore a �rst important factor to be
taken into consideration when studying the variability of the B-IBI. We describe in Section
2 two statistical methods of �nding the cut o� points. We study the variability of the B-IBI
based on each of these newly proposed methods and on a third method, suggested by Karr
and Chu. We assume for this a statistical model for the data collected in the Puget Sound
lowland area that takes into account the biological variability of the number of organisms
at each sampled site. We compare the results based on this model with those based on the
model suggested in Karr 1994 in which the number of individuals at each site is considered
�xed. We formalize this in Section 2.

Also, we would like to understand the sensitivity of each metric to human in
uence.
Human in
uence is mediated by a number of di�erent processes. Rossano (1995) used a
qualitative index which incorporated the following factors: amount of e�uent present at
a site; type of e�uent (agricultural/domestic, raw sewage/industrial); proximity of dams,
weirs, levees; type of riparian vegetation. Karr and Chau, 1997, used as a measure of human
in
uence the percentage of impervious area, which is a weighted average of certain measures
of urbanization (see, for example, May (1996)). These measures of human in
uence were used
primarily to validate the IBI, by demonstrating that higher human in
uence was associated
with lower IBI scores. For this purpose it is suÆcient to have a reliable indicator of human
interference. Given such validation, it is natural to consider whether certain types of human
in
uence are more or less directly related to particular metrics, and further, whether certain
forms of human behavior have di�erential e�ects on the component indices of the IBI. Partial
answers to these questions may help in identifying important aspects of human in
uence,
facilitating the development of better predictions of IBI score, and possibly providing insight
into the nature of the mechanisms involved. Thus we will model the relationship between
the metrics composing the IBI and the covariates measuring human in
uence and we present
this in Section 3.

2 The Index of Benthic Biological Integrity : a Statis-

tical Analysis

2.1 Statistical methodology

Our analysis is based on the 1994 data set containing 31 sampled sites in the Puget Sound
lowland area. At each site, there are up to 81 possible taxa . The sampling protocol consisted
in the collection of three samples at each site, taken under very similar conditions in three
consecutive days. Thus, the whole data set can be regarded as a 81 � 93 table of counts.
The B-IBI is simply a statistic computed on this data. The components of the variability of
the B-IBI are best understood if we express it as the following functions' composition :

data
f! (M1; : : : ;M10)

g! (M
0

1; : : : ;M
0

10)
h! B-IBI
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where f is the function through which the ten metrics are computed, g is the function that
discretizes the metrics, and h is just the arithmetic mean of the ten discretized metrics.
Thus, with g de�ned by

M
0

i =

8><
>:

1 if Mi < c1i
3 if c1i �Mi < c2i
5 if Mi � c2i

it is clear that, in order to study the statistical properties of the B-IBI, assuming that f is
given, both distributional assumptions on the data and knowledge of the cut o� points are
needed.

Karr and Chau 1997 suggested that the two dividers of the range of each metric should
be taken where the biggest change in the metric, along the human in
uence gradient, occurs.
This method, to which we shall refer in the sequel as the JK method, seems to be open
to subjectivism, since two di�erent researchers can have di�erent opinions on what \the
biggest change" means. We suggest a method that tries to objectivize the previous one .
We considered the percent impervious area as a measure of the human in
uence, and we
then used it as the response in a regression tree model having a metric as a covariate. We
thus have 10 regression models, one for each of the ten metrics. The nodes of the tree can
be then taken as cut o� points. At each node , the squared error biased when predicting
the response from the metric under consideration is minimized. We found that for this data
set, the method we described above, and to which we will refer throughout this paper as the
CART method, can distinguish up to 5 classes per metric. However, the present analysis
was carried out using 3 classes only (obtained from the best two nodes, where \best" has the
sense described above). Nevertheless, either CART or JK introduce an additional element
of randomness in the distribution of the B-IBI, since c1i ; c

2
i , i 2 f1; : : : ; 10g, depend now on an

external variable. It would be interesting to see how the in
uence on the IBI of the splitting
points found by either of the above methods would compare to the in
uence of splitting
points found by a method that would just use the data themselves. The simplest way of
giving a criterion of the latter type is to take the 33% and 67 % quantiles, for each metric,
as the delimiters of the three classes. This method will be called Quant. We compare the
IBI variability in these three cases in the next section.

At a given site S the data has a structure as in Table 1, with S1; S2; S3 denoting the three
subsamples and with nij denoting the number of organisms from Taxa i found in subsample
Sj. The bootstrap analysis suggested in Karr 1994 assumed that at each site the data
come from a multinomial distribution with given n++ and with the vector of probabilities
estimated from the sample proportions.

We call this Model 1. We used Model 1 for this data set and we found that, on the one
hand, this assumption doesn't seem to be realistic at some sites, and, on the other hand, at
sites where we don't have a strong reason to believe that it shouldn't hold, the IBI variability
is very small, suggesting that it can provide a �ne distinction of site conditions. However, if
one allows now the observed number of individuals to be treated as an incidence of a random
variable itself, the IBI appears to have a much larger variability. More speci�cally we assume
that each of the three subsamples are realizations of aMultinom81(m; p), where we estimate p
by p̂ = (n1+=n++; : : : ; n81+=n++) and we assume that m has a negative binomial distribution
with parameters estimated from n+1; n+2; n+3 using the method of moments. We call this
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S1 S2 S3 Row Totals
Taxa 1 n11 n12 n13 n1+
Taxa 2 n21 n22 n23 n2+

...
...

...
...

...
Taxa 81 n81;1 n81;2 n81;3 n81+

Column totals n+1 n+2 n+3 n++

Table 1: Data Structure at a Generic Site

Model 2. The next section contains a comparison between the use of the two models. Also,
the impact of the three methods of �nding cut o� points on the IBI variability is studied in
the context of Model 2.

2.2 Puget Sound Lowland Area : Comparative Study

We used the three cut o� methods to compute �rst the IBI at all sampled sites. We found
that the di�erences in IBI for JK versus CART or Quant range from 0 to 8, whereas for
CART versus Quant , with one exception, the range was from 0 to 2. This result suggests
that a splitting rule that does not introduce external variation would give the same IBI
values as the one that does, so one would hope that by using the former one would eliminate
a source of unnecessary variability in the IBI structure. Table 2 below contains the IBI
values at a site and the 95% empirical con�dence intervals (CI) and credible regions (CR)
for some selected sites. The con�dence intervals were based on Model 1 when we used the
JK method, and on Model 2 for all three splitting rules. The con�dence intervals for sites
with IBI bigger than 30 have lengths ranging from 2 to 4 suggesting that, for this data set,
a change of 2 in the IBI would be a statistically signi�cant one.

Site JK CART Quant JK Model 1
BA1 38 46 44 38

[36,40] [42,46] [42,46] [36,40]
BB2 36 44 42 36

[34,38] [40,46] [42,46] [36,38]
SC1 22 26 28 22

[16,29] [18,30] [20,30] [28,28]
KE1 18 14 14 14

[12,18] [10,16] [10,16] [26,28]
TH4 12 12 12 12

[10,14] [10,14] [10,14] [22,24]

Table 2: IBI variability

However for IBI smaller than 30, the situation changes drastically : the CI simulated from
Model 1, do not contain the site values, and even worst, the lower end of these intervals is
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6 to 12 more units than the site value (See Table 2). This major overestimation suggests
that Model 1 does not capture the natural variability at sites with relatively low and low
IBI. We considered one of the simplest models that would do so, namely Model 2. We refer
again to Table 2: overall, the IBI variability has increased, as expected. However, for sites
with IBI higher than 30, the CR have lengths ranging from 2 to 6, which is comparable
to the CI obtained with Model 1. Thus, for well preserved sites, the assumption on the
variability of the number of organisms at a site does not play a big role, as expected from
biological considerations. On the other hand, for sites with modest IBI , this assumption
seems very important to us. From a biological point of view, one expects damaged sites to
have a more 
uctuant benthic structure, thus motivating our choice for Model 2. For sites
with an IBI value between 18 and 30, simulations from the second model yielded CR that
would certainly contain the observed IBI at a site (unlike the CI based on the �rst model),
but their length would be quite high, from 8 to 12 (See Table 2). Then, for very low IBI,
hence for seriously damaged sites, the IBI variability seems to decrease again, the length of
the CR being between 4 and 6 (See Table 2).

So, to conclude this section, recall that the study of the IBI requires �nding splitting
rules for the metrics composing the index and also making modeling assumptions on the
data generating mechanism. The analysis we presented so far o�ers a partial answer to
the �rst question and suggests an approach to the second one. Thus, we have proposed
two methods for �nding cut-o� points . The advantage of using them is that they can be
automated and are therefore objective. We note that when compared with the JK method,
both CART and Quant produced statistically di�erent IBI values per site, for sites with
high IBI. Also, it is clear that sites that have been exposed to di�erent degrees of human
in
uence have di�erent variability, hence a more realistic model for our data should take this
into consideration. In the next section we propose a model for the ten metrics, jointly, that
includes site info in its construction.

3 Graphical Modeling of Factors In
uencing Benthic

Populations in Streams

In this section we study the relationship between the metrics composing the IBI and some
variables(the covariates) that have been used to measure the degree of human in
uence. Fol-
lowing May(1996), we consider as covariates the percentage of area covered by the subsequent
land-use types:

� Y1 = Forested

� Y2 = Agricultural land / Parks / Golf Courses / Open space

� Y3 = Low-density residential (Rural)

� Y4 = Medium density residential (Suburban)

� Y5 = High density residential (Urban)

� Y6 = Commercial / Industrial / Malls/ Business Parks
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Hence, the problem we would like to address is the one of modeling f(M1; : : : ;M10jY1; : : : ; Y6),
where f denotes the density distribution of the ten metrics, given the six covariates. Note
that we always have:

f(M1; : : : ;M10jY1; : : : ; Y6) = f(M1jM2; : : : ;M10; Y1; : : : ; Y6)f(M2jM3; : : : ;M10; Y1; : : : ; Y6)(1)

f(M9jM10; Y1; : : : ; Y6)f(M10jY1; : : : ; Y6)
so if we could model the individual univariate conditional distributions, then we would have
a model for the joint conditional distribution of the metrics. Recall thatM7;M8 andM10 are
percentages, hence they can be treated as continuous random variables on [0; 1] or, using the
transformation logx=(1 � x), as continuous variables on R, whereas the rest of the metrics
are discrete (counts). We assume that the three continuous variables are gaussian and that
the rest follow a Poisson distribution. The data consists of measurements on the metrics
and covariates at 30 sites in the Puget Sound area. Since at each site we had 3 independent
samples, we �tted our models based on 90 data points.

The modeling procedure consists, in principle, in the following steps:

1. For each univariate conditional distribution determine which of the variables we con-
dition on do indeed play a role, for our data set. Then, estimate each univariate
conditional distribution.

2. Estimate the conditional joint distribution of the metrics by multiplying the estimated
univariate conditional distributions obtained at the previous step.

For the �rst step above we suggest the following : For 1 � i � 10 �t the regression
of Mi on the variables appearing in its conditioning set, as described by (1). That is, �t
three regression models with gaussian errors (corresponding to M7;M8 and M10), and seven
regression models with Poisson errors corresponding to the rest of the metrics. Discard
the non-signi�cant explanatory variables, and then estimate the conditional distribution of
M7;M8 and M10, respectively, by a gaussian one with mean and variance estimates based
on the �tted regression, and estimate the conditional distribution of each discrete metric by
a Poisson distribution with mean estimated through the �tted regression.

Hence, we do obtain an estimate of (1), based on a certain factorization of the density.
We refer to a particular factorization of the density as to a model. To each such factorization
corresponds a graph, encoding the conditional dependence structure of our variables. We
show how to construct a graph based on such factorization in the next section and we
elaborate on the advantage of associating a graph to a statistical model. Because of this
association we are going to refer to the models we consider as to graphical models.

However, we have 10! decompositions as in (1), corresponding to the 10! ways in which
we can permute the ten metrics. For each of them we can apply the previous strategy, so
we have in the end 10! models. So, ideally, one needs to �t 10! models and have a criterion
that enables one to select \the best" of them. There are numerous criteria used for model
selection and we employ here the BIC (Bayesian Information Criterion). This means that,
given a set of models fPi : 1 � i � 10!g, we choose the one for which

log
nY

k=1

fPi
(m1;k; : : : ; m10;kjy1;k; : : : ; y6;k)�Di logn=2 (2)
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is maximum, where n is the number of observations (90 in our case), mj;k denotes the value
of metric j, 1 � j � 10, at site k, y1;k; : : : ; y6;k are the values of the covariates at site k and
Di denotes the number of unknown parameters in model Pi.

The space of models is quite large, so one needs some form of automated search in order
to narrow down the set of possible graphical models. (See Spirtes et al. 1993). Graph-based
searches of this type have been applied to ecological problems by Shipley (1995, 1997).
However, to the best of our knowledge, the existing computer packages deal either with
continuous variables or with discrete variables, but not we both. So, for our study, we limited
ourselves to �tting a small subset of the 10! models, corresponding to some permutations of
the metrics that appear to have more biological relevance than others.

3.1 A graphical model

In this section we present the model we found as being \the best" from the set of models
we �tted and a rule of drawing the graph associated to a particular model. Firstly, let
us note that the covariates sum to one, so one needs to transform them in oder to obtain
unique solutions for the parameter estimates. We have tried various transformations and
we found that the one with the best explanatory ability was arcsin

p
y. In what follows

we still use Y to denote the covariates, but one should keep in mind that they have been
transformed. We computed the BIC for 40 models, corresponding to various permutations
of the metrics and various transformation of the covariates, and the average BIC score was
568.3 with a standard deviation of 13.8. The model we selected has a BIC score of 608.4, and
it corresponds to the the arcsin

p
y transformation on the covariates. We note that the model

corresponding to the same permutation of the metrics, but with no covariates, has a BIC
score of 550.81, indicating that including the information on the covariates in modeling the
distribution of the metrics might help understanding better the data generating mechanism.
The joint conditional distribution corresponding to this model is :

f(M1; : : : ;M10jY1; : : : ; Y6) = f1(M10jM8)f2(M9jM1;M6; Y1; Y3; Y6) (3)

f3(M8jM1;M4;M6)f4(M6jM3;M4)

f5(M7jM2)f6(M5)

f7(M4jM1;M2;M3; Y6)f8(M3jM1; Y6)

f9(M2jM1; Y1; Y6)f(M1jY1; Y6)
where, for example, f1 is a gaussian density with mean depending on M8, f2 is a Poisson
distribution whose mean depends on M1;M6; Y1; Y3; Y6 (and similarly for the other metrics).
Let us also note that throughout our analysis we considered the covariates as being �xed
(that is, we did not treat them as random variables). The graph in Figure 1 in the Appendix
corresponds to this decomposition. A graph corresponding to the decomposition (3) can be
drawn as follows: Each variable M1; : : : ;M10; Y1; : : : ; Y6 represents a node in the graph. The
metric to the left of the conditioning sign appearing in a univariate conditional distribution
is connected to all the variables appearing to the right of the sign by directed edges pointing
to the conditioned metric. The covariates Y 's, since treated as �xed, will not be connected
to one another.
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The graph facilitates understanding the dependence structure between our variables. For
example, we can read directly o� the graph that, for example, M6 is independent of Y6 given
M4. For the general rules of reading conditional independencies when given a particular
DAG (directed acyclic graph) we refer the reader to Whittaker (1989). This opens up the
possibility of explaining which of the metrics are directly related to covariates explaining
human in
uence, which of these covariates are possibly redundant in giving insight on the
biological dynamics, etc.

Also, very importantly, having a model (and an estimate), for the conditional distribution
of the ten metrics will allow us to run simulations, which provide a means of studying the
distributional properties of the 10 metrics and of the IBI. This would provide an alternative
to the bootstrap analysis of the IBI carried out by Fore et al. (1994) and to the one suggested
by us in the previous section. This is the next step in our analysis and it will complement
the work we have done previously on the study of the variability of the IBI.
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