
MCMC in I x J x K Contingency Tables

Florentina Bunea Julian Besag

NRCSE
T e c h n i c a l   R e p o r t   S e r i e s

NRCSE-TRS  No.  037

The NRCSE was established in 1996 through a cooperative agreement with the United States
Environmental Protection Agency which provides the Center's primary funding.



Fields Institute Communications

Volume 00, 0000

MCMC in I�J�K contingency tables

Florentina Bunea
University of Washington

fbunea@stat.washington.edu

Julian Besag
University of Washington

julian@stat.washington.edu

Abstract. The paper reviews Markov chain Monte Carlo exact tests for

assessing the goodness of �t of probability models to observed datasets.

All unknown parameter values are removed from the analysis by the

standard device of conditioning on suÆcient statistics, which in turn

leads to constrained target distributions. It is easy to design algorithms

that maintain these distributions but often very diÆcult to ensure ir-

reducibility. Strangely, this condition is not required for validity of the

p{value; nevertheless it is generally desirable. One of the simplest tax-

ing problems occurs in testing for no three{way interaction in 2�J�K

contingency tables and in this case the paper provides a corresponding

irreducible chain. Although appropriate modi�cations of the algorithm

can be used to test for any hierarchical model in quite general multi-

dimensional contingency tables, irreducibility is no longer guaranteed.

Thus, the paper identi�es a class of easily posed problems of interest

to statisticians, where the construction of irreducible chains presents a

challenging task.

1 Introduction

A problem of widespread interest to statisticians concerns the goodness of �t of
probability models to observed datasets. The assessment of models for multidimen-
sional contingency tables provides a common example and the particular context
of the present paper. Often such tables are too sparse to apply standard, typically
asymptotic, distribution theory and it is necessary to devise alternative methods of
assessment. The complications that can arise are exempli�ed most easily in test-
ing for no three{way interaction in three{dimensional contingency tables; that is,
I�J�K tables x, formed by layers i = 1; : : : ; I , rows j = 1; : : : ; J and columns
k = 1; : : : ;K, in which each cell (i; j; k) contains a count xijk , corresponding to the
frequency of a particular event indexed by the triple (i; j; k). In fact, we shall focus
especially on the case I = 2, which is important in logistic regression; see Cox and
Snell [9], for example. Our approach, which provides an exact p{value via Markov
chain Monte Carlo (MCMC) simulation, applies to arbitrary I and indeed to the
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2 Florentina Bunea and Julian Besag

assessment of any hierarchical model in higher{dimensional tables but irreducibility
of the algorithm may fail. We return to this point in Section 4, where we identify a
corresponding class of open problems in devising MCMC algorithms for constrained
distributions.

There are several formulations of multidimensional contingency tables, all of
which are equivalent in the context of the paper. For de�niteness, we adopt that
in which the xijk 's are generated according to a multinomial distribution with un-
known cell probabilities pijk and pre{speci�ed sample size x+++, where + denotes
summation over the corresponding index and p+++ = 1. Thus, the table x has
probability

x+++!Q
i;j;k xijk !

Y

i;j;k

p
xijk
ijk : (1.1)

Then it is often of interest, especially at an initial stage of statistical analysis, to
investigate whether an observed table x(1) is compatible with a particular parame-
terization of the pijk 's. Two examples follow.

Example 1. A common hypothesis is that the layer, row and column catego-
rizations of the table are independent, which implies that pijk = �i�j k, where the
�i's, �j 's and  k's form arbitrary probability distributions. Exact tests for indepen-
dence in multidimensional contingency tables are generally amenable to the simple
Monte Carlo approach described in Section 2.

Example 2. The least restrictive non{saturated model is obtained by allowing
two{way but not three{way interaction among the pijk 's, as in Bartlett [2]. That
is,

pijk = �ij �ik  jk ; (1.2)

in which the unknown �ij , �ik and  jk ensure that the pijk 's form a valid probability
distribution. Testing for the absence of three{way interaction in a three{way table
is the simplest non{trivial task in analyzing multidimensional contingency tables.

Any such hypothesis, also in higher{dimensional tables and in more general
settings, can be tested in principle by conditioning on suÆcient statistics for the
unknown parameters and then assessing the plausibility of x(1) as a random draw
from the resulting, now completely determined, conditional distribution f�(x) :
x 2 Sg, where S denotes the constrained sample space. We say more about this in
Section 2 but �rst we return to the above examples and identify the corresponding
reference distributions �.

Example 1. In testing for independence, the suÆcient statistics are the one{

dimensional layer, row and column margins, x
(1)
i++, x

(1)
+j+ and x

(1)
++k for each i, j and

k, so that S is the set of all contingency tables with these totals and

�(x) / 1 =
Y

i;j;k

xijk ! ; x 2 S : (1.3)

Example 2. In testing for no three{way interaction, the suÆcient statistics are

all margins of the form x
(1)
ij+, x

(1)
i+k and x

(1)
+jk and, if we condition on these, �(x) is

again given by (1.3) but now S is the more restrictive set of all contingency tables
with the same two{dimensional margins as x(1).
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The remainder of the paper is set out as follows. In Section 2, we review
three methods of calculating exact p{values for conditional tests. In Section 3, we
describe an irreducible MCMC algorithm to solve the problem in Example 2 with
I = 2, drawing on Besag and Cli�ord [5] and Diaconis and Sturmfels [10]. Section
4 discusses some other related work, extensions of the MCMC approach to higher{
dimensional tables and some corresponding open problems. Proofs of results in
Section 3 are given in an appendix.

2 Construction of exact p{values

2.1 Traditional p{values. Suppose that we wish to assess the compatibility
of data x(1) with a fully speci�ed probability model f�(x) : x 2 Sg. Some informal
tools are available but the most common (frequentist) procedure is to carry out a
signi�cance test and report a corresponding p{value, based on some test statistic
u : S ! R, with the property that an unusually large (say) observed value u(1)

of u suggests that the model is false. More precisely, suppose that u(1) lies at the
upper 100�% point of the distribution of u induced by �. Then � is declared to
be the p{value for the test. What is meant here is that, if in fact the model is
correct, we would obtain a value of u as or more extreme than the observed u(1)

on a proportion � of occasions. In particular, if � is small, there is evidence of a
con
ict between the data x(1) and the proposed model.

We emphasize that the p{value for an observed test statistic u(1) is calculated
merely from the postulated distribution � but nevertheless it is important to have
a plausible alternative model in mind and to choose a u that is sensitive to the
di�erences between the competing hypotheses. Often a generalized likelihood ratio
test statistic provides a good choice, though here we do not wish to rely on asymp-
totics. We also note that a p{value is sometimes misinterpreted as representing
the probability that the proposed model is correct. In fact, it is evident that, in
practice, almost any statistical model is false, at least to some degree. At �rst sight,
it may seem that this undermines the whole idea of a p{value, a point we discuss
below.

Thus, it is often claimed that failure of a test to \reject" a proposed model
merely re
ects a lack of suÆcient data or a poor choice of test statistic. Although
this argument has a super�cial appeal, it ignores an important purpose of statistical
modelling, namely to provide a parsimonious representation (ideally, of course, an
explanation) of the available dataset and of others that might have been obtained in
its stead. If there is no clear con
ict between the proposed model and the observed
data, then a more complex formulation is unlikely to be warranted and may even
be detrimental, though this by no means implies that modi�cations would not be
required to represent a more extensive dataset. Fisher [11], page 314 states: \More
or less elaborate forms will be suitable according to the volume of the data". Thus,
the outcome of a statistical test refers to the compatibility between the model and
the data and not to some grander view of the model itself. Note here that, in
exploratory analysis, we might carry out several di�erent tests without necessarily
taking explicit account of the e�ects of \multiple testing", though the results of
all tests should be reported. If a particular test statistic suggests an interesting
con
ict between the data and the model, then it does so regardless of how many
other tests have been performed. Incidentally, the above remarks explain why we
view p{values as useful at an initial rather than at a con�rmatory stage of data
analysis.
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As regards the assessment of probability models for contingency tables, the enu-
meration of S is rarely feasible, except for rather small datasets, and this usually
prevents the direct calculation of � from �. Also, the usual chi{squared approxi-
mation for the distribution of the deviance and for the closely related Pearson's X2

statistic often breaks down in three{ and higher{dimensional tables because some
of the expected counts are too small; and approximations for other test statistics
do not generally exist.

2.2 Barnard's Monte Carlo exact p{values. A di�erent general approach,
that does not require complete enumeration or asymptotic approximation, is based
on simulation and was �rst proposed by Barnard [1]. In the context of contingency
tables, again let u(1) denote the value of a particular test statistic u for an observed
table x(1) and let u(2); : : : ; u(n) be the corresponding values for a random sample
of n� 1 tables x(2); : : : ; x(n) generated from the reference distribution �. Then, if
x(1) is also from �, the n values of u form a random sample from a single distri-
bution and, ignoring the possibility of ties, the rank of u(1) among all n values is
drawn from a uniform distribution on the integers 1; : : : ; n. Thus, if large values
of u(1) suggest a con
ict with � and if, in the event, u(1) ranks qth largest among
u(1); : : : ; u(n), we may declare an exact p{value q=n. When ties with u(1) occur, we
recommend reporting the corresponding range of p{values, though a more rigorous
solution is also available, as in Besag and Cli�ord [5], for example. We ignore ties
in the remainder of the paper. As regards the size of the random sample, n = 1000
generally gives very close agreement between di�erent individuals, though we often
prefer n = 10000. If there are computational constraints, one can also the more
frugal sequential version of the test in Besag and Cli�ord [6]. Note that Barnard's
approach is distinct from, though asymptotically equivalent to, the more obvious
procedure in which a random sample from � is used to construct an empirical dis-
tribution function for u and a corresponding approximate p{value. The distinction
becomes more important in devising MCMC versions, as in Section 2.3.

For applications of Barnard's Monte Carlo procedure, see, for example, Be-
sag and Diggle [7], Besag [4] and Guo and Thompson [12]. Unfortunately, for
most models of interest in multidimensional contingency tables, methods of draw-
ing random or, more correctly, pseudo{random samples from the salient reference
distribution � have not been devised. Testing for independence, as in Example 1 or
correspondingly in higher{dimensional contingency tables, provides a rare excep-
tion; see e.g. Pate�eld [15]. When simple Monte Carlo tests are not available, as
in Example 2, we can turn instead to MCMC procedures, as described below.

2.3 MCMC exact p{values. As before, let f�(x) : x 2 Sg denote the target
distribution and now suppose that P is a Markov transition probability matrix with
state space S and stationary distribution �. In using P to simulate a Markov chain
and create samples from which an exact p{value can be calculated, we encounter
three di�erent problems: burn{in, dependence between samples, and irreducibility,
each of which has a feature that is unusual in MCMC. Thus, the �rst problem is
trivial to avoid, merely by initiating the chain with the observed data x(1). This
is legitimate because, as emphasized in Section 2.1, the calculation of a p{value is
based on the supposition that x(1) is indeed drawn from �.

The second problem is more irksome because we cannot appeal to the ergodic
theorem, as we do in calculating expectations, and it is against the spirit of MCMC
and may not be feasible to leave long enough gaps to ensure virtual independence
between successive samples. Initiation of the chain by x(1) ensures that, in forming
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a rationale for the p{value, we can assume that all samples are drawn exactly from
� but their Markov dependence invalidates simple ranking arguments of the type
used in Section 2.2 and we must seek more subtle solutions.

Besag and Cli�ord [5] describe two procedures that restore the ranking ar-
gument, despite the dependence in the chain. Both involve the ability to run
a stationary Markov chain backwards, as well as forwards, in time. Thus, let
P (x; x0) denote the (x; x0) element of P and recall that, when a chain is station-
ary, its backwards transition probability matrix is Q, where Q has (x; x0) element
Q(x; x0) = �(x0)P (x0; x)=�(x). Often in MCMC, P is time{reversible with respect
to �, in which case Q = P , but we do not insist on this property.

In Besag and Cli�ord's parallel procedure, positive integers r and n are chosen,
dependent on the computational resources and the complexity of S: often we choose
r = 1000 or 10000 and n = 1000. The chain is �rst run backwards from x(1) for r
steps, according to Q, to obtain a state x(0), say. It is then run r steps forwards
from this state, n � 1 times independently, to obtain states x(2); : : : ; x(n), say.
Thus, if x(1) is a draw from �, then so are x(0); x(2); : : : ; x(n). More important, the
procedure ensures that x(1); : : : ; x(n) are drawn exchangeably from �; that is, their
joint distribution is permutation invariant. Exchangeability must then be inherited
by the joint distribution of u(1); : : : ; u(n), for any particular test statistic u, and
the rank of u(1) among u(1); : : : ; u(n) again has a uniform distribution, despite the
dependence. Thus, the rank of u(1) again gives a valid p{value, as in Section 2.2.
Note here that x(0) does not share the exchangeability and also that the theory
would not apply if instead we ran backwards to a new x(0) on each of the n � 1
occasions.

In Besag and Cli�ord's serial procedure, integers r and n are again speci�ed
but also an integer v is chosen uniformly from 1; : : : ; n. It is then arranged for x(1)

to appear as the vth sample out of n in a single run of the chain, where samples
are taken at gaps of r steps. This is achieved by running r(v � 1) steps backwards
and r(n� v) steps forwards from x(1). Again, if x(1) is a draw from � and u is any
particular test statistic, then the rank of the data value u(1) among all n values
is uniformly distributed, after marginalizing over the distribution of v. The serial
procedure is more untidy than the parallel version but generally has greater power
for the same values of r and n because, on average, the recorded samples are at
distance 1

3
r(n + 1) from x(1), rather than at distance 2r. Also, for a �xed run

length rn, there is no inherent virtue in taking r > 1 in the serial test, except that
subsampling tends to inhibit the occurrence of ties. Sequential versions of both
the parallel and sequential procedures are described in Besag and Cli�ord [6] and
these generally provide computational savings when there is no con
ict between
the model � and the observed test statistic u(1).

We must now negotiate the �nal complication in devising an MCMC procedure.
Thus, although it is usually easy to produce an aperiodic P that respects station-
arity with respect to �, irreducibility in a constrained state space S can be very
diÆcult to achieve and, without this, � is not the limiting distribution of the chain.
Strangely, as noted by Besag and Cli�ord [5] (Section 4), the validity of MCMC
p{values does not in fact require irreducibility! If S(1) denotes the subset of S that
can be reached from the data x(1) by repeated use of P , then the above arguments
and the corresponding p{values still apply conditionally on the de�cient state space
S(1) and hence also marginally. Note that the reasoning depends critically on ini-
tializing the chain by x(1). Of course, if the loss of mobility is severe, then the power
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of the test against other models of interest may be seriously impaired; that is, it
may be diÆcult or impossible to reject the postulated model for any x(1). Although
one can devise toy examples in which the restriction to S(1) increases the power
of the test against particular alternatives, this is unlikely to occur or at least have
much impact in practice and one would generally prefer an e�ective irreducible P .
Here, the term \e�ective" is added because it is trivial to achieve irreducibility in a
�nite state space S: one need merely include occasional Hastings proposals, chosen
uniformly from a �nite space that contains S, even though such moves may have
negligible acceptance probabilities, in which case there is no actual improvement in
mobility and the \remedy" is useless.

Note that Besag and Cli�ord [5] apply a reducible algorithm in testing whether

an observed dataset x(1), whose elements x
(1)
ij = �1 represent diseased and healthy

plants on a two{dimensional array, is compatible with a �nite{lattice Ising model
having the same boundary values. The suÆcient statistics for the two parameters

in the model are a =
P
x
(1)
ij and b =

P
x
(1)
ij x

(1)
i0j0 , in which the summation for b is

over all adjacent pairs of sites (i; j) and (i0; j0). Hence the reference distribution
� is uniform on the set of arrays S having the same values of a and b and the
same boundary as x(1). A simple Metropolis algorithm with � as its stationary
distribution is obtained by proposing swaps between the values at randomly selected
pairs of interior sites and accepting those for which b, as well as a, is preserved.
This algorithm, although reducible with respect to S, is suÆciently mobile in Besag
and Cli�ord's application to reveal a con
ict between the model and the data. Of
course, the algorithm would not be valid in other MCMC contexts and it remains
an open problem to devise an irreducible version.

In the next section, we return to Example 2 and to the construction of a corre-
sponding irreducible chain but we emphasize here that reducible MCMC algorithms
can still be useful for statistical tests. We make this point again in Section 4.

3 Testing for no three{way interaction in I�J�K contingency tables

Recall that, in Example 2, we observe an I�J�K contingency table x(1) and
wish to assess its compatibility with the absence of three{way interaction, in which
case the association between any two of the categorical variables is the same at
all levels of the third, as in (1.2). Recall also that the corresponding reference
distribution f�(x) : x 2 Sg is given by (1.3), with S constrained to have all two{
way margins xij+, xi+k and x+jk matching those of x(1). In order to obtain an
MCMC exact p{value for (1.2), using any particular test statistic u, we require a
transition probability matrix P for which � is a stationary distribution. We also
prefer P to be irreducible with respect to S, as suggested in Section 2. Finally, it
is convenient to restrict P to be time reversible with respect to �, so that P is also
the backwards transition probability matrix of the chain.

We de�ne an I�J�K table to be a move, denoted by m, if its entries are all
�1's, 0's and +1's and its two{way margins are all equal to zero; we exclude m � 0.
Thus, if x 2 S and if m is a move, then x+m is a table that preserves all two{way
margins but may violate non{negativity. The simplest type of move m has all its
elements mijk = 0, apart from mi0j0k0 = mi0j00k00 = mi00j0k00 = mi00j00k0 = +1 and
mi0j0k00 = mi0j00k0 = mi00j0k0 = mi00j00k00 = �1, for two particular layers i0 6= i00, two
particular rows j0 6= j00, and two particular columns k0 6= k00. We refer to such a
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move as a basic move and represent it diagrammatically by

+ � � +
� + + �

(3.1)

We write M for any particular �nite set of moves, with the proviso that m 2 M
implies that �m 2M . For reasons that will become apparent later, we denote the
set of basic moves by M2: this set features prominently in the sequel.

With any given M , we associate a transition probability matrix P = P (M),
de�ned operationally as follows. Let x 2 S denote the current state of the chain.
Now choosem uniformly at random fromM and de�ne x0 = x+m. If x0 2 S, select
x0 as the next state of the chain with probability min f1; �(x0)=�(x)g; otherwise
retain x. Clearly, P maintains �, is time reversible and corresponds to a single
Metropolis step but P is not necessarily irreducible; indeed, it is possible that the
chain is unable to leave its initial state x(1).

It is convenient to write M� in place of M if its elements are irreducible with
respect to S, by which we mean that any x and x0 2 S are connected via a path
through S based on movesm 2M�. Clearly, if we replaceM byM� in the de�nition
of P , then P is irreducible with respect to S. We do not know of a parsimonious
set M� for arbitrary three{dimensional tables but below we discuss in detail the
case I = 2. This is of practical importance in logistic regression and also leads to
wider speculation.

3.1 The Rasch model and a result for I = 2. By focusing on I = 2,
we are able to use known results for the celebrated Rasch [16] model: this has
an enormous literature in educational testing. The practical setting is that each
of J candidates attempts K items and scores 1 (correct) or 0 (incorrect) on each.
Thus, the observed data form a J�K table of binary variables. The Rasch model
postulates that all responses are independent and that the log{odds of a correct
to an incorrect result in cell (j; k) can be written as the sum of a row j e�ect
and a column k e�ect. It is easily shown that, in deriving a conditional test for
the model, the corresponding reference distribution is uniform on the set of binary
tables whose row and column totals tally with those observed. In practice, tables
involving hundreds or thousands of candidates are quite common and the restriction
to binary entries implies that the reference distribution is extremely diÆcult to deal
with directly. Indeed, the Rasch model provided the original context for MCMC
p{values in Besag [3]; see Besag and Cli�ord [5]. A key result, dating back at least
to Ryser [17], is that any two binary tables with the same row and column totals
can be connected by a sequence of moves of the type depicted in a single layer of
(3.1).

The relevance of the Rasch model to the present paper is seen by recasting the
above binary table as a 2�J�K table in which the �rst layer is the original J�K
table itself and the second is its complement. If we now imagine testing for no three{
way interaction in the three{way table, then we are led to a task identical to the
one above. In particular, the restriction to binary entries is satis�ed automatically,
since the layer totals are all unity. The equivalence in the tasks and the result at the
end of the previous paragraph together imply that basic moves M2 are irreducible
in testing for the absence of three{way interaction in a 2�J�K contingency table
whose layer totals are all unity. In itself, this result is uninteresting but it also
suggests that M2 is irreducible for any 2�J�K contingency table whose layer
totals x+jk are all positive. This becomes Proposition 2 in Section 3.2 but �rst we
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establish by a simple example, due to John Skilling, that positivity of the x+jk 's is
not redundant. Thus, any basic move in the 2�3�3 table

0 1 0 1 0 0
1 0 0 0 0 1
0 0 1 0 1 0

(3.2)

produces at least one negative element but the corresponding table with its layers
interchanged has the same two{dimensional margins. We defer the case of arbitrary
margins until Section 3.3.

3.2 Circuits and irreducibility for I = 2. Let x(1) denote a 2�J�K
contingency table with conditional space S. We follow Holst [13] and Sturmfels [18]
(Ch. 13) in constructing a particular M� that is irreducible with respect to S and
has a one{to{one correspondence with the set of circuits in a bipartite graph on J
and K nodes.

Thus, consider an undirected graph, with J+K nodes, partitioned into a \row"
set, indexed by j = 1; : : : ; J , and a \column" set, indexed by k = 1; : : : ;K. The
graph is called bipartite on J and K nodes if each edge has a row node at one
end and a column node at the other. A circuit of length 2v is then a sequence
(j1; k1), (k1; j2), (j2; k2), : : : , (jv ; kv), (kv ; j1), in which each element corresponds
to a distinct edge of the graph. Any such circuit can be identi�ed with a particular
move, whose 2�v�v support is depicted in (3.3) up to permutations of rows and
columns:

k1 k2 k3 : : : kv k1 k2 k3 : : : kv
j1 + 0 0 � � � � � 0 0 � � � +
j2 � + 0 � � � 0 + � 0 � � � 0
j3 0 � + � � � 0 0 + � � � � 0
...

...
...

...
...

...
...

...
...

jv 0 0 0 � � � + 0 0 0 � � � �

(3.3)

We now de�ne Mv to be the set of all moves with support corresponding to these
permutations; note that M2 is the set of all basic moves, as before. Then we may
choose (Diaconis and Sturmfels [10]),

M� =M2 [M3 [ : : : [Mmin(J;K) : (3.4)

Henceforth, M� refers only to this speci�c set of moves. In the Appendix, we prove
the following results, the second of which establishes the claim in Section 3.1.

Proposition 1 Any m 2M� can be decomposed into basic moves.

Proposition 2 If x
(1)
+jk � 1 for all j and k, then M2 is irreducible for S.

3.3 Basic moves and irreducibility for arbitrary margins. We now al-
low the observed table x(1) to have some layer margins that are zero. Then, M� in
(3.4) is irreducible for S but M2 may fail, as in (3.2). Nevertheless, we show that
M2 can still be used to construct an irreducible Markov chain on S. This is useful
because M� can be very awkward to work with directly, even for quite moderate
values of J and K.

Suppose that x 2 S has the properties, (i) x + m =2 S for all m 2 M2 and
(ii) for some v > 2, there exists m0 2 Mv such that x + m0 2 S. Let S0 be the
space of 2 � J �K tables with the same two{way margins as x(1) and having all
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non{negative entries except for at most a single �1. Then by Proposition 1, m0 can
be written as a sum of v� 1 basic moves. In the Appendix, we prove the following

Proposition 3 If x; x+m 2 S, where m 2M�, then there exists a path, using
moves in M2, that connects x to x+m and that does not leave S0.

Thus, there exists an ordering of the moves such that the corresponding path from
x to x+m remains in S0 throughout.

Hence, by exploiting paths through S0, we can construct an MCMC algorithm
that is irreducible with respect to its state space S but whose transition probability
matrix P 0 is built up only from moves in M2 and does not require explicit identi�-
cation of M�. Note that the restriction to S0 is important: a larger set might lead
to paths that get \lost" in S0nS. We now provide an operational de�nition of P 0

based on the above remarks.
Let x 2 S denote the current state of the chain and x0 2 S the subsequent

state. Given x, �rst choose m uniformly at random from M2 and set x�  x+m.
If x� =2 S0 then x0  x. If x� 2 S, then x� becomes a proposal and x0  x� with
probability min f1; �(x�)=�(x)g, else x0  x. If x� 2 S0nS, then draw another m
at random from M2 and update x�  x� +m if the new x� 2 S0, else do nothing.
Repeat this last step until x� 2 S, in which case x� is a proposal for x0 and is
treated as above.

It is easily established that P 0 corresponds to a single Metropolis step for the
target distribution �. Note, in passing, that the algorithm is also applicable to

tables with certain �xed or structural entries. Thus, if x
(1)
ijk is a such an entry,

one merely regards x
(1)
1jk and x

(1)
2jk as zeros during the course of the algorithm and

restores their values in the eventual output.

4 Discussion

Our work was stimulated in part by preliminary versions of Diaconis and Sturm-
fels [10]. In the present context but for more general I�J�K contingency tables,
these authors demonstrate a one{to{one correspondence between a set of movesM
that is irreducible for S and the Gr�obner Basis (GB) of a certain polynomial ideal
IS , where M now denotes a �nite set of I�J�K tables with arbitrary integer
entries and zero two{dimensional margins. By identifying each position (i; j; k) in
the table with an indeterminate zijk, one obtains an equivalence between a table x
and a monomial in indeterminates z111; : : : ; zIJK :

x  ! zx111111 zx112112 : : : zxIJKIJK : (4.1)

Furthermore, any ordering � on N I�J�K produces an ordering on monomials.
Then, if zx denotes the monomial in (4.1), one de�nes zx � zx

0

if x � x0. For
example, in the case of lexicographic ordering, x �lex x0 if the leftmost nonzero
entry in x�x0 is positive. An ordering on monomials induces an ordering on the
indeterminates.

Consider a monomial ordering and de�ne

m+ = max (m; 0) ; m� = max (�m; 0) ;

where the maxima are taken elementwise. Then, following Sturmfels [18] (Ch. 5),

a �nite set M is irreducible for S if and only if fxm
+

� xm
�

: m 2 Mg generates
IS with respect to that ordering, where IS denotes the ideal generated by fzx �

zx
0

: x; x0 2 Sg. Although, in principle, this identi�es an irreducible M , explicit
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computation is usually prohibitive. Even the case I = J =K = 3 is quite taxing
(Diaconis and Sturmfels [10]).

For I = 2, Sturmfels [18](Ch. 13) shows that fxm
+

� xm
�

: m 2 M�g is a
GB for all monomial orderings simultaneously, where M� is de�ned as in (3.4).
As a consequence, M� is irreducible for S, irrespective of the values of the two{

dimensional margins x
(1)
ij+, x

(1)
i+k and x

(1)
+jk of an observed table x(1).

There is also an interesting link between our results and those in Jacobson and
Matthews [14], which describes the use of MCMC in generating random K�K
Latin squares. Thus, let x denote a K�K�K table of 0's and 1's having all its
two{dimensional margins equal to unity. Then there is an equivalent Latin square
in which symbol k appears in those positions (i; j) for which xijk = 1. Jacobson
and Matthews [14] show, by methods that di�er from ours, that all K�K Latin
squares, when rewritten in their three{dimensional form, are also connected by
basic moves, provided that again one allows intermediate visits to tables with a
single �1 entry. It is therefore natural to speculate that Proposition 3 extends to
any I�J�K contingency table, subject to �xed positive two{dimensional margins.
Note here that examples can be constructed to demonstrate that some form of
positivity condition is required. Although we have not proved our conjecture, we
recall that irreducibility is not obligatory for the validity of MCMC p{values, so
that we are at least assured that the use of basic moves provides a legitimate test
for no three{way interaction in I�J�K tables.

Finally, in assessing almost any model of interest for higher{dimensional con-
tingency tables, the corresponding state space S constrains particular marginal
totals to match those in the observed data. Then, again if one is willing to forsake
irreducibility, it is easy to extend the notion of basic moves to construct an MCMC
exact test for the model. As an example, suppose that x(1) denotes an observed

I�J�K�L table with entries x
(1)
ijkl and that we wish to test for the \four{cycle"

in which cell (i; j; k; l) has multinomial probability (cf. (1.2))

pijkl = �ij �jk  kl �li :

Then suÆcient statistics for the unknown parameters are the corresponding two{

dimensional margins, x
(1)
ij++, x

(1)
+jk+, x

(1)
++kl and x

(1)
i++l, so that we require a set

of moves M for which these are preserved. If we now allow moves based on
four{dimensional hypercubes of �1s, we obtain 30 solutions of which eight are
linearly independent, compared with the single previous one in (3.1). We have used
similarly{constructed moves for analyzing various forms of interaction in up to
six{dimensional contingency tables, with parametrizations that are not necessarily
symmetric as in the examples here. Despite the presumed absence of irreducibil-
ity and hence restricted mobility, the MCMC algorithms have been successful in
the sense that they have rejected hypothesized models with annoying regularity!
Also the MCMC computations have con�rmed the frequent irrelevance of standard
asymptotic approximations in practice. Despite these comments, a practicable
method of identifying irreducible sets of moves in constrained state spaces would
be a considerable advance.
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Appendix

Proof of Proposition 1

We need to prove that any m 2Mv, where 2 � v � min(J;K), can be regarded
as a sum of moves from M2. It is suÆcient to consider a move m having support
as in (3.3) and for this we can write an explicit decomposition, m = m1 + : : : +
mv�1, where ms 2 M2 corresponds to the circuit (j1; ks), (ks; js+1), (js+1; ks+1),
(ks+1; j1). Hence, the result is veri�ed.

Proof of Proposition 2

Suppose that x+jk � 1 for all j and k and that x; x +m 2 S, where m 2 M�.
We need to show that there exists a sequence of moves in M2 from x to x+m that
maintains non{negativity in all intermediate tables.

De�ne another 2�J�K table y as follows. If mijk = 1, set yijk = 0; if
mijk = �1, set yijk = 1; if mijk = 0 and x1jkx2jk = 0, set yijk = min (1; xijk);
otherwise, set y1jk = 1 and y2jk = 0. Then y has binary entries and y+jk = 1 for
all j and k. Thus, y corresponds to a Rasch table and so does y+m, with the same
two{dimensional layer, row and column totals as y: non{negativity is preserved
because yijk = 1 whenever mijk = �1. It follows that y +m can be reached by
a sequence of moves in M2, each of which maintains non{negativity. Moreover,
xijk � yijk , so that the same sequence of moves applied to x produces x +m and
again preserves non{negativity.

Proof of Proposition 3

It is suÆcient to consider movesm having support as in (3.3), for which we have
the decomposition used in the proof of Proposition 1. Since x +m 2 S, the only
entry that can be negative when applying the M2{move that corresponds to the
circuit (j1; ks), (ks; js+1), (js+1; ks+1), (ks+1; j1) is in position (1; j1; ks+1), as row
js+1 and column ks are not modi�ed subsequently. Furthermore, the (1; j1; ks+1)
element can at worst be �1, since it is modi�ed only once subsequently.
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