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Abstract

In this technical report we provide mathematical support to the claims in Whitcher, Guttorp,
and Percival (1999). First, the decomposition of covariance by the wavelet covariance is �rmly
established. Central limit theorems for MODWT estimators of the wavelet covariance and
correlation are then provided along with the de�nition of the variance for estimators of wavelet
covariance under the assumption of Gaussianity.
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1 Wavelet-Based Estimators of Covariance and Correlation

Here we de�ne the basic quantities of interest for estimating association between two time series

using the MODWT. The decomposition of covariance on a scale by scale basis of the wavelet covari-

ance is shown, and central limit theorems are provided for the wavelet covariance and correlation.

1.1 De�nition and Properties of the Wavelet Cross-Covariance

Let fUtg � f: : : ; U�1; U0; U1; : : : g be a stochastic process whose dth order backward di�erence

(1 � B)dUt = Zt is a stationary Gaussian process with zero mean and spectral density function

SZ(�), where d is a non-negative integer. Let

W
(U)
j;t = ~hj;l � Ut �

Lj�1X
l=0

~hj;lUt�l; t = : : : ;�1; 0; 1; : : : ;

be the stochastic process obtained by �ltering fUtg with the MODWT wavelet �lter f~hj;lg. Percival
and Walden (2000, Sec. 8.2) showed that if L � 2d, then fW (U)

j;t g is a stationary process with zero

mean and spectrum given by Sj;U(�).
Let fXtg � f: : : ;X�1;X0;X1; : : : g and fYtg � f: : : ; Y�1; Y0; Y1; : : : g be stochastic processes

whose dXth and dY th order backward di�erences are stationary Gaussian processes as de�ned

above, and de�ne d � maxfdX ; dY g. Let SXY (�) denote their cross spectrum and, SX(�) and SY (�)
denote their autospectra, respectively. The wavelet cross-covariance of fXt; Ytg for scale �j = 2j�1

and lag � is de�ned to be

�;XY (�j) � Cov
n
W

(X)
j;t ;W

(Y )
j;t+�

o
; (1)

where fW (X)
j;t g and fW (Y )

j;t g are the scale �j MODWT coe�cients for fXtg and fYtg, respec-

tively. The MODWT coe�cients have mean zero, when L � 2d, and therefore �;XY (�j) =

EfW (X)
j;t W

(Y )
j;t+�g. When � = 0 we obtain the wavelet covariance between fXt; Ytg, which we

denote as XY (�j) = 0;XY (�j) to simplify notation.

Setting � = 0 and Yt to Xt or Xt to Yt, Equation (1) reduces to the wavelet variance for Xt

or Yt denoted as, respectively, �2X(�j) or �
2
Y (�j) (Percival 1995). The wavelet variance decomposes

the process variance on a scale by scale basis, and the wavelet cross-covariance give a similar

decomposition for the process cross-covariance.

Theorem 1 Let fXtg and fYtg be two weakly stationary processes with autospectra given by SX(f)

and SY (f), respectively. If we require L > 2d, then for any integer J � 1 we have

C�;XY � CovfXt; Yt+�g = Cov
n
V
(X)
J;t ; V

(Y )
J;t+�

o
+

JX
j=1

�;XY (�j);
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where V
(X)
J;t � ~gJ;l � Xt and V

(Y )
J;t � ~gJ;l � Yt are obtained by �ltering fXtg and fYtg using the

MODWT scaling �lter f~gJ;lg, respectively. As J !1, we have

C�;XY =
1X
j=1

�;XY (�j);

which gives the required decomposition.

Proof of Theorem 1 Before proving Theorem 1, we require the following lemma.

Lemma 1 For all � > 0, there exists a J� such that
���Cov nV (X)

J;t ; V
(Y )
J;t

o��� < � for J > J�.

Proof of Lemma 1 For the orthonormal DWT
P

l g
2
J;l = 1 and by de�nition ~gJ;l = gJ;l=2

J=2.

Therefore we have
P

l ~g
2
J;l = 1=2J . Parseval's relation tells us that

Z 1=2

�1=2

eGJ(f) df =

Z 1=2

�1=2

��� eGJ(f)
���2 df =

LJ�1X
l=0

~g2J;l =
1

2J
:

We know the amplitude spectrum AXY (f) � jSXY (f)j is a non-negative real valued function.

Hence, if AXY (�) is bounded by some �nite number C, then for J > J�,���Cov nV (X)
J;t ; V

(Y )
J;t

o��� � Z 1=2

�1=2

eGJ(f) jSXY (f)j df = C

Z 1=2

�1=2

eGJ(f) df =
C

2J
< �:

If AXY (�) cannot be bounded by any �nite number C, there at least exists a constant C� such

that
R
AXY (f)�C�

AXY (f) df < �=2, using a Lebesgue integral. A rough bound on the squared gain

function of the scaling �lter for Daubechies wavelets is eGJ(f) � 1, so for all J > J�,�����
Z 1=2

�1=2

eGJ(f)SXY (f) df

����� �
Z
AXY (f)�C�

eGJ(f) jSXY (f)j df

+

Z
AXY (f)<C�

eGJ(f) jSXY (f)j df

�
Z
AXY (f)�C�

AXY (f) df + C�

Z
AXY (f)<C�

eGJ(f) df
� �

2
+ C�

Z 1=2

�1=2

eGJ(f) df � �

2
+
C�
2J

< �:

2

Without loss of generality, we set � = 0 and simply shift fW (Y )
j;t g with respect to fW (X)

j;t g to get

� 6= 0. Because fW (X)
j;t g and fW (Y )

j;t g are obtained by �ltering the processes fXtg and fYtg with a

Daubechies compactly supported wavelet �lter of even length L > 2d, respectively, we know that

fW (X)
j;t g and fW (Y )

j;t g are stationary processes with autospectra de�ned by Sj;X(f) � eHj(f)SX(f)

and Sj;Y (f) � eHj(f)SY (f) where eHj(f) � eH(2j�1f)Qj�2
l=0

eG(2lf) is the squared gain function for
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f~hjg. Note, the squared gain functions associated with unit scale for the wavelet and scaling �lters

are given by eH(f) � j eH(f)j2 and eG(f) � j eG(f)j2.
The covariance between fW (X)

j;t g and fW (Y )
j;t g is given by

XY (�j) =

Z 1=2

�1=2

eHj(f)SXY (f) df:

This is a straightforward generalization of the univariate case; see Whitcher (1998) for more details.

The covariance between fV (X)
j;t g and fV (Y )

j;t g is given by

Cov
n
V
(X)
J;t ; V

(Y )
J;t

o
=

Z 1=2

�1=2

eGJ(f)SXY (f) df;

where eGJ(f) � QJ�1
l=0

eG(2lf) is the squared gain function for f~gJg. Because of the following identity
for squared gain functions eH(f) + eG(f) = 1 for all f (Percival and Walden 2000, Sec. 4.3), we have

CovfXt; Ytg =
Z 1=2

�1=2

h eG(f) + eH(f)i SXY (f) df = Cov
n
V
(X)
1;t ; V

(Y )
1;t

o
+ XY (�1);

and the case when J = 1 holds. We now proceed to prove the main assertion by induction. Assume

the property holds for J � 1; i.e.,

CovfXt; Ytg = Cov
n
V
(X)
J�1;t; V

(Y )
J�1;t

o
+

J�1X
j=1

XY (�j):

So we have

Cov
n
V
(X)
J�1;t; V

(Y )
J�1;t

o
=

Z 1=2

�1=2

"
J�2Y
l=0

eG(2lf)#SXY (f) df

=

Z 1=2

�1=2

h eG(2J�1f) + eH(2J�1f)i "J�2Y
l=0

eG(2lf)#SXY (f) df

=

Z 1=2

�1=2

h eGJ(f) + eHJ(f)
i
SXY (f) df

= Cov
n
V
(X)
J;t ; V

(Y )
J;t

o
+ XY (�J):

The decomposition of covariance between fXt; Ytg has now been established for a �nite number of

scales. From Lemma 1, as J ! 1 the remaining covariance between the scaling coe�cients goes

to zero. Hence, the theorem is established.

2

If we think of f~gJg as a low-pass �lter covering the nominal frequency band [�2�(J+1); 2�(J+1)],
this statement is intuitively plausible since the scaling �lter f~gJg is capturing smaller and smaller

portions of the cross spectrum as J !1.
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1.2 Estimating the Wavelet Cross-Covariance

Suppose X0; : : : ;XN�1 and Y0; : : : ; YN�1 can be regarded as realizations of portions of the pro-

cesses fXtg and fYtg, whose dXth and dY th order backward di�erences form stationary Gaussian

processes. As before, let d = maxfdX ; dY g.
Let fWj;t = W j;t for those indices t where fWj;t is una�ected by the boundary { this is true as

long as t � Lj � 1. Thus, if N � Lj , we can de�ne a biased estimator ~�;XY (�j) of the wavelet

cross-covariance based upon the MODWT via

~�;XY (�j) �

8>><>>:
eN�1
j

PN���1
l=Lj�1

fW (X)
j;l

fW (Y )
j;l+� ; � = 0; : : : ; eNj � 1;eN�1

j

PN�1
l=Lj�1��

fW (X)
j;l

fW (Y )
j;l+� ; � = �1; : : : ;�( eNj � 1);

0; otherwise;

where eNj � N � Lj + 1. The bias is due to the denominator 1= eNj remaining constant for all lags,

though it disappears at lag � = 0. Let us now state the large sample properties of the wavelet

covariance estimator; i.e., ~XY (�j) � ~0;XY (�j). We may generalize to the wavelet cross-covariance

by simply replacing shifting fW (Y )
j;t g with respect to fW (X)

j;t g and appealing to the same result.

Theorem 2 If L > 2d, and suppose fW (X)
j;t ;W

(Y )
j;t g is a bivariate Gaussian stationary process with

autospectra satisfying
R 1=2
�1=2 S

2
j;X(f) <1 and

R 1=2
�1=2 S

2
j;Y (f) <1, then

~XY (�j) � N
�
XY (�j); eN�1

j Sj;(XY )(0)
�
;

i.e., the MODWT-based estimator of wavelet covariance is normally distributed with mean XY (�j)

and large sample variance eN�1
j Sj;(XY )(0). The quantity Sj;(XY )(0) is the spectral density function

for fW (X)
j;t W

(Y )
j;t g (the product of the scale �j MODWT coe�cients) at zero frequency.

Proof of Theorem 2 With L > 2d, both series of MODWT coe�cients fW (X)
j;t g and fW (Y )

j;t g
have zero mean. Square integrability of the autospectra implies that fsj;�;Xg  ! Sj;X(�) and

fsj;�;Y g  ! Sj;Y (�); i.e., the autocovariance sequences and autospectra are Fourier transform

pairs. Because L > 2d, the squared gain function for Daubechies wavelet �lters guarantees we have

Sj;X(0) = 0 =
P1

�=�1 sj;�;X . A similar statement holds for ffW (Y )
j;t g and, therefore, fsj;�;Xg and

fsj;�;Y g are absolutely summable.

Let Sj;XY (f) � eHj(f)SXY (f) denote the MODWT �ltered cross spectrum. From the magnitude

squared coherence being bounded by unity, and using the Cauchy{Schwarz inequality, we know thatZ 1=2

�1=2
jSj;XY (f)j2 df �

Z 1=2

�1=2
Sj;X(f)Sj;Y (f) df

�
 Z 1=2

�1=2
S2
j;X(f) df

Z 1=2

�1=2
S2
j;Y (f) df

!1=2

<1:
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So the cross-covariance sequence and cross spectrum associated with scale �j are also a Fourier pair

and, again, by using a Daubechies wavelet �lters with L > 2d, we have Sj;XY (0) = 0. Therefore,

the cross-covariance sequence for fW (X)
j;t ;W

(Y )
j;t g is absolutely summable.

We �rst note that the MODWT estimate of the wavelet covariance ~XY (�j) is essentially a

sample mean for the time series W
(XY )
j;t � W

(X)
j;t W

(Y )
j;t (cf. Equation (1)). This process also has

an absolutely summable cumulant sequence by Theorem 2.9.1 of Brillinger (1981, p. 38). Then

Theorem 4.4.1 of Brillinger (1981, p. 94) tells us that ~XY (�j) is asymptotically normal with mean

XY (�j) and large sample variance given by eN�1
j Sj;(XY )(0), where Sj;(XY )(0) is the spectral density

for W
(XY )
j;t evaluated at f = 0.

2

Since we are exclusively interested in Gaussian processes, Sj;(XY )(0) may be re-expressed as a

function of the auto and cross spectra of the wavelet coe�cients fW (X)
j;l g and fW (Y )

j;l g. The variance
of the estimated MODWT wavelet covariance at scale �j can be computed directly via

Varf~XY (�j)g =
1eN2
j

N�1X
l=Lj�1

N�1X
m=Lj�1

Cov
nfW (X)

j;l
fW (Y )
j;l ;fW (X)

j;m
fW (Y )
j;m

o

=
1eNj

eNj�1X
�=�( eNj�1)

 
1� j� jeNj

!
Cov

nfW (X)
j;l

fW (Y )
j;l ;fW (X)

j;l+�
fW (Y )
j;l+�

o

� 1eNj

eNj�1X
�=�( eNj�1)

 
1� j� jeNj

!
sj;�;XY ; (2)

where sj;�;XY is the autocovariance sequence for the product of the scale �j MODWT coe�cients

with respect to fXtg and fYtg.
Using the Isserlis theorem and properties of the Fourier transform, the spectrum of fZtg at

f = 0 is SZ(0) =
R 1=2
�1=2 SU(f)SV (f) df +

R 1=2
�1=2 S

2
UV (f) df (Whitcher 1998). Since we have the

Fourier relationship fs�;Zg  ! SZ(�), we necessarily have SZ(0) =
P1

�=�1 s�;Z , when f = 0.

Re-examining Equation (2) and utilizing Ces�aro summability (Titchmarsh 1939, p. 411), we can

say

limeNj!1

eNj Varf~XY (�j)g = limeNj!1

eNj�1X
�=�( eNj�1)

 
1� j� jeNj

!
sj;�;XY

=
1X

�=�1

sj;�;XY = Sj;(XY )(0);

where

Sj;(XY )(0) =

Z 1=2

�1=2
Sj;X(f)Sj;Y (f) df +

Z 1=2

�1=2
S2
j;XY (f) df
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1.3 Wavelet Cross-Correlation

We can de�ne the wavelet cross-correlation for scale �j and lag � as

��;XY (�j) �
Cov

n
W

(X)
j;t ;W

(Y )
j;t+�

o
�
Var

n
W

(X)
j;t

o
Var

n
W

(Y )
j;t+�

o�1=2 =
�;XY (�j)

�X(�j)�Y (�j)
:

Since this is just a correlation coe�cient between two random variables, �1 � ��;XY (�j) � 1 for all

�; j. The wavelet cross-correlation is roughly analogous to its Fourier counterpart { the magnitude

squared coherence { but it is related to bands of frequencies (scales). Just as the cross-correlation

is used to determine lead/lag relationships between two processes, the wavelet cross-correlation will

provide a lead/lag relationship on a scale by scale basis.

1.4 Estimating the Wavelet Cross-Correlation

Since the wavelet cross-correlation is simply made up of the wavelet cross-covariance for fXt; Ytg
and wavelet variances for fXtg and fYtg, the MODWT estimator of the wavelet cross-correlation

is simply

~��;XY (�j) � ~�;XY (�j)

~�X(�j)~�Y (�j)
; (3)

where ~�;XY (�j) is the wavelet covariance, and ~�2X(�j) and ~�2Y (�j) are the wavelet variances. When

� = 0 we obtain the MODWT estimator of the wavelet correlation between fXt; Ytg, denoted as

~�XY (�j) for simplicity.

Large sample theory for the cross-correlation is more di�cult to come by than for the cross-

covariance. Brillinger (1979) constructed approximate con�dence intervals for the auto and cross-

correlation sequences of bivariate stationary time series. We use his technique to establish a central

limit theorem for the MODWT estimated wavelet cross-correlation. To simplify notation the fol-

lowing gives a central limit theorem for the wavelet correlation (� = 0) but easily generalizes to

arbitrary lags.

Theorem 3 Let L > 2d, and suppose fW (X)
j;t ;W

(Y )
j;t g is a bivariate Gaussian stationary process

with square integrable autospectra, then

~�XY (�j) � N
�
�XY (�j); eN�1

j Rj

�
;

i.e., the MODWT-based estimator ~�XY (�j) of the wavelet correlation is asymptotically normally
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distributed with mean �XY (�j) and large sample variance given by

Rj � Varf~�XY (�j)g � 1eNj

eNj�1X
�=�( eNj�1)

f ��;X(�j)��;Y (�j) + ��;XY (�j)��;Y X(�j)

� 2�0;XY (�j)[��;X(�j)��;Y X(�j) + ��;Y (�j)��;Y X(�j)]

+ �20;XY (�j)[
1
2�

2
�;X(�j) + �2�;XY (�j) +

1
2�

2
�;Y (�j)] g;

where ��;X(�j) � EfW (X)
j;t W

(X)
j;t+j� jg=[2�j�2X(�j)] is the scale �j wavelet autocorrelation for the

process fXtg.

Proof of Theorem 2 Since L > 2d, we have that both sets of wavelet coe�cients ffW (X)
j;t g and

ffW (Y )
j;t g have mean zero. Let us de�ne Aj;t � [fW (X)

j;t ]2, Bj;t � [fW (Y )
j;t ]2, and Cj;t � fW (X)

j;t
fW (Y )
j;t , and

subsequently de�ne their sample means

Aj � 1eNj

N�1X
t=Lj�1

Aj;t = ~�2X(�j);

Bj � 1eNj

N�1X
t=Lj�1

Bj;t = ~�2Y (�j); and

Cj � 1eNj

N�1X
t=Lj�1

Cj;t = ~XY (�j):

The vector-valued process fAj;t; Bj;t; Cj;tg has an absolutely summable joint cumulant sequence by

Theorem 2.9.1 of Brillinger (1981, p. 38). Hence, from Theorem 4.4.1 of Brillinger (1981, p. 94)

the vector of sample means fAj; Bj ; Cjg are asymptotically normally distributed with mean vector

f�2X(�j); �2Y (�j); XY (�j)g, and large sample variance given by eN�1
j Sj;ABC(0), where Sj;ABC(�) is

the 3� 3 spectral matrix for fAj;t; Bj;t; Cj;tg.
The MODWT estimator of the wavelet correlation ~�XY (�j) is essentially a function of these

sample means g(Aj; Bj ; Cj), where g(x; y; z) � z=
p
xy. Appealing to Mann and Wald (1943), we

have that ~�XY (�j) is asymptotically normally distributed with mean �XY (�j) and large sample

variance

eN�1
j _g

�
�2X(�j); �

2
Y (�j); XY (�j)

�T
Sj;ABC(0) _g

�
�2X(�j); �

2
Y (�j); XY (�j)

�
(4)

where _g(�; �; �) is the gradient of g(�; �; �). Now let us re-express Equation (4) into the desired result

using the fact that we are only interested in Gaussian processes. Because we are evaluating Sj;ABC(�)
at f = 0, it is in fact a symmetric matrix of the form

Sj;ABC(0) =

264 Sj;AA(0) Sj;AB(0) Sj;AC(0)
Sj;AB(0) Sj;BB(0) Sj;BC(0)
Sj;AC(0) Sj;BC(0) Sj;CC(0)

375 ;
7



where the elements of the matrix are

Sj;AA(0) = 2

Z 1=2

�1=2
S2
j;X(f) df; Sj;BB(0) = 2

Z 1=2

�1=2
S2
j;Y (f) df;

Sj;CC(0) =

Z 1=2

�1=2
Sj;X(f)Sj;Y (f) df +

Z 1=2

�1=2
S2
j;XY (f) df;

Sj;AB(0) = 2

Z 1=2

�1=2
Sj;XY (f)Sj;Y X(f) df;

Sj;AC(0) = 2

Z 1=2

�1=2
Sj;X(f)Sj;Y X(f) df; and

Sj;BC(0) = 2

Z 1=2

�1=2
Sj;Y (f)Sj;Y X(f) df:

The gradient is explicitly given by

_g
�
�2X(�j); �

2
Y (�j); XY (�j)

�
=24� XY (�j)

2�2X(�j)
q
�2X(�j)�

2
Y (�j)

� XY (�j)

2�2Y (�j)
q
�2X(�j)�

2
Y (�j)

1q
�2X(�j)�

2
Y (�j)

35T ;
and, through matrix multiplication and application of Parseval's relation to each auto and cross

spectra in Sj;ABC(0), we may express Equation (4) as

1eNj

eNj�1X
�=�( eNj�1)

(
2XY (�j)

4�6X(�j)�
2
Y (�j)

2s2j;�;X +
2XY (�j)

2�4X(�j)�
4
Y (�j)

2Cj;�;XYCj;�;Y X

+
2XY (�j)

4�2X(�j)�
6
Y (�j)

2s2j;�;Y +
1

�2X(�j)�
2
Y (�j)

�
sj;�;Xsj;�;Y + C2

j;�;XY

�
� XY (�j)

�4X(�j)�
2
Y (�j)

2sj;�;XCj;�;Y X � XY (�j)

�2X(�j)�
4
Y (�j)

2sj;�;YCj;�;Y X

)
:

Each of the autocovariance terms are equivalent to the wavelet autocovariance for scale �j (de�ned

by letting Xt = Yt in Equation (1)) and each cross-covariance term is equivalent to the wavelet

cross-covariance for scale �j. This yields the desired result.

2
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