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Abstract

Considerable attention has been given to the health effects of ambient air borne particulate matter

as the Environmental Protection Agency (EPA) revises the National Ambient Air Quality

Standards (NAAQS). Much of the recent focus has been on the effects of fine particles, with the

establishment of additional monitoring platforms to measure both fine and coarse particles for

epidemiological studies. Much of the evidence supporting the 1997 standards is based on

statistical models using generalized additive models for time series data. Among the statistical

concerns raised by National Research Council is the issue of whether observed statistical

associations are a result of multiple testing and selection effects due to model selection. We

propose a method based on Bayesian Model Averaging to estimate relative risks that incorporates

both uncertainty due to estimation but also uncertainty due to model choice. This incorporates

uncertainty regarding the choice of confounding variables, choice of pollutant (fine and coarse

particles), and which lags of all variables should be included in the model. This approach is

illustrated using fine and coarse particulate matter data from the National Exposure Research

Laboratory research monitoring platform in Phoenix, AZ for the time period of May 1995 to

June 1998. We consider elderly non-accidental mortality for three regions of increasing size in

the Phoenix metropolitan area, as well as using accidental mortality for all ages as a control

population. We find a weak, but suggestive, particulate matter effect on elderly mortality only

for the geographic region where fine particles are expected to be spatially homogeneous;

posterior probability of a PM effect is 0.91 and 90% probability interval for the relative risk

(RR) with a 1 IQR increase in both fine and coarse particulate matter levels is (1 < RRA 1.04).

While previous scientific information would suggest that fine particles should have a larger effect

than coarse particles on health outcomes, we find instead that the effect of coarse particles on

mortality is stronger, with very little support for models that include fine particles, but not coarse

particles.   
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Introduction

Although new standards for particulate matter (PM) were proposed by the Environmental

Protection Agency (EPA) in 1997, there remains a high degree of uncertainty surrounding the

effects of ambient fine and coarse particles on human health. Epidemiological models based on

daily PM measurements and other confounding variables are often employed to estimate health

effects. Because model selection is often used to eliminate unimportant confounding variables

and to choose appropriate lags for these models, statistical significance may be overstated

(Hodges 1987; Draper 1995), and observed associations may be the result of multiple hypotheses

tested in the course of variable selection, an issue raised by the 1998 National Research Council

report on "Research Priorities for Airborne Particulate Mater". Different model selection

strategies have, in some cases, led to very different models and conclusions for the same set of

data (Schwartz 1993; Clyde 2000). Rather than selecting a single model, we approach the

problem using Bayesian Model Averaging (BMA), a technique that accounts for model

uncertainty by averaging over a wide class of models supported by the data.  

It has been hypothesized that fine particles are more damaging to human health than large

particles. We evaluate the effect of particle size on elderly mortality using data collected at the

National Exposure Research Laboratory's research monitors in Phoenix, AZ from May 1995 to

June 1998. We apply Bayesian Model Averaging to incorporate uncertainty about which

pollutants (fine versus coarse PM), confounding variables, and transformations and lags of these

variables should be included in the model. We construct a posterior distribution for the relative

risk based on a simultaneous IQR (interquartile range) increase in both fine and coarse PM

variables adjusted for model selection effects using BMA.
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Methods

Data Sources

Mortality data were obtained from the Arizona Department of Health Services for 1995-1998

and matched to particulate matter and meteorological data for the same time period. Because of

concerns about the effect of spatial heterogeneity and potential bias, we constructed four

mortality response variables (Figure 1). Three, ELDERLY MORTALITY METRO AREA,

ELDERLY MORTALITY UNIFORM PM2.5 and ELDERLY MORTALITY UNIFORM PM10,

are each a daily count of non-accidental deaths for people aged 65 and over in three geographical

regions. ELDERLY MORTALITY METRO AREA includes deaths which occurred in the

Phoenix metropolitan area using the region defined as Phoenix Division, Arizona by the United

States Census Bureau. The second variable, ELDERLY MORTALITY UNIFORM PM2.5,

includes deaths in a smaller subset of zip codes which are thought to have spatially similar levels

of fine particles or PM2.5 (particulate matter with aerodynamic diameter of 2.5 microns)

throughout the region (personal communication Jane Koenig, University of Washington). The

third geographical region, is smaller yet and is thought to have fairly homogenous PM10 levels,

and therefore spatially homogeneous levels of coarse particles; the corresponding response

variable is ELDERLY MORTALITY UNIFORM PM10. Zip codes within Phoenix that define

UNIFORM PM10 are 85004, 85006-85009, 85012-85020, 85028-85029, 85031, 85033-85035,

85043, 85051. UNIFORM PM2.5 is defined using the above zip codes for Phoenix plus the

following zip codes within Scottsdale, Mesa, Glendale and Tempe: 85201-85205, 85207-85208,

85212-85213, 85234, 85236, 85251, 85253, 85256-85258, 85281-85284, 85296. The fourth

response variable, ACCIDENTAL MORTALITY includes all accidental deaths for all age

groups which occurred in the Phoenix metropolitan region. As there is no reason to believe that

particulate matter should be associated with accidental mortality, this provides a sensitivity check

on the methodology. Because early 1995 was a very mild flu year in contrast to the following

years, we have chosen to model mortality using a start date of May 1, 1995.

In light of the upcoming review of the National Ambient Air Quality Standards, our analysis

focuses on estimating health effects of fine particles PM2.5 and coarse particles (PMC), defined
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as PM10 - PM2.5. Daily particulate matter readings (Figure 1) from a TEOM monitor (Tapered

Element Oscillating Microbalance) were obtained from the EPA's National Exposure Research

Laboratory for both PM10 and PM2.5. In Phoenix, particle mass is typically dominated by the

coarse fraction. The average of PM2.5 over the period is 13.75µg/m3 (range 0.02 to 40.95

µg/m3), while the average for PM10 is 45.42µg/m3 (range 5.19 to 185.66µg/m3). The

correlation between fine and coarse particle daily levels is 0.65. Over the 3 year period, roughly

20% of the coarse particle data is missing, while approximately 16% of the PM2.5 observations

are missing.   Models are based on cases with complete data only.   

 

Additional daily meteorological data were obtained from the U.S. National Climatic Data Center

(NCDC) in Ashville, NC, and include minimum and maximum daily temperatures (TMIN and

TMAX). Specific humidity (SH) was derived from the NCDC data. To allow for nonlinear

effects of temperature and humidity on mortality, we considered squared components of each

(TMAXSQ, TMINSQ, and SHSQ). While there are numerous studies of the relationship between

mortality and PM, there is no consistent agreement on which lags of PM and confounding

variables to include. Many papers consider one lag at a time, or construct 3 day averages, and

lags of 3 day averages. We allow for potentially any lag from the present day (lag0) up to a lag

of 3 days (lag3) to be included.  

Statistical Model

For each of the four response variables, we model mortality using Poisson regression with a log

link, so that the log of expected mortality follows a linear model. We control for a nonlinear

temporal trend in mortality modeled using smoothing splines to represent seasonal variation in

mortality due to flu or other unmeasured trends such as population growth over time. We

consider 30 knots spaced approximately a month apart to capture variation on a scale of one

month or greater. Uncertainty regarding the number of knots was addressed as in Clyde 2000.

We also adjust for the potential confounding meteorological variables of minimum and

maximum daily temperature, specific humidity, lags of 0, 1, 2, and 3 days in each of these

variables, and quadratic terms in each. We consider particle size (fine and coarse) as well as the
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lag of the effect (0, 1, 2, or 3 days). With the nonlinear BASELINE, there are 29 variables

under consideration.   

Previous studies have used model selection to determine which variables and lags to include. As

variable selection may involve numerous tests of hypotheses, the resulting significance levels

may be called into question, and there is the concern, as raised in the 1998 National Research

Council report, that the positive associations between health outcomes and particulate matter are

a result of multiple testing used in model selection. While results from multiple models may be

presented, there has been no consistent method for how to combine multiple inferences for the

same set of data. Selecting a single model and making all subsequent inferences based on the

selected model often leads to policy decisions that are riskier than one may think (Draper 1995). 

Bayesian model averaging (Raftery 1996; Hoeting et al. 1999; Clyde 2000) provides a coherent

alternative for combining inferences from different models and addressing model selection in

subsequent inferences.  Under BMA, each model contributes proportionally  based on the support

it receives from the data, as measured by the posterior probability of each model. Potential

models using the 29 covariates were obtained using the leaps and bounds algorithm to find the

best models of each size. To provide a baseline reference analysis, we use the Bayes Information

Criterion or Schwarz Criterion (Schwarz 1978) for determining posterior model probabilities,

where BIC for model M is 

BIC(M) = deviance(M) + dim(M) log(n)

and deviance(M) is the deviance statistic for modelM (-2 log likelihood) and dim(M) is the

number of variables in modelM. This imposes a heavy penalty on models that contain a large

number of parameters and has been shown to lead to consistent selection of the true model.

Assuming that all models are equally likely a priori, the posterior probability of modelM given

the data is 

Pr �M bdata�,
exp�1BIC�M ��

{
m,1

K

exp�1BIC�m��

and the sum in the denominator is over all models. BMA using BIC has lead to improved
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predictive performance in many situations (Hoetinget al. 1999; Clyde 2000) and provides

objective probabilities of models. 

We consider model uncertainty regarding which meteorological variables should be included,

whether there is a coarse or fine particulate matter effect, and which lags of the variables should

be included. We calculate the posterior distribution of the relative risk under BMA associated

with simultaneous one interquartile range changes in all lags of fine and coarse particulate matter

variables included in the models (IQR fine PM = 9.1µg/m3, IQR coarse PM = 17.9µg/m3). The

posterior distribution (approximate) for the relative risk given a model which includes any of the

PM variables is a log normal distribution, where the log relative risk has a normal distribution

centered at the maximum likelihood estimate of the relative risk under that model and with

variance derived from the inverse Fisher information matrix for that model (see Clyde 2000 for

details). For models that exclude all PM variables (fine, coarse, or any lags), the relative risk is

identically 1. The posterior probability that there is no PM effect is obtained by summing the

posterior probabilities of all models that exclude PM.  

Results

Results using model averaging (Table 1) suggest that there is a weak particulate matter effect

only for the mortality variable defined over the region with UNIFORM PM2.5. The posterior

probability that the relative risk is equal to one is 0.09, with a 0.91 probability that the relative

risk is greater than 1. For the other ELDERLY MORTALITY response variables, the data are

inclusive about whether or not there is a particulate matter effect (probability of there being an

effect or that the relative risk is not one ranges between 0.46 to 0.77). For the ACCIDENTAL

MORTALITY response, the data are marginally in favor of there being no PM effect.

Focusing on ELDERLY MORTALITY UNIFORM PM2.5, the probability that the lag 1 coarse

PM coefficient is non-zero is 0.87. For all other lags of coarse PM and fine PM, the probability

that the coefficient is not equal to zero is less than 0.20, suggesting that the effect is primarily
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due to coarse particles rather than fine. This is also evident in the model space plot (Figure 2)

that illustrates model uncertainty in the top 25 models. The left hand plot in Figure 2 shows an

image of the model space for the top 25 models ranked by the log of the posterior model

probability (or log Bayes Factor for comparing each model to the worst model). Potential models

were obtained using the leaps and bounds algorithm to find the best models of a given size and

then ranked based on BIC. Each row corresponds to a model, with the best models at the top.

Each column corresponds to a variable, with the last 8 columns corresponding to coarse PM and

its lags, followed by fine PM and its lags. Squares that are white indicate that the variable for that

column is included in the model for the particular row. Restricting attention to only the top 25

models, only the lag 1 coarse PM variable is consistently included in the top models. The plot

on the right hand side of Figure 2 shows 95% probability intervals for relative risks based on

each of the top 25 models shown in the model space plot. For the top 25 models, models that

include both coarse and fine PM all have probability intervals that include 1, while probability

intervals for models with only coarse PM exclude 1. While over all models the data provide

weak support for a coarse PM effect (probability = 0.91), the overall probability that there is a

fine PM effect is only 0.39, and is inconclusive (marginally in favor of no effect).    

All of the top 25 models receive similar support from the data, but lead to potentially different

conclusions about the impact of PM on human health. BMA provides a way of combining these

inferences to construct an overall estimate that adjusts for model selection. Figure 3 shows the

distribution of relative risks based on the simultaneous change in both coarse and fine PM for

each of the four response variables. In the distribution for ACCIDENTAL MORTALITY, most

of the support is on relative risks equal to 1, however there is some support dispersed over other

values. The distributions for the other ELDERLY MORTALITY responses are more

concentrated. Again, it is only for the UNIFORM PM2.5 region that there is evidence of weak

support for a PM effect. Despite the differences about whether there is a PM effect among the

different response variables, the overall posterior mean for the relative risk ranges between 1.01

to 1.02 for the 4 responses (Table 1). However, it is only for the UNIFORM PM2.5 region that

the overall 90% probability interval for relative risks does not contain 1.     
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Discussion

For Phoenix, Arizona we consider the effect of model uncertainty on relative risk estimates based

on simultaneous changes in both fine (PM2.5) and coarse (PM10 - PM2.5) levels using three

different geographic regions. We find a weak, but suggestive PM effect only in the region where

fine, but not necessarily coarse particles are expected to be spatially homogeneous, with most of

the effect being attributed to coarse particles. Results using model averaging with the Bayes

Information Criterion for the other response variables suggest that there is not enough evidence

in the data to determine conclusively if there is a PM effect.  

There are several refinements of the model that could improve the precision. In this analysis, no

attempt has been made to impute missing data. Bayesian approaches for missing data would

allow us to use all days with complete mortality data and account for uncertainty due to imputing

missing observations in a valid way. This would be more efficient than ignoring cases with

missing data. For mortality defined over the larger regions, PM measured at the single platform

may not be an accurate exposure measure. Additional improvements can be made by expanding

the statistical model to allow for spatial variation in PM levels or potential measurement error in

the exposure data.    

In this analysis we have considered uncertainty in the lag structure of both fine and coarse PM,

but otherwise assume that the relationship between PM and mortality follows a simple log-linear

relationship as is commonly used. Generalized additive models can be used to model nonlinear

PM effects, such as a threshold effect, but complicate relative risk estimates. While exploratory

modeling suggests that additional nonlinear functions of fine and coarse PM are not necessary,

uncertainty regarding the functional form of the dose response curve can be easily addressed

using BMA , if one chooses to expand the class of models under consideration.  

In conclusion, the use of BMA in this analysis provides a methodological advance by accounting

for both parameter uncertainty and model uncertainty in relative risk estimates and interval

estimates, providing more realistic measures of uncertainty. Unlike traditional p-values, the
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Bayesian approach provides posterior probabilities of whether there is a PM effect that also

incorporate model selection uncertainty. While the best BIC model for the UNIFORM PM2.5

mortality data suggests that there is a statistically significant PM effect, there are other top BIC

models that do not suggest this. BMA allows us to combine these inferences and to avoid the

problems with false positives that can arise because of multiple hypothesis testing in the model

selection framework.  
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Table 1. Summaries from Bayesian model averaging for the four analyses.  For Uniform PM2.5,

1+  is rounded down so that 1 is actually not contained in the interval. 

Response Variable Probability relative

risk is 1 given data

Posterior mean

relative risk 

90% Probability

Interval

Elderly Mortality

Uniform PM10 0.54 1.01 [1, 1.03)

Elderly Mortality

Uniform PM2.5 0.09 1.02

 

(1+, 1.04)

Elderly Mortality 

Metro Area 0.33 1.01 [1, 1.03)

Accidental Mortality All

Ages Metro Area 0.51 1.02 [1, 1.08)
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Figure 1. Time series of the four mortality responses, PM Coarse, and PM Fine for Phoenix, AZ

from May 1, 1995 to June 30, 1998.
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Figure 2. The top 25 models ranked by posterior model probabilities and associated 95%

probability intervals for the relative risk under each model using elderly mortality for the

region with uniform PM2.5. Rows in the model space correspond to models and columns

correspond to variables, with white squares indicating that the variable for that column is

included in the model for that row. The y-axis for the model space plot is the log(Bayes

Factor) for comparing that model to the lowest probability model and is proportional to - BIC.

Points in the probability intervals are the maximum likelihood estimates of relative risk under

that model. 
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Figure 3. Distribution of relative risk incorporating both estimation uncertainty and model

uncertainty using elderly non-accidental mortality for the three different regions and

accidental mortality for all ages for the metro area. The spikes at one correspond to models

that do not include any fine or coarse particulate matter variables or lags. The points indicate

the range of the distribution.
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