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Abstract and Key Words

Multivariate receptor modeling aims to estimate pollution source profiles and the
amounts of pollution based on a series of ambient concentrations of multiple chemical
species over time. Air pollution data often show temporal dependence due to
meteorology and/or background sources. Previous approaches to receptor modeling do
not incorporate this dependence. We model dependence in the data using a time series
approach so that we can incorporate extra sources of variability in parameter estimation
and uncertainty estimation. We estimate parameters using the Markov chain Monte Carlo
method, which makes simultaneous estimation of parameters and uncertainties possible.
The methods are applied to simulated data and 1990 Atlanta air pollution data. The

results show promise towards the goal of accounting for the dependence in the data.

KEY WORDS: Dynamic models; Kalman filter; Gibbs sampler; Metropolis-Hastings

algorithm; Compositions; Air pollution.



1. INTRODUCTION
The goal of receptor modeling is to identify the pollution sources and assess the amounts of
pollution based on observatioosllected at a particulaite,and fromthat information to
develop an effective aguality management plan. The basiathematical model can be
written asfollows based orchemicalmassbalanceassumptiongsee, e.g., Hopke, 1985,

1991, 1997; Gleser 1997):
q
Y = Z%F’k +e, t=lL.,n 1)
=1

where 'y, =(ytl’yt2,|_ ,ytp) is the tth observation,q is the number of sources,
R = (pkl, Pl ,pkp) is thekth source composition (consisting the fractional amount of

eachspecies in theemissions fromthe kth source),a,, is the contributiorfrom the kth

source on théh day, ande, = (stl,etz,L ,stp) is the measurement error associatétl the

tth observation. In matrix terms, the model (1) can be written as
Y=AP+E (2)

whereA is nxg source contributiomatrix, P is gxp source compositiomatrix, and E is

nxp error matrix. The model (1) may be viewed as a factor analysis model sertkehat

Y is the onlyobservable quantitwhile g, P,andA are allunknown quantitieshat need to

be estimatedor predicted). Early approaches naultivariate receptor modeling include
exploratory factor analysis, principal component analysis, target transformation factor
analysis, andthers (see, e.g.Henry 1991). It iswell known that, without imposing
additional constraints othe parameters, the factanalysis model is natlentifiable even

with known number of sourceq, Therehavebeen several attempts @awoid this problem

by imposing more restrictive constraints on eitheRloe theA matrix (see Henry and Kim
1990; Henry Lewis, and Collins 1994Yang 1994; Park 1997). As matter of factthere

could be many differensets ofidentifiability conditions, each makingense in its own



context. Park, Spiegelmaand Henry (19994iscussidentifiability conditionsthat are
meaningful in receptor models.

The assumption of independence amahg observationsy, hasbeen made either
implicitly or explicitly in all previous approaches toultivariatereceptor modelingsee, for
instance, Hopke (1991), Henry (199Ypng (1994), Gleser (1997Rark(1997), andPark
et al. (1999). Air pollution data, however, are usually obtainedsasi@s of measurements
on concentrations of aerosadser time, and meteorology often induces some degree of
dependence in the data. Observations closdime tend to be more correlated than
observations farther apart in time (e.g., Figure 1).

{Insert Figure 1}
In some caseshe assumption of independengeay not begrossly wrong because
environmental datasually contains many missingalues orerroneousobservations, and
after initial screening of thelata, timeseparationbetweenany pair of measurements may
become large enough so that serial correlation can be ignored in the screenddhidatat.
course, is not always the case. The researthismpapemwas motivated by 4990 Atlanta
air pollution compositiondata set consisting of hourly measurements \aflatile
hydrocarbon (VHC) species. Thimtaset wasused in Henry egl. (1994) to derive
vehicle-related hydrocarbon source compositions from the ambient data. In that study, three
types of measured source profiles specifitianta in thesummertime ofL990werealso
available:roadway emissionsyhole gasolineand gasoline headspace (déenry et al.
1994). The compositions of those three sources for nine selected vehicle-related species are
provided in Table 1.

{Insert Table 1}
It is worthwhile to mention thathosedirect source measurementgere obtainedunder
rather restricted conditions, independently of the data (e.g., roadwapositionswere
obtained as highway tunnel measuremehtsng morning rush hour). Thus it is not

unlikely that themeasured source compositions could be different fileentrue source



compositionsP, for the datadue to pollutant transpofbetweensource and receptor) and
reactions (and also to measurement erreasiations insource compositions, and the
contribution of minor sources). Nonetheless, the measured source composéjossrve
as a guideline for the true source compositions.

Assuming that the measured compositions iffable 1 are the truesource

compositionsj.e., P is known in model (2)A can be estimated easiligr instance, as an

ordinary leastsquares (OLS)solution, ﬁbLS:YP’(PP')'l, if we ignore dependence

structure in the data (and vice versa, Bg., = (A'A) "A'Y if A is known or estimatefirst.

This was done in almostall previous works without checking the independence

assumption). Figures 1 and 2 show the autocorrelation function (ACF) ple dw data

Y and residuals calculated ¥s- ﬁbLSP for each of nine species, respectively

{Figure 2 about here}

Figure 3 shows ACF plots of OLS estimates of source contributf!qpbs,

{Figure 3 about here}
All three plots reveal significant serial correlation in the data. It is well knowimeseries
literature that in the presence of the correlated residuals, the standard error (not adjusting for
the correlation in the residuals) OLLS estimate of the trend (which may tegarded a®
in our model) in the regression is often grossly wrong. Althdhgtcorrecsstandard error
of OLS estimate may be obtained lagljusting forthe correlation, it is stilhot the best
estimate since the generalized leagiaresestimatetaking the correlation into account in
the estimation procedureassmaller standarérror. The goal ofthis article is to extend
receptor models to accouiutr temporal dependence in the data so that we can incorporate
that source ofvariability in estimation ofparameters and uncertainties. In Section 2, we
introduce models accountinigr time dependence in the observations. Estimation of

parameters igliscussed irBection 3. Sections 4 and 5 contain examples from simulated



data and the Atlanta air pollution data, respectively. Finally, concluding remarks are made in

Section 6.

2. MODEL
Assumethat they, in (1) are dependent. Wérst need todecide how to model this

dependence. It seems reasonable to asthah¢éhesource contribution otime t depends

on thepast source contributiofas Figure 3ndicates). Also, it is often the case tha

contains not only pure measurement error but alsthhe remainingsources ofvariability
that isnot explained by the systematic part amir model such as background sources
(unmodeled minosources) andneteorology, etc. Then it is likely that tt& are also
correlated intime due to the effect of meteorology and unmodaledrces (see Figure 2).
We may decompose, into two terms g =n, +0, where n, representsvariability
correlated intime due to meteorology or background sources, &ndepresentsesidual,

unpredictable variability due to pure measurement error, independent over time.
We consider the model

yt :atp+rlt +5t
where at:(atl,atz,L ,atq) is a stationary vector AR(1) process centered at
é= (El,fz,L £ q), n, = (ntl,ntz,L ,ntp) is a stationaryector AR(1) processcentered ab,

and 3, :(fstl, a,.L ,qp)~ N,(0,%) whereZ:diag(af,ag,L ,Uf,)- We use NI} to

denote k-dimensionahultivariate normal distribution throughouhe paper. This model

may be written in Dynamic Linear Model (DLM) form (West and Harrison, 1997) as

Observation equation:  y, =a,P+n, +3,, 9J, ~N(0,%)
Evolution equation: a, =& +(a,_, ~&)P+u, u, ~ N,(O,U)

n=n-4©+uv, U ~ Np(O,V) 3)



where u, :(uu,utz,L ,u[q), P :diag(gal,q;,L : (g), @, is an AR coefficientfor the kth
source contribution, v, =(Ut1,Ut2,L ,Utp), @:diag(el,BZ,L ,Qp), and 6, is an AR

coefficient forjth element of),. Note that marginal distribution for eaghis

a, ~N,(Ew), wW=owo+U 4
and for each, is

N ~N,(OM), M=OGMO+V. (5)

3. ESTIMATION

As the model gets complicated by inclusion of more parameters, Markov chain Monte Carlo
(MCMC) simulation (Tierney 1994; Chib and Greenberg 1®#s5ag, Green, Higdon, and
Mengersen 1995Gilks, Richardson, and Spiegelhalt#996) seems to be aattractive
approach foparameter estimationNote alsothat the parameters of timeodels (1) or (3)
are allunknown, and the problem of parameter estimation is essentially nonlinear, but the
Markov chainMonte Carlo method makethe problem linear byuse of conditional
distributions. We introduce a Bayesian framework to employ M@®MC method
(constraints and identifiability conditions can be used as a part of the prior distribution). As
mentioned in Section 1, the receptor model carvibeed as aspecial type of a factor
analysis model (with the constraints that the elements of factor loading sfaitiid be all
nonnegative). For identifiability of the model we borrow conditifsam the confirmatory
factor analysis model (Anderson 1984).

C1. There are at leagt-1 zero elements in each rowkf

C2. Therank of P¥ is g-1, where P¥ is the matrixcomposed ofthe columns

containing the assigned O’s in tktb row with those assigned 0’s deleted.

Under the above conditions the soupeefiles, P, are identified up to normalizatiomhich

is enough forthe purpose ofreceptor model. (As long abe relative amount ofeach



species in a source tetermined, aourcecan be identified.) The conditions C1 and C2
(and nonnegativity constraints on the elemen®)@ire absorbethto prior distribution for

P.

Under the normal error assumption énthe Iikelihoodf(Y|L ) IS written as
f(YIL ) = (2] expﬁ%trzﬂ(v —AP 1) (Y- AP- n)ﬁ (6)
where np is nxp matrix of whichrows are n,, t=1L ,n. We use L' to denote

conditioning on all other variables. For a prior distributiai)], we assume that
p(P.Z,®U,a,L ,a,,0,V,L 1)
= p(P) () p(®) p(U) p(ar,.L ., |D,U.E,)p(O)p(V)pln..L 11,]@V).

For the sake of brevityé is assumed known to kie=¢&,. Note that (3) implies
o a1 1 g ! _n1 0 1 e ! ml
p(ayL .a,|®,U.E) = (27)FW| Zexp(—zvl Vi )U Zexpcrzt@ Z(x— ¥a®) (¥~ Y-l‘D)%
O t=

wherey, = a, - ¢, and

— (27) A M o M W e 2t S ' S
p(n.L n.j0n) = (21) *|M|* exp|-$n.M 7, |V echrztré/ Z(nt -n.9) (1. —01_1@)%

] t=
Based on a series of observations L , y,, we are interested in sampling the full

posteriorn(P,Z,qb,U,al,L ,a,,0,V,n,L ,np‘Y). We use “block-at-a-timeMetropolis-

Hastings algorithm (Chib and Greenbet§95). Weshall makeuse ofsevenmovetypes
in implementing MCMC:

(&) updating®

(b) updatingz

(c) updating®

(d) updatingu

(e) updating®

(f) updatingVv

(g) updatinga andn.



Leting P=(A'A)"A(Y-n) and S= (Y -n- AI5)' (Y -n- AI5), and using the
orthogonality properties associated vvfth(see Press 1982), (6) can be written as

DU S O
2re| ¢ exp{ - 1trz g Pt {(P-P) (aA)(P- P)E

O exp% %(vecP— vecF~>)'(Z‘l 0 A'A)(vecP —vecf’)%
U U
Let the prior distribution foP be
p(P) = p(vecP) ~ N(m,,G,)I(R; 20, k=1L ,q, j=1L ,p)

where m, is a pg-dimensionalectorand C, is a pqx pg-dimensional diagonal matrix.
Enforcing the constraints C1-C2 is equivalent to using a degeneratgpoirfior some of
the elements oP. We setqx(q-1) elements ofm, and thecorrespondingelements of
C, to be zero, whichmakes theprior distribution forP a truncated singular normal
distribution (thoughstill proper). Then the resulting full conditionglosterior distribution

n(P|L ) IS again a truncated singular normal distribution, which can be written as
vecPL ~Ny(m C)I(R; 20, k=1L .q, j=1L ,p)
where m= C{(Z‘1 O A’)vec(Y -n)+ Co'mo} , C= (Z‘l OAA+ CO‘)_l where C, is a

generalized inverse @,. Since both o and C, are diagonal, for the columns & with

no zero elements, we have

RIL ~N,(m. C)i(R;20, k=1L q)
where m, = Cj{aj'ZA'(yj —QJ) +C0‘J-1rT1oj} , C = (aj'ZA’A+ Co_,-l)_l' m,; is a g-dimensional
prior mean vector of, C;; is a corresponding submatrix Gf, Y, is thejth column ofY,

and n, is thejth column ofny. For the columns d? containing zero elements, gt be the



number of nonzero elements for that column @%e a columrvectorconsisting of those

g" elements. Then

PIL ~N.(n, ¢)i(R =0, k=1L ,q)

where mjD:C?A[’{a‘jzAD(yj —Qj)+C§jln%j} : CJ.D:(U‘J.ZADAD +C‘?(;J.1)_1, M, is a q’-

J
dimensional prior mean vector of nonzero element pCODj is a corresponding submatrix

of C,, and A” consists of the columns Afcorresponding to nonzero elementspf
If there is no prior information about the source compositionshieureroelements, we

q [P 0
may use a noninformativgrior p(P) = H a_l I(ij > O)I(Pkj =0,j DJO)D where J, is the
-10- 0

index setfor which B; =0, which takes into account the condition§1-C2 and
nonnegativity only. Under this prior, we have, for the columnB efith no zero element,
RIL ~N,(m, C)i(R;20, k=1L q)

where m, :(A'A)'lA'(y_/ n ) C = (AA)".

;~n, For the columns ofP containing zero
elements, we get
PIL ~N.(n, SR =0, k=1L ,q)

-1

wherem’ = (ADAD)_lAD (Z; - Qj)’ C'= af(A[’AD)
Hence move (a) can be performed using either a Gibbs sampler or a simple Metropolis-
Hastings algorithm.
Under a usual inverse gamma prior distributionddy o> ~T(a,8), j =1L ,p,

with the parameterization in which the meardvariance aren/B and a/B?, respectively,

the full conditional for{ af} are

oL ~ r(a+%n,ﬁ +%dj)



where d, :(yj -n. —APJ-) (y_ -n.

—AP].). This can be easily sampledsing a Gibbs

sampler.

Moves (c) - (g)require Metropolis-Hastingsteps. We usthe same strategy disose

given inChib and Greenberg (1995) aWdestand Harrison (1997) topdate® and U,

respectively. Ley, = a, —¢&,. Under uniform priors forg,, writing goz(qq, L, (g) for
the diagonal ofd, andD = diag(yt_l), the full conditional posterior densifgr ®, n(q¢L )

is proportional to

o(®) fo (b, B)1 (0 < p<1)

where f_ is thegvariate normaldensity function,B™ = > D'U™D, b= BY yU—D',
t=2 t=2

q
o(®) =W exp(~3y,Wy;), W= OWd +U and 1(0< p<1) = l_' 1(0< @ <1). We use
=1

Nq(b, B) as a proposal distribution fap (independent proposal)That is, wesample a
candidateg’ from N (b, B), compute theorresponding diagonahatrix @~ and variance
matrix W" such that W”=®'W & +U, and accept new¢ vector with probability

)i{o<¢ <1)B
min %“ 0<¢<1) %

The full conditional posterior fod , m(U|L ), is proportional to

p(U)a(U)u| ™ exp[—%tr ace(U ‘1G)]

where G = Z(yt = y,®) (y - ¥.®) and a(U) = W2 exp(—%ylW'lyl'). Note that G
t=2

follows a Wishart distribution with parameté&ysandn -1, i.e.,

G~W,(U,n-1)

G exp[ ttrace(U ‘1G)]
2 HUPCIT, (3(n-1)

where f(G) = . Under an inverse Wishart prior



U ~W ' (W,,m,)

q

where the density is given by

1%

1m, |U |_%(m0 +k+1)) exp[ - % traCe( l'IJOU _1)]
2™, (3 my)

the conditional distribution of) givenG is U|G ~ V\é‘l(wo +G,m, +n —1), and so the full

p(U)

conditional posterior foU is proportional to

a(U)f

Wishart ™%

(Uw, +G,m, +n-1)

where f

wisars 1S the inverseWishart density function. We use thisverse Wishart

distribution V\é‘l(LIJO+G,rr5 +n—1) as a proposal distribution fdd. The acceptance

probability in this case is given by

a(u)

min%., UD)
E

MO

whereW"” = dW'd +U’ .

Move types (e)-(f) are essentially the same as move types (c)-(d) with substituion of
V, M andn for ®, U, W, andy, respectively.

Move (g), updatingx (equivalently,updatingy, = a, —¢,) and 7, can be implemented
by forward-filtering, backward-sampling algorith(West and Harrison 1997applied to
Yy, — U, Where [, = E(yt). Note that theassumptiorthat p, is known is not atrong

assumption. Model (3) can be rewritten as

Yo — Mo :AtF +5t and At :/\t—lG 0y (7)

OoP O
whereA, =[y, n] is the statevector at time, F = ﬁ 0 G is the(k+p)x(k+p) matrix,
pxp[]

G= Eg g% and p, :[q Ut] with variance matrixQ = E’; SE To sample from the

10



full conditional posteriom()\l,/\z,L AL ) we sequentially simulate the individual vectors

ALA

AL A, as follows:
1) SampleA, from Nq(m,Cn) wherem, and C, are obtainedrom the Kalman filtering
recurrences

M., = MG +6,,K,.,

€1 = Yeur ~ Ho ~MGF,

Key = (Z+FRF) FR..,
C1 = R ~RuFK 4,

R,, =GCG' +Q.

2) For eactt =n-1n-2L ,1, sampleA, from N,(h,H,) whereh =m +(A,, -a.,)B,

H =C -B'R,,B, B =R.GC, a,, =mG, andA,,, is the value just sampled.

Note that the likelihood (6) is invariant with respect to changes in sc@leoP (even

after identifiability conditions C1-C2 are taken into accouenty] the parametess (and so

¢ andU) andP are identifiedexceptfor multiplication by a diagonal matri¢consisting of

scale constants)e., wewould estimateAD™ (D¢, DUD™) and DP unless we use a

very precise informativeprior. As already mentioned, knowing (estimating)up to a
normalizing constant fulfills the objective of receptor modeling. Italao be showthat a

scale constant matri® (although it is unknown and depends tbe initial value of the
parametersyloes notvary from iteration to iteration within aMCMC run. Inthis sense

our MCMC scheme is self-consistent, and so the adjustioerthe scale constamhatrix

does not need to beade at eacktep. Ifthe scale constant (the matf) is everknown

(e.g., the total mass of pollutant particle is known), the adjustment can be directly applied to
the posterior summaries simply by multiplyir{gr dividing) by D. Care must béaken

though in specifyinghe initial valuedor the parameters or hyperparametens the prior

11



distributions to ensur¢hat at least they are approximately on the same scale or in a
consistent fashion (e.g,, hyperparameters faf, and initial value foA or P).

Finally, the posterior probability statementan directly be made on the identifiable
guantities such as the normaliZédr the scaled matrix df (i.e., the correlation matrix of

A) as discussed in Besag et al. (1995).

Remark 1. When a, and &, areassumed to bexdependent, it can easily istown that

under a normal prior distributiotr, ~ Nq(EO,EO), the full conditional distributiorfor o,

n(q|L ) Is a normal distribution through conjugacy, i.e.,
al ~ Nq((ytzglp' +&,27) (PP + 1) (PP + E;l)'l)

where %, = cov(g,) = diag(afl, L, o’

gp). Thiscan be updatedsing a Gibbssampler,

and with moves (a) and (b) Whe'gr]e—gj and af are replaced byyi and af]., respectively,

it completes oneycle of MCMC when the observations are treated as independent. In
Section 4, this approach is also compared to our time series approach when the observations

are actually dependent.

4. SIMULATION
The data are generated by the mg@lwith p=7, n=200, q=3, o =L =0’ =3,
@=@¢=¢=08, ¢ :(10, 12, 14), U :o‘jlkxk where 0'5 =3, 6,=L =6,=17,

V=0’,, where g>=3. The initial values of a and n are given by

o, | a2 .
alk:EO+ mzk, where Zk""N(O,l), k=1,2,3 and I’)lj = QZJ, ]::I.,L ,7,

respectively. The trusource compositiomatrix P, (normalized tosum to 1) isgiven in

Table 2. It follows from (4) and (5) th&¥ =8.3330,,, and M =5.882,,.

12



In implementingMCMC, we take a =3 and 3 =8 for the prior on af, j =1L ,7
(yielding the priormean 4),m, = 7and ¥, =91 ,,, for the prior onU (yielding theprior
mean3[l,,;), and set the scale matrix for the priondequal to9[,,, and the degrees of
freedom equal to 11 (yielding the priorean30,,,), eachensuring a proper buélatively
diffuse prior. We use aoninformativeprior distribution forthe nonzero elements &f
throughout simulation.

The posterior summaries fére model parameter®, =, ®, U, ©, andV, based on
2,000 valuessubsampled from 20,000 iterations following a 20,8Q0n-in period are
reported in Table8-5. Forthe source compositiomnatrix P and thevariance matrixU,
those summaries are obtained in terms of normakzézlim to 1) andhe scaledvariance
matrix R, (the correlation matrix) since they are identified only up to a constant multiplier.

{Tables 3-5 about here}

We also report the posterior summaries obtained from the approaicid¢pendent
observations (see Remark 1) in Table 6. Since this approach does not deachmpose
variances intoz andM, we treat the estimates of tleeror variances as the estimates for
s2= diag(aﬁl, L, Uﬁp) =3 +M. Theprior meanand thecovariance matrix ofa, are
set to beé, = (10 12 14) and =, =100 0,,,, respectivelyand the hyperparameters of
thepriors ong} (j =1L ,7) are taken asxr =4 and 8, =27, j =1L ,7, (yielding the
prior mean9). The resultsare based on a posterior sample of s&600 obtained by
subsampling every 10th from 20,000 values following a 20,000 burn-in period.

{Table 6 about here}
By comparing Table 3and Table 6, it can benoted that theapproach accounting for
dependence in the daggelds much better result in terms pbsterior inferences than the
approach not accounting for dependence. In Table 3 only 2 of the 15 (nonzero) elements of

P, lie outside the 95% credible intervals (all are within the 99% credible intéhaalgh we

13



do not report them in the table) whereaJ able 6 ten elements d®, fall ousidethe 95%
credible intervals (9 of them aneot capturedeven bythe 99% credible intervals).
Simultaneous credibleegions forthe whole matrixR, canalso be constructed using the
method (based on order statistissggested in Besag @t (1995). Table 3includes the
80% credibleregions and theseontainall elements ofR, (The sameholds forthe 70%
credible regions). In Table 6, nine element®pére still outside th&80% credibleregions
(7 of them arenot capturedeven bythe 90% credible regions). This is anatural
consequence of not taking into account the correlation ientoesinto the calculation of
standard errors (posterior standatdviations here). Irfact, the posterior standard
deviations in Table 6 are much smaller than telkeguld havebeen. Figure 4&hows the

side-by-side barplots dhe truesource compositionsF) and theposteriormean of P
from two different approachestime series approach Ii) and approach ignoring

dependencef{ndep), with R? values betweer?, and estimatesAgain it can beseenthat FA{S

gives a much better approximation to the true source composition rRathian If?ndep does

5. APPLICATION TO ATLANTA DATA
The 1990 Atlanta datadescribed in Section has two types of temporal dependence
structure, correlation i and correlation ine (see figures 2 and 3). We us®del (3)
with q = 3 to analyzethis dataset consisting of 53easurements on chemicalspecies.
For identifiability conditions,zeros are preassigned folCyHx+2MHXx (cyclohexane+2-
methylhexane) and,3-DMP (2,3-dimethylpentane) asource 1(Roadway), acetylene and
propene of source 2 (Gasoline), acetylene and 2,2,4-TMP (2,2,4-trimethylpentane) of source

3 (Headspace) since the relative concentrations of those species soaeare observed

to be very lowfrom Table 1. AnOLS estimate Al s = YP!q.yes(Pressres Pressres) . Where

measured © measured

Pesres 1S the measuredource compositiongwith zeros preassigned arghch row

measul

14



normalized to sum to 100) was used as an initial valua.forhe mearsource contribution
was set tof, =(.37 .14 .03), which is the arithmetic mean of, .. Note that the
specification of thevalue of &, is somewhat arbitrary due to the sciearianceproperty
mentioned in Section 3. We only need to ensurefhand the initial value of are on the
same scale. Since the measwedrce compositionsH, ) can be regarded asior

information, weuse as a prior distribution fd? a truncated singular normal distribution

with the mearP, ..., @nd the varianc800 for the nonzero elements Bf which ensures a
fairly vague prior (the elements &, havethe values betweendnd 100). The scale
matrix for aninverseWishart distribution fold was set toW, =16 [diag(l, 0.7, 0.08)

with  the degrees of freedom m,=20, vyielding the prior mean of

Y, /16:diag(L 0.7, 0.08). This choice of the hyperparameter values was made to
ensure that the prior distribution is moderatafprmative but flexible enough tocover the
range of possible values Of For the hyperparameters of the priorsa)fn j =1L ,9, we
takea =5 and 3, = 48 (the prior mean 12), arfdr the hyperparameters pfior onV we

set the scale matrix equal &7 (1, and the degrees of freedom equal to 13ttiab theprior
mean is 90 ), ensuring a proper butlatively diffuse prior. Foreach parameter, a

posterior sample of size 1,000 was obtained by subsangderg10th from 10,000values
following a 10,000 burn-in period. Tables 7-9 contain posterior summaries fornsodes
parameters.

{Tables 7 and 8 about here}

The AR coefficientsp, are estimated to quel =.78, (21Z =.68, and @ = .48, respectively,

suggestinghat there issubstantial autocorrelation in roadway contribution and moderate

autocorrelation in gasoline contribution and headspace contribution.
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The side-by-side barplots athe measuredsource compositions (ifable 1) and
estimatedcompositionsare given inFigure 5 with R? values betweermeasured and
estimated compositions. In general, there seems to be good agreement between them.

{Figure 5 about here}

As mentioned in Section 1, the measu@mpositionsare not the truesource
compositions in the sense of Section 4 for the data though they are expected to be generally
close to the trueompositions. Fothe Headspace composition profifr which the
measured and the estimated compositions show the best agreement), all but one (2MPentan)
of the measuredalues fall in the99% credible intervals. Th80% simultaneousredible
regions (constructed hiype method oBesag etl. 1995)arealso reported imable 7 and

these capture all of the measured Headspace composition.

6. CONCLUSIONS AND DISCUSSION
In this article we develop &me series extension afultivariatereceptor modeling in order
to capture in the estimatigorocessextra variability due to temporal dependence in air
pollution data. Recent developments MICMC methodology make estimation of
parameters of complex models possible. By modeling the dependence structure, we can get
more reliable estimates for the source compositions and their uncertainties, which are of our
primary interest. As a by-product wean assessthe amount of variability and

autocorrelation in theource contributions anithe errors. It alsomakes it possible to
forecast thdevel of pollutants(y,,,) and the amount of pollutiofw,,, ), which has been

regarded as one of the model limitations in previous receptor modeling approaches (see the
EPA discussion at http://www.epa.gov/oar/oagps/pams/analysis/receptor/rectxtsac.html).

Throughout the article we assume that the errors are normally distributed.
Environmental data often contain many outliers, and it is sometimes more appropriate to use
the lognormal distribution to describe the data. Theal transformation techniquioes

not help especially in the context of receptor modeling. lodgytransformingthe data the
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chemical mass balance equation of the model no longer applies directly, and we des#d to
with model identifiability using different conditions. Alternatively, we may consider a
multivariate T-distribution or a mixture of normal distributions to describe error
distribution. In the application tétlanta datathe histogram of theesiduals foreach
species looks in general bell shaped, but shows a few outliers for somespédiess. This
might suggest a use of heavy-tailed distribution for errors though it was not pursued further
in this article. Non-normal dynamic modeling is still astiveresearch aregsee West and
Harrison 1997), and wexpect that multivariateeceptor modeling can be extended further
using non-normal dynamic models.

Another assumption we have made is that the enarsmean 0. To be morerealistic,
it would be preferable to generaliti@s to includethe unknownnon-zeromean errors,
corresponding to unknown sources. Tlagain involves the development of new
identifiability conditions.

Finally, air pollution data is often obtained from multiple receptors. How to incorporate
spatial variability aswvell astemporal variability inmodeling when multiplespecies are
measured is a challenging problerzven inthe case of no temporal dependerites

problem remains open.
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TABLES

Table 1. Measured source composition profiles

Source acetylene  propene nButane 2MPentan 3MPentan benzene  CyHXx 2,3-DMP 2,2,4-TMP
+2MHX
roadway 0.181 0.094 0.197 0.116 0.069 0.132 0.049 0.043 0.120
gasoline 0 0.002 0.197 0.221 0.138 0.108 0.116 0.067 0.152
headspace O 0.007 0.685 0.144 0.075 0.034 0.021 0.014 0.021
Note: Each source profile is normalized sum to one
Table 2. True source composition profiléB8)
1 2 3 4 5 6 7

Source 1 0 0.248 0 0.102 0.306 0.128 0.216

Source 2 0.242 0 0.266 0 0.009 0.044 0.440

Source 3 0.311 0.250 0.039 0.302 0 0.099 0

Note: Each source profile is normalized sum to one
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Table 3. Summaries of the posterior distributiom f& when the data is generated by model (3)

and the approach accounting for dependence is used

Param. jl1 2 3 4 5 6 7
P, Mean | O 0.234 0 0.087 0.339* 0.124 0.216
SD| O 0.018 0 0.023 0.016 0.013 0.033
LSCR| O 0.191 0 0.025 0.299 0.088 0.137
LCI | O 0.205 0 0.049 0.313 0.101 0.160
ucl | o 0.262 0 0.124 0.306 0.147 0.269
USCR| 0O 0.279 0 0.145 0.378 0.158 0.293
P, Mean | 0.204* 0 0.253 0 0.044 0.043 0.456
SD | 0.026 0 0.017 0 0.029 0.013 0.016
LSCR | 0.137 0 0.214 0 0.001 0.009 0.416
LCI | 0.157 0 0.225 0 0.004 0.021 0.430
UCI | 0.241 0 0.282 0 0.100 0.065 0.484
USCR| 0.256 0 0.295 0 0.127 0.075 0.502
P, Mean | 0.298 0.264 0.029 0.304 0 0.106 0
SD | 0.009 0.010 0.011 0.009 0 0.008 0
LSCR | 0.278 0.237 0.003 0.284 0 0.085 0
LCl | 0.284 0.247 0.011 0.290 0 0.093 0
UCl | 0.313 0.279 0.046 0.319 0 0.118 0
USCR| 0.320 0.288 0.056 0.328 0 0.126 0

Note: 1. SD stands for the posterior standard deviation; 2. LCl and UCI stand for the lowerdiogpearimit of the 95%

credible interval; 3. Asterisk (*) indicates that the true parameter value is not captured by the 95% credible Biterval
Asterisk(*) indicates that the true parameter value is not captured by the 95% credible interval, 4. LSCR and USCR stand
for the lower limit and upper limit of the 80% simultaneous credible region.



Table 4. Posterior means and standard deviatidndoard RJ (correlation matrix corresponding t9
when the data is generated by model (3) and the approach accounting for dependence is used

@ Correlations inR
k=1 0.826 (0.044) 1
k=2 0.834 (0.042) 0.010 (0.133) 1
k=3 0.817 (0.040) 0.245 (0.108)* -0.141 (0.102) 1
Note: 1. Posterio standad deviatian is given in the parenthesis; 2. Asterisk (*) indicates

that the true parameter value is not captured by the 95% credible interval.

Table 5. Posterior means and standard deviatidn®q V , ard 2 when the data is generated by model (3)

and the approach accounting for dependence is used

0.

J

Diagonal elementsfoV

2
0;

1
~NOo ok~ wWw N

0.379 (0.194)*
0.628 (0.178)
0.836 (0.100)
0.801 (0.102)
0.539 (0.207)
0.609 (0.121)
0.650 (0.191)

2.463 (1.295)
2.777 (1.304)
2.030 (0.924)
2.470 (1.127)
2.634 (1.431)
2.485 (0.950)
2.496 (1.457)

3.823 (1.238)
2.908 (1.002)
4.368 (1.010)
4.072 (1.077)
4.252 (1.509)
3.279 (0.921)
2.547 (1.029)

Note: 1. Posterio standad deviation is given in the parenthesis; 2. Asterisk (*) indicates that the true
parameter value is not captured by the 95% credible interval.
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Table 6. Summaries of the posterior distribution for the paramettmd %, when the data is generated by model (3)

but the approach ignoring dependence (given in Remark 1) is used
Param. jl1 2 3 4 5 6 7
P, Mean| O 0.214* 0 0.084 0.339* 0.125 0.239
SD|0 0.014 0 0.014 0.011 0.008 0.022
LSCR| O 0.180 0 0.050 0.314 0.105 0.189
LCI | O 0.190 0 0.060 0.322 0.112 0.205
Ucl | o0 0.236 0 0.106 0.357 0.137 0.277
USCR| 0 0.246 0 0.115 0.365 0.144 0.297
P, Mean | 0.123* 0 0.201* 0 0.154* 0.063* 0.459*
SD | 0.012 0 0.008 0 0.011 0.007 0.009
LSCR | 0.096 0 0.182 0 0.125 0.045 0.439
LCl | 0.104 0 0.187 0 0.136 0.051 0.445
UCI | 0.142 0 0.214 0 0.172 0.074 0.474
USCR] 0.154 0 0.221 0 0.179 0.080 0.482
P, Mean | 0.292* 0.282* 0.036 0.286* 0 0.103 0
SD | 0.005 0.005 0.007 0.004 0 0.005 0
LSCR| 0.281 0.269 0.021 0.276 0 0.092 0
LCl | 0.284 0.274 0.026 0.278 0 0.096 0
UClI | 0.300 0.291 0.047 0.293 0 0.111 0
USCR]| 0.304 0.296 0.054 0.297 0 0.115 0
o’ =8.882 Mean | 5.565* 8.648 10.415 11.375 8.275 7.873 7.255
) SD | 1.453 1.853 1.403 1.621 2.246 0.840 2.768

Note: 1. SD stands for the posterior standard deviation; 2. LCI and UCI stand for the lower limit and upper limit of the 95%
credibk intervat 3. Asterisk (*) indicates that the true parameter value is not captured by the 95% credible inten&CR4. L
and USCR stand for the lower limit and upper limit of the 80% simultaneous credible region.



Table 7. Summaries of the posterior distributiom f8 for the Atlanta data

Param. Species | acetylene| propene nButane | 2MPentan| 3MPentan| benzene CyHx 2,3-DMP | 2,2,4-TMP
+2Mhx 9
j 1 2 3 4 5 6 7 8
roadway Mean | 0.275 0.115 0.279 0.086 0.049 0.126 0 0 0.069
SD | 0.008 0.004 0.013 0.004 0.003 0.004 0 0 0.005
LSCR | 0.257 0.107 0.247 0.076 0.042 0.117 0 0 0.057
LCI | 0.257 0.107 0.248 0.076 0.043 0.118 0 0 0.057
UCI | 0.295 0.124 0.305 0.095 0.056 0.135 0 0 0.081
USCR| 0.297 0.125 0.307 0.096 0.056 0.136 0 0 0.081
gasoline Mean| O 0 0.172 0.191 0.113 0.088 0.123 0.098 0.217
SD|O0 0 0.019 0.005 0.003 0.004 0.005 0.004 0.008
LSCR| O 0 0.127 0.179 0.104 0.077 0.112 0.089 0.200
LCI | O 0 0.128 0.180 0.105 0.078 0.112 0.090 0.201
Ucl |0 0 0.214 0.202 0.121 0.097 0.134 0.107 0.236
USCR| 0O 0 0.217 0.204 0.122 0.099 0.135 0.107 0.238
headspace Mean| O 0.009 0.693 0.116 0.063 0.052 0.021 0 0.046
SD| O 0.007 0.035 0.011 0.007 0.010 0.009 0 0.017
LSCR| O 0.000 0.606 0.083 0.042 0.028 0.001 0 0.007
LCI | O 0.001 0.609 0.087 0.045 0.029 0.002 0 0.008
Uucl |0 0.029 0.773 0.142 0.080 0.074 0.044 0 0.088
USCR| O 0.034 0.776 0.145 0.081 0.076 0.046 0 0.093

Note: 1. SD stands for the posterior standard deviation; 2. LCl and UCI stand for lower limit and upper limit of the @8¢4dmiedal; 3. LS® and

USCR stand for lower limit and upper limit of the 80% simultaneous credible region.
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Table 8.Posterior means and standard deviatidndoard RJ (correlation matrix corresponding tf for the Atlanta data
Q@ Correlations inR;

1 0.775 (0.036) 1
2 0.677 (0.062) 0.207 (0.045) 1
3 0.476 (0.114)  -0.069 (0.051)  -0.049 (0.047) 1

Note: Posterior standard deviation is given in the parenthesis.

k
k
K

Table 9. Posterior means and standard deviatidn®g diagonal elementsd/, ard 2 for the Atlanta data

Species BJ. Diagonal elementsfoV 0']_2

Acetylene

0.512 (0.110)

1.039 (0.243)

1.148 (0.127)

Propene 0.550 (0.066) 0.405 (0.058) 0.506 (0.042)
nButane 0.400 (0.201) 2.929 (1.339) 3.683 (0.751)
2Mpentan 0.221 (0.086) 0.520 (0.102) 0.534 (0.045)
3Mpentan 0.162 (0.073) 0.280 (0.040) 0.349 (0.026)
Benzene 0.360 (0.092) 0.379 (0.055) 0.501 (0.040)
CyHx+2Mhx 0.237 (0.088) 0.341 (0.048) 0.448 (0.036)
2,3-DMP 0.269 (0.086) 0.261 (0.033) 0.360 (0.027)
2,2,4-TMP 0.643 (0.062) 0.681 (0.138) 0.758 (0.070)

Note: Posterior standard deviation is given in the parenthesis.
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Figure Titles and Legends
Figure 1. Autocorrelation function (ACF) plots 6 for Atlanta data

Figure 2. Autocorrelation function (ACF) plots of the residuals for Atlanta data:

Y- A:,LSP whereP is the measured source compositions in Table 1

Figure 3. Autocorrelation function (ACF) plots of source contributioag,§so for Atlanta

data

Figure 4. Side-by-side barplots of the true source composifl@hsand the estimated
compositions obtained from two different approaches, time series approach and
approach ignoring dependence

Figure 5. Side-by-side barplots of the measured source compositions and the estimated

compositions for the Atlanta data
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Series : Roadway contribution
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