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Abstract and Key Words

Multivariate receptor modeling aims to estimate pollution source profiles and the

amounts of pollution based on a series of ambient concentrations of multiple chemical

species over time.  Air pollution data often show temporal dependence due to

meteorology and/or background sources.  Previous approaches to receptor modeling do

not incorporate this dependence.  We model dependence in the data using a time series

approach so that we can incorporate extra sources of variability in parameter estimation

and uncertainty estimation.  We estimate parameters using the Markov chain Monte Carlo

method, which makes simultaneous estimation of parameters and uncertainties possible.

The methods are applied to simulated data and 1990 Atlanta air pollution data.  The

results show promise towards the goal of accounting for the dependence in the data.

KEY WORDS: Dynamic models; Kalman filter; Gibbs sampler; Metropolis-Hastings

algorithm; Compositions; Air pollution.
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1. INTRODUCTION

The goal of receptor modeling is to identify the pollution sources and assess the amounts of

pollution based on observations collected at a particular site, and from that information to

develop an effective air quality management plan.  The basic mathematical model can be

written as follows based on chemical mass balance assumptions (see, e.g., Hopke, 1985,

1991, 1997; Gleser 1997):

  
y P t nt tk

k

q

k t= + =
=

∑α ε
1

1, , ,L  (1)

where 
  
y y y yt t t tp= ( )1 2, , ,L  is the tth observation, q is the number of sources,

  
P p p pk k k kp= ( )1 2, , ,L  is the kth source composition (consisting of the fractional amount of

each species in the emissions from the kth source), α tk is the contribution from the kth

source on the tth day,  and 
  
ε ε ε εt t t tp= ( )1 2, , ,L  is the measurement error associated with the

tth observation.  In matrix terms, the model (1) can be written as

Y AP E= +        (2)

where A is n×q source contribution matrix, P is q×p source composition matrix, and E is

n×p error matrix.  The model (1) may be viewed as a factor analysis model in the sense that

Y is the only observable quantity while q, P, and A are all unknown quantities that need to

be estimated (or predicted).  Early approaches to multivariate receptor modeling include

exploratory factor analysis, principal component analysis, target transformation factor

analysis, and others (see, e.g., Henry 1991).  It is well known that, without imposing

additional constraints on the parameters, the factor analysis model is not identifiable even

with known number of sources, q.  There have been several attempts to avoid this problem

by imposing more restrictive constraints on either the P or the A matrix (see Henry and Kim

1990; Henry, Lewis, and Collins 1994; Yang 1994; Park 1997).  As a matter of fact, there

could be many different sets of identifiability conditions, each making sense in its own
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context.  Park, Spiegelman, and Henry (1999) discuss identifiability conditions that are

meaningful in receptor models.  

The assumption of independence among the observations yt  has been made either

implicitly or explicitly in all previous approaches to multivariate receptor modeling, see, for

instance, Hopke (1991), Henry (1991), Yang (1994), Gleser (1997), Park (1997), and Park

et al. (1999).  Air pollution data, however, are usually obtained as a series of measurements

on concentrations of aerosols over time, and meteorology often induces some degree of

dependence in the data.  Observations closer in time tend to be more correlated than

observations farther apart in time (e.g., Figure 1).  

{Insert Figure 1}

In some cases the assumption of independence may not be grossly wrong because

environmental data usually contains many missing values or erroneous observations, and

after initial screening of the data, time separation between any pair of measurements may

become large enough so that serial correlation can be ignored in the screened data.  This, of

course, is not always the case.  The research in this paper was motivated by a 1990 Atlanta

air pollution composition data set consisting of hourly measurements of volatile

hydrocarbon (VHC) species.  This data set was used in Henry et al. (1994) to derive

vehicle-related hydrocarbon source compositions from the ambient data.  In that study, three

types of measured source profiles specific to Atlanta in the summertime of 1990 were also

available: roadway emissions, whole gasoline, and gasoline headspace (see Henry et al.

1994).  The compositions of those three sources for nine selected vehicle-related species are

provided in Table 1.  

{Insert Table 1}

It is worthwhile to mention that those direct source measurements were obtained, under

rather restricted conditions, independently of the data (e.g., roadway compositions were

obtained as highway tunnel measurements during morning rush hour).  Thus it is not

unlikely that the measured source compositions could be different from the true source
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compositions P0 for the data due to pollutant transport (between source and receptor) and

reactions (and also to measurement errors, variations in source compositions, and the

contribution of minor sources).  Nonetheless, the measured source compositions may serve

as a guideline for the true source compositions.

  Assuming that the measured compositions in Table 1 are the true source

compositions, i.e., P is known in model (2), A can be estimated easily, for instance, as an

ordinary least squares (OLS) solution, Â YP PPOLS = ′ ′( )−1 , if we ignore dependence

structure in the data (and vice versa, i.e., P̂ A A A YOLS = ′( ) ′−1  if A is known or estimated first.

This was done in almost all previous works without checking the independence

assumption).  Figures 1 and 2 show the autocorrelation function (ACF) plot of the raw data

Y and residuals calculated as Y A POLS− ˆ  for each of nine species, respectively.  

{Figure 2 about here}

Figure 3 shows ACF plots of OLS estimates of source contributions, ÂOLS .  

{Figure 3 about here}

All three plots reveal significant serial correlation in the data.  It is well known in time series

literature that in the presence of the correlated residuals, the standard error (not adjusting for

the correlation in the residuals) of OLS estimate of the trend (which may be regarded as P

in our model) in the regression is often grossly wrong.  Although the correct standard error

of OLS estimate may be obtained by adjusting for the correlation, it is still not the best

estimate since the generalized least squares estimate, taking the correlation into account in

the estimation procedure, has smaller standard error.  The goal of this article is to extend

receptor models to account for temporal dependence in the data so that we can incorporate

that source of variability in estimation of parameters and uncertainties.  In Section 2, we

introduce models accounting for time dependence in the observations.  Estimation of

parameters is discussed in Section 3.  Sections 4 and 5 contain examples from simulated
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data and the Atlanta air pollution data, respectively.  Finally, concluding remarks are made in

Section 6.

2. MODEL

Assume that the yt in (1) are dependent.  We first need to decide how to model this

dependence.  It seems reasonable to assume that the source contribution on time t depends

on the past source contributions (as Figure 3 indicates).  Also, it is often the case that ε

contains not only pure measurement error but also all the remaining sources of variability

that is not explained by the systematic part of our model such as background sources

(unmodeled minor sources) and meteorology, etc.  Then it is likely that the εt  are also

correlated in time due to the effect of meteorology and unmodeled sources (see Figure 2).

We may decompose εt  into two terms ε η δt t t= +  where ηt  represents variability

correlated in time due to meteorology or background sources, and δt  represents residual,

unpredictable variability due to pure measurement error, independent over time.  

We consider the model

y Pt t t t= + +α η δ

where 
  
α α α αt t t tq= ( )1 2, , ,L  is a stationary vector AR(1) process centered at

  
ξ ξ ξ ξ= ( )1 2, , , ,L q   

  
η η η ηt t t tp= ( )1 2, , ,L  is a stationary vector AR(1) process centered at 0,

and 
  
δ δ δ δt t t tp pN= ( ) ( )1 2, , , ~ ,L 0 Σ  where 

  
Σ = ( )diag pσ σ σ1

2
2
2 2, , ,L . We use ‘Nk ⋅ ⋅( ), ’ to

denote k-dimensional multivariate normal distribution throughout the paper.  This model

may be written in Dynamic Linear Model (DLM) form (West and Harrison, 1997) as

Observation equation:  y P Nt t t t t p= + + ( )α η δ δ, ~ ,0 Σ       

Evolution equation: α ξ α ξt t t t qu u N U= + −( ) +−1 Φ , ~ ( , )0

η η υ υt t t t pN V= + ( )−1Θ , ~ ,0        (3)
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where 
  
u u u ut t t tq= ( )1 2, , ,L , 

  
Φ = ( )diag qφ φ φ1 2, , ,L , φk  is an AR coefficient for the kth

source contribution, 
  
υ υ υ υt t t tp= ( )1 2, , ,L , 

  
Θ = ( )diag pθ θ θ1 2, , ,L , and θ j  is an AR

coefficient for jth element of ηt .  Note that marginal distribution for each αt is

α ξt qN W W W U~ , ,( ) = +Φ Φ         (4)

and for eachηt  is

ηt pN M M M V~ , ,0( ) = +Θ Θ .         (5)  

3. ESTIMATION

As the model gets complicated by inclusion of more parameters, Markov chain Monte Carlo

(MCMC) simulation (Tierney 1994; Chib and Greenberg 1995; Besag, Green, Higdon, and

Mengersen 1995; Gilks, Richardson, and Spiegelhalter 1996) seems to be an attractive

approach for parameter estimation.  Note also that the parameters of the models (1) or (3)

are all unknown, and the problem of parameter estimation is essentially nonlinear, but the

Markov chain Monte Carlo method makes the problem linear by use of conditional

distributions.  We introduce a Bayesian framework to employ an MCMC method

(constraints and identifiability conditions can be used as a part of the prior distribution).  As

mentioned in Section 1, the receptor model can be viewed as a special type of a factor

analysis model (with the constraints that the elements of factor loading matrix should be all

nonnegative).  For identifiability of the model we borrow conditions from the confirmatory

factor analysis model (Anderson 1984).   

C1.  There are at least q −1 zero elements in each row of P,

C2. The rank of P(k) is q −1, where P(k) is the matrix composed of the columns

containing the assigned 0’s in the kth row with those assigned 0’s deleted.

Under the above conditions the source profiles, P, are identified up to normalization, which

is enough for the purpose of receptor model.  (As long as the relative amount of each
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species in a source is determined, a source can be identified.)  The conditions C1 and C2

(and nonnegativity constraints on the elements of P) are absorbed into prior distribution for

P.  

Under the normal error assumption on δ , the likelihood   f Y L( ) is written as

  
f Y tr Y AP Y AP

n

L( ) = − − −( )′ − −( )


− −2 2 1
2

1π η ηΣ Σexp              (6)

where η  is n×p matrix of which rows are ηt ,   t n= 1, ,L .  We use ‘  L ’ to denote

conditioning on all other variables.  For a prior distribution p( )⋅ , we assume that

  

p P U V

p P p p p U p U p p V p V

n n

n n

, , , , , , , , , , ,

, , , , , , , .

Σ Φ Θ

Σ Φ Φ Θ Θ

α α η η

α α ξ η η
1 1

1 0 1

L L

L L

( )
= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

For the sake of brevity, ξ  is assumed known to be ξ ξ= 0 .  Note that (3) implies

  
p U W W U tr Un t t t t

t

n
n n

α α ξ π γ γ γ γ γ γ1
1
2 1

1
1

1
2

1
1 1

2

2 2
1
2

1
2, , , , exp expL Φ Φ Φ( ) = ( ) − ′( ) − −( )′ −( )















− − − − −
− −

=

− ∑

where γ α ξt t= − 0 and

  
p M M V tr Vn t t t t

t

n
n n

η η η π η η η η η η1
1
2 1

1
1

1
2

1
1 1

2

2 2
1
2

1
2, , , exp expL Θ Θ Θ( ) = ( ) − ′( ) − −( )′ −( )















− − − − −
− −

=

− ∑ .

Based on a series of observations   y yn1, ,L , we are interested in sampling the full

posterior 
  
π α α η ηP U V Yn p, , , , , , , , , , ,Σ Φ Θ1 1L L( ) .  We use “block-at-a-time” Metropolis-

Hastings algorithm (Chib and Greenberg, 1995).  We shall make use of seven move types

in implementing MCMC:

(a)  updating P  

(b) updating Σ  

(c) updating Φ  

(d) updating U  

(e) updating Θ  

(f) updating V

(g) updating α  and η .
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Letting P̃ A A A Y= ′( ) ′ −( )−1 η  and S Y AP Y AP= − −( )′ − −( )η η˜ ˜ , and using the

orthogonality properties associated with P̃  (see Press 1982), (6) can be written as

2 2 1
2

1 1
2

1πΣ Σ Σ− − −−{ } − −( )′ ′( ) −( )







n

tr S tr P P A A P Pexp exp ˜ ˜

∝ − −( )′ ⊗ ′( ) −( )







−exp ˜ ˜1
2

1vecP vecP A A vecP vecPΣ .

Let the prior distribution for P be

  
p P p vecP N m C P k q j pkj( ) ( ) ~ , , , , , , ,= ( ) ≥ = =( )0 0 0 1 1I L L

where m0  is a pq-dimensional vector and C0  is a pq pq× -dimensional diagonal matrix.

Enforcing the constraints C1-C2 is equivalent to using a degenerate point prior for some of

the elements of P.  We set q q× −( )1  elements of m0  and the corresponding elements of

C0  to be zero, which makes the prior distribution for P a truncated singular normal

distribution (though still proper).  Then the resulting full conditional posterior distribution

  π PL( ) is again a truncated singular normal distribution, which can be written as

  
vecP N m C P k q j pq kjL L L~ , , , , , , ,( ) ≥ = =( )I 0 1 1

where m C A vec Y C m= ⊗ ′( ) −( ) +{ }− −Σ 1
0 0η , C A A C= ⊗ ′ +( )− − −

Σ 1
0

1
 where C0

−  is a

generalized inverse of C0 .  Since both of Σ  and C0  are diagonal, for the columns of P  with

no zero elements, we have

  
P N m C P k qj q j j kjL L~ , , , ,( ) ≥ =( )I 0 1

where m C A y C mj j j j j j j= ′ −( ) +{ }− −σ η2
0

1
0 , C A A Cj j j= ′ +( )− − −

σ 2
0

1 1
, m j0  is a q-dimensional

prior mean vector of Pj , C j0  is a corresponding submatrix of C0 , y
j
 is the jth column of Y,

and η
j
 is the jth column of η .  For the columns of P containing zero elements, let q∗  be the
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number of nonzero elements for that column and Pj
∗  be a column vector consisting of those

q∗  elements.  Then

  
P N m C P k qj q j j kj

∗ ∗ ∗ ∗
∗ ( ) ≥ =( )L L~ , , , ,I 0 1

where m C A A y C mj j j j j j j
∗ ∗ ′∗ − ′∗ ∗− ∗= −( ) +{ }σ η2

0
1

0 , C A A Cj j j
∗ − ′∗ ∗ ∗− −

= +( )σ 2
0

1 1
, m j0

∗  is a q∗ -

dimensional prior mean vector of nonzero elements of Pj , C j0
∗  is a corresponding submatrix

of C0 , and A∗  consists of the columns of A corresponding to nonzero elements of Pj .

If there is no prior information about the source compositions but the zero elements, we

may use a noninformative prior p P P P j Jkj kj
j

p

k

q

( ) ,= ≥( ) = ∈( )









==
∏∏ I I0 0 0

11

 where J0  is the

index set for which Pkj = 0, which takes into account the conditions C1-C2 and

nonnegativity only.  Under this prior, we have, for the columns of P  with no zero element,

  
P N m C P k qj q j j kjL L~ , , , ,( ) ≥ =( )I 0 1

where m A A A yj j j
= ′( ) ′ −( )−1 η , C A Aj j= ′( )−σ 2 1 .  For the columns of P containing zero

elements, we get

  
P N m C P k qj q j j kj

∗ ∗ ∗ ∗
∗ ( ) ≥ =( )L L~ , , , ,I 0 1

where m A A A yj j j

∗ ′∗ ∗ − ′∗= ( ) −( )1
η , C A Aj j

∗ ′∗ ∗ −
= ( )σ 2 1

.

Hence move (a) can be performed using either a Gibbs sampler or a simple Metropolis-

Hastings algorithm.

Under a usual inverse gamma prior distribution for σ j
2 , σ α βj

− ( )2 ~ ,Γ ,   j p= 1, ,L ,

with the parameterization in which the mean and variance are α β  and α β 2 , respectively,

the full conditional for σ j
2{ }  are

  
σ α βj jn d− + +( )2 1

2
1
2L ~ ,Γ



9

where d y AP y APj j j j j j j= − −( )′ − −( )η η .  This can be easily sampled using a Gibbs

sampler.  

Moves (c) - (g) require Metropolis-Hastings steps. We use the same strategy as those

given in Chib and Greenberg (1995) and West and Harrison (1997) to update Φ and U,

respectively.  Let γ α ξt t= − 0.  Under uniform priors for φk , writing 
  
φ φ φ= ( )1, ,L q  for

the diagonal of Φ, and D diag t= ( )−γ 1 , the full conditional posterior density for Φ,   π φL( ),

is proportional to

c f b B InorΦ( ) ( ) < <( )φ φ, 0 1

where fnor  is the q-variate normal density function, B D U D
t

n
− −

=

= ′∑1 1

2

, b B U Dt
t

n

= ′−

=
∑γ 1

2

,

c W WΦ( ) = − ′( )− −1
2 1

2 1
1

1exp γ γ , W W U= +Φ Φ  and I I k
k

q

0 1 0 1
1

< <( ) = < <( )
=

∏φ φ . We use

N b Bq ,( ) as a proposal distribution for φ (independent proposal).  That is, we sample a

candidate φi
∗  from N b Bq ,( ), compute the corresponding diagonal matrix Φ∗  and variance

matrix W ∗  such that W W U∗ ∗ ∗ ∗= +Φ Φ , and accept new φ vector with probability

min ,1
0 1

0 1

c I

c I

Φ
Φ

∗ ∗( ) < <( )
( ) < <( )













φ
φ

.

The full conditional posterior for U ,   π U L( ) , is proportional to

p U a U U trace U G
n( ) ( ) − ( )[ ]− −−1
2 1

2
1exp

where G t t t t
t

n

= −( )′ −( )− −
=
∑ γ γ γ γ1 1

2

Φ Φ  and a U W W( ) = − ′( )− −1
2 1

2 1
1

1exp γ γ .  Note that G

follows a Wishart distribution with parameters U and n −1, i.e.,  

G W U nq~ , −( )1

where f G
G trace U G

U n

n k

k n n
k

( ) =
− ( )[ ]

−( )

− − −

− −

1
2

1
2

1
2

2 1
2

1

1 1 1
22 1

( )

( ) ( )

exp

( )Γ
.  Under an inverse Wishart prior
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U W mq~ ,− ( )1
0 0Ψ

where the density is given by

p U
U trace U

m

m m k

m k
k

( ) =
− ( )[ ]

( )

− + +( ) −Ψ Ψ

Γ
0

1 1
2 0

1

1
2 0

1
2 0

1
2 0

1
2 02

) exp
,

the conditional distribution of U given G is U G W G m nq~ ,− + + −( )1
0 0 1Ψ , and so the full

conditional posterior for U is proportional to

a U f U G m n
Wishart

( ) + + −( )−1 0 0 1Ψ ,

where f
Wishart −1  is the inverse Wishart density function.  We use this inverse Wishart

distribution W G m nq
− + + −( )1

0 0 1Ψ ,  as a proposal distribution for U.  The acceptance

probability in this case is given by

min ,1
a U

a U

∗( )
( )













where W W U∗ ∗ ∗= +Φ Φ .

Move types (e)-(f) are essentially the same as move types (c)-(d) with substitution of Θ ,

V , Μ  and η  for Φ, U , W , and γ , respectively.   

Move (g), updating α  (equivalently, updating γ α ξt t= − 0) and η , can be implemented

by forward-filtering, backward-sampling algorithm (West and Harrison 1997) applied to

yt − µ0  where  µ0 = ( )E yt .  Note that the assumption that µ0  is known is not a strong

assumption.  Model (3) can be rewritten as

yt t t− = +µ λ δ0 F     and    λ λ ρt t t= +−1G ,            (7)

where λ γ ηt t t= [ ]  is the state vector at time t, F
P

I
=











×p p

, G is the (k+p)×(k+p) matrix,

G
0

0
= 





Φ
Θ

, and ρ υt t tu= [ ]  with variance matrix Ω = 





U 0

0 V
.  To sample from the
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full conditional posterior 
  
π λ λ λ1 2, , ,L Ln( ), we sequentially simulate the individual vectors

  λ λ λn n, , ,−1 1L  as follows:

1) Sample λn from N m Cq n n,( ) where mn  and Cn  are obtained from the Kalman filtering

recurrences

m m e Kt t t t+ + += +1 1 1G ,

e y mt t t+ += − −1 1 0µ GF,

K R Rt
t

t
t

t+ +
−

+= +( )1 1

1

1Σ F F F ,  

C R R Kt t t t+ + + += −1 1 1 1F ,

R Ct t
t

+ = +1 G G Ω .

2) For each   t n n= − −1 2 1, , ,L , sample λ t  from N h Hq t t,( )  where h m a Bt t t t t= + −( )+ +λ 1 1 ,

H C B R Bt t t t t= − ′
+1 , B R Ct t t= +

−
1

1 G , a mt t+ =1 G , and λ t +1  is the value just sampled.   

Note that the likelihood (6) is invariant with respect to changes in scale of A or P (even

after identifiability conditions C1-C2 are taken into account), and the parameters A (and so

ξ  and U) and P are identified except for multiplication by a diagonal matrix (consisting of

scale constants), i.e., we would estimate AD−1 ( D−1ξ , D UD− −1 1) and DP unless we use a

very precise informative prior.  As already mentioned, knowing (estimating) P up to a

normalizing constant fulfills the objective of receptor modeling.  It can also be shown that a

scale constant matrix D (although it is unknown and depends on the initial value of the

parameters) does not vary from iteration to iteration within an MCMC run.  In this sense

our MCMC scheme is self-consistent, and so the adjustment for the scale constant matrix

does not need to be made at each step.  If the scale constant (the matrix D) is ever known

(e.g., the total mass of pollutant particle is known), the adjustment can be directly applied to

the posterior summaries simply by multiplying (or dividing) by D.  Care must be taken

though in specifying the initial values for the parameters or hyperparameters for the prior



12

distributions to ensure that at least they are approximately on the same scale or in a

consistent fashion (e.g., ξ , hyperparameters for U, and initial value for A or P).  

Finally, the posterior probability statements can directly be made on the identifiable

quantities such as the normalized P or the scaled matrix of U (i.e., the correlation matrix of

A) as discussed in Besag et al. (1995).

Remark 1.  When α t  and εt  are assumed to be independent, it can easily be shown that

under a normal prior distribution α ξt qN~ ,0 0Ξ( ) , the full conditional distribution for α t ,

  
π αt L( ), is a normal distribution through conjugacy, i.e.,

  
α ξε ε εt q tN y P P P P PL ~ ,Σ Ξ Σ Ξ Σ Ξ− − − − − − − −

′ +( ) ′ +( ) ′ +( )( )1
0 0

1 1
0

1 1 1
0

1 1

where 
  
Σε ε εε σ σ= ( ) = ( )cov , ,t pdiag 1

2 2L .  This can be updated using a Gibbs sampler,

and with moves (a) and (b) where y
j j
−η  and σ j

2  are replaced by y
j
 and σεj

2 , respectively,

it completes one cycle of MCMC when the observations are treated as independent.  In

Section 4, this approach is also compared to our time series approach when the observations

are actually dependent.

4. SIMULATION

The data are generated by the model (3) with p = 7, n = 200 , q = 3,   σ σ1
2

7
2 3= = =L ,

φ φ φ1 2 3 0 8= = = . , ξ0 10 12 14= ( ), , , U u k k= ×σ 2Ι  where σu
2 3= ,   θ θ1 7 7= = =L . ,

V = ⋅ ×συ
2

7 7Ι  where συ
2 3= . The initial values of α  and η  are given by

α ξ σ
φ1 0

2

21k
u

k
kZ= +

−
, where Z Nk ~ ( , )0 1 , k = 1 2 3, ,  and η σ

θ
υ

1

2

21j
j

jZ=
−

,   j = 1 7, ,L ,

respectively.  The true source composition matrix P0 (normalized to sum to 1) is given in

Table 2.  It follows from (4) and (5) that W = ⋅ ×8 333 3 3. I  and M = ⋅ ×5 882 7 7. I .
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In implementing MCMC, we take α = 3 and β = 8 for the prior on σ j
2 ,   j = 1 7, ,L

(yielding the prior mean 4), m0 7= and Ψ0 39= ⋅ ×I3  for the prior on U (yielding the prior

mean 3 3 3⋅ ×I ), and set the scale matrix for the prior on V equal to 9 7 7⋅ ×I  and the degrees of

freedom equal to 11 (yielding the prior mean 3 7 7⋅ ×I ), each ensuring a proper but relatively

diffuse prior.  We use a noninformative prior distribution for the nonzero elements of P

throughout simulation.

The posterior summaries for the model parameters, P , Σ , Φ, U , Θ , and V , based on

2,000 values subsampled from 20,000 iterations following a 20,000 burn-in period are

reported in Tables 3-5.  For the source composition matrix P and the variance matrix U,

those summaries are obtained in terms of normalized P (sum to 1) and the scaled variance

matrix RU  (the correlation matrix) since they are identified only up to a constant multiplier.

{Tables 3-5 about here}

We also report the posterior summaries obtained from the approach for independent

observations (see Remark 1) in Table 6.  Since this approach does not decompose the error

variances into Σ  and M, we treat the estimates of the error variances as the estimates for

  
Σ Σε ε εσ σ2

1
2 2= ( ) = +diag Mp, ,L .  The prior mean and the covariance matrix of α t  are

set to be ξ0 10 12 14= ( ) and Ξ0 100= ⋅ ×I3 3, respectively, and the hyperparameters of

the priors on σεj
2    ( , , )j = 1 7L  are taken as α = 4  and β j = 27,   j = 1 7, ,L , (yielding the

prior mean 9).  The results are based on a posterior sample of size 2,000 obtained by

subsampling every 10th from 20,000 values following a 20,000 burn-in period.

{Table 6 about here}

By comparing Table 3 and Table 6, it can be noted that the approach accounting for

dependence in the data yields much better result in terms of posterior inferences than the

approach not accounting for dependence.  In Table 3 only 2 of the 15 (nonzero) elements of

P0  lie outside the 95% credible intervals (all are within the 99% credible intervals though we
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do not report them in the table) whereas in Table 6 ten elements of P0  fall ouside the 95%

credible intervals (9 of them are not captured even by the 99% credible intervals).

Simultaneous credible regions for the whole matrix P0  can also be constructed using the

method (based on order statistics) suggested in Besag et al. (1995).  Table 3 includes the

80% credible regions and these contain all elements of P0  (The same holds for the 70%

credible regions).  In Table 6, nine elements of P0  are still outside the 80% credible regions

(7 of them are not captured even by the 90% credible regions).  This is a natural

consequence of not taking into account the correlation in the errors into the calculation of

standard errors (posterior standard deviations here).  In fact, the posterior standard

deviations in Table 6 are much smaller than they should have been.  Figure 4 shows the

side-by-side barplots of the true source compositions (P0) and the posterior mean of P

from two different approaches, time series approach (̂Pts) and approach ignoring

dependence (̂Pindep), with R2 values between P0  and estimates.  Again it can be seen that P̂ts

gives a much better approximation to the true source composition matrix P0  than P̂indep  does.

5. APPLICATION TO ATLANTA DATA

The 1990 Atlanta data described in Section 1 has two types of temporal dependence

structure, correlation in α  and correlation in ε  (see figures 2 and 3).  We use model (3)

with q = 3 to analyze this data set consisting of 538 measurements on 9 chemical species.

For identifiability conditions, zeros are preassigned for CyHx+2MHx (cyclohexane+2-

methylhexane) and 2,3-DMP (2,3-dimethylpentane) of source 1 (Roadway), acetylene and

propene of source 2 (Gasoline), acetylene and 2,2,4-TMP (2,2,4-trimethylpentane) of source

3 (Headspace) since the relative concentrations of those species in each source are observed

to be very low from Table 1. An OLS estimate Â YP P POLS measured
t

measured measured
t∗ −

= ( ) 1
 where

Pmeasured  is the measured source compositions (with zeros preassigned and each row
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normalized to sum to 100) was used as an initial value for A.  The mean source contribution

was set to ξ0 37 14 03= ( ). . . , which is the arithmetic mean of ̂AOLS
∗ .  Note that the

specification of the value of ξ0  is somewhat arbitrary due to the scale invariance property

mentioned in Section 3.  We only need to ensure that ξ0  and the initial value of A are on the

same scale.  Since the measured source compositions (Pmeasured ) can be regarded as prior

information, we use as a prior distribution for P a truncated singular normal distribution

with the mean Pmeasured  and the variance 900 for the nonzero elements of P, which ensures a

fairly vague prior (the elements of Pmeasured  have the values between 0 and 100).  The scale

matrix for an inverse Wishart distribution for U was set to Ψ0 16 1 0 7 0 08= ⋅ ( )diag , . , .

with the degrees of freedom m0 20= , yielding the prior mean of

Ψ0 16 1 0 7 0 08= ( )diag , . , . .  This choice of the hyperparameter values was made to

ensure that the prior distribution is moderately informative but flexible enough to cover the

range of possible values of U.  For the hyperparameters of the priors on σ j
2 ,   j = 1 9, ,L , we

take α = 5 and β j = 48 (the prior mean 12), and for the hyperparameters of prior on V we

set the scale matrix equal to 27 ⋅ Ip and the degrees of freedom equal to 13 (so that the prior

mean is 9 ⋅ Ip), ensuring a proper but relatively diffuse prior.  For each parameter, a

posterior sample of size 1,000 was obtained by subsampling every 10th from 10,000 values

following a 10,000 burn-in period.  Tables 7-9 contain posterior summaries for some model

parameters.  

{Tables 7 and 8 about here}

The AR coefficients φk  are estimated to be ˆ .φ1 78= , ˆ .φ2 68= , and ˆ .φ3 48= , respectively,

suggesting that there is substantial autocorrelation in roadway contribution and moderate

autocorrelation in gasoline contribution and headspace contribution.  
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The side-by-side barplots of the measured source compositions (in Table 1) and

estimated compositions are given in Figure 5 with R2 values between measured and

estimated compositions.  In general, there seems to be good agreement between them.

{Figure 5 about here}

As mentioned in Section 1, the measured compositions are not the true source

compositions in the sense of Section 4 for the data though they are expected to be generally

close to the true compositions.  For the Headspace composition profile (for which the

measured and the estimated compositions show the best agreement), all but one (2MPentan)

of the measured values fall in the 99% credible intervals.  The 80% simultaneous credible

regions (constructed by the method of Besag et al. 1995) are also reported in Table 7 and

these capture all of the measured Headspace composition.

6. CONCLUSIONS AND DISCUSSION

In this article we develop a time series extension of multivariate receptor modeling in order

to capture in the estimation process extra variability due to temporal dependence in air

pollution data.  Recent developments in MCMC methodology make estimation of

parameters of complex models possible.  By modeling the dependence structure, we can get

more reliable estimates for the source compositions and their uncertainties, which are of our

primary interest.  As a by-product we can assess the amount of variability and

autocorrelation in the source contributions and the errors.  It also makes it possible to

forecast the level of pollutants yt k+( )  and the amount of pollution α t k+( ) , which has been

regarded as one of the model limitations in previous receptor modeling approaches (see the

EPA discussion at http://www.epa.gov/oar/oaqps/pams/analysis/receptor/rectxtsac.html).

Throughout the article we assume that the errors are normally distributed.

Environmental data often contain many outliers, and it is sometimes more appropriate to use

the lognormal distribution to describe the data.  The usual transformation technique does

not help especially in the context of receptor modeling.  By log-transforming the data the
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chemical mass balance equation of the model no longer applies directly, and we need to deal

with model identifiability using different conditions.  Alternatively, we may consider a

multivariate T-distribution or a mixture of normal distributions to describe the error

distribution.  In the application to Atlanta data, the histogram of the residuals for each

species looks in general bell shaped, but shows a few outliers for some of the species.  This

might suggest a use of heavy-tailed distribution for errors though it was not pursued further

in this article.  Non-normal dynamic modeling is still an active research area (see West and

Harrison 1997), and we expect that multivariate receptor modeling can be extended further

using non-normal dynamic models.

Another assumption we have made is that the errors have mean 0.  To be more realistic,

it would be preferable to generalize this to include the unknown non-zero mean errors,

corresponding to unknown sources.  This again involves the development of new

identifiability conditions.

Finally, air pollution data is often obtained from multiple receptors.  How to incorporate

spatial variability as well as temporal variability in modeling when multiple species are

measured is a challenging problem.  Even in the case of no temporal dependence, this

problem remains open.
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TABLES

Table 1.  Measured source composition profiles

Source acetylene propene nButane 2MPentan 3MPentan benzene CyHx
+2MHx

2,3-DMP 2,2,4-TMP

roadway 0.181 0.094 0.197 0.116 0.069 0.132 0.049 0.043 0.120
gasoline 0 0.002 0.197 0.221 0.138 0.108 0.116 0.067 0.152
headspace 0 0.007 0.685 0.144 0.075 0.034 0.021 0.014 0.021

Note: Each source profile is normalized sum to one

Table 2. True source composition profiles (P0)

1 2 3 4 5 6 7
Source 1 0 0.248 0 0.102 0.306 0.128 0.216
Source 2 0.242 0 0.266 0 0.009 0.044 0.440
Source 3 0.311 0.250 0.039 0.302 0 0.099 0

Note: Each source profile is normalized sum to one
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Table 3. Summaries of the posterior distribution for P  when the data is generated by model (3)
and the approach accounting for dependence is used

Param. j 1 2 3 4 5 6 7
P1j Mean

SD
LSCR

LCI
UCI

USCR

0
0
0
0
0
0

0.234
0.018
0.191
0.205
0.262
0.279

0
0
0
0
0
0

0.087
0.023
0.025
0.049
0.124
0.145

 0.339*
 0.016
 0.299
 0.313
 0.306
 0.378

0.124
0.013
0.088
0.101
0.147
0.158

0.216
0.033
0.137
0.160
0.269
0.293

P2j Mean
SD

LSCR
LCI
UCI

USCR

0.204*
0.026
0.137
0.157
0.241
0.256

0
0
0
0
0
0

0.253
0.017
0.214
0.225
0.282
0.295

0
0
0
0
0
0

 0.044
 0.029
 0.001
 0.004
 0.100
 0.127

0.043
0.013
0.009
0.021
0.065
0.075

0.456
0.016
0.416
0.430
0.484
0.502

P3j Mean
SD

LSCR
LCI
UCI

USCR

0.298
0.009
0.278
0.284
0.313
0.320

0.264
0.010
0.237
0.247
0.279
0.288

0.029
0.011
0.003
0.011
0.046
0.056

0.304
0.009
0.284
0.290
0.319
0.328

 0
 0
 0
 0
 0
 0

0.106
0.008
0.085
0.093
0.118
0.126

0
0
0
0
0
0

Note: 1. SD stands for the posterior standard deviation;  2. LCI and UCI stand for the lower limit and upper limit  of the 95%
credible interval;  3. Asterisk (*) indicates that the true parameter value is not captured by the 95% credible interval;  3.
Asterisk (* ) indicates that the true parameter value is not captured by the 95% credible interval;  4. LSCR and USCR stand
for the lower limit and upper limit of the 80% simultaneous credible region.
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Table 4. Posterior means and standard deviations of Φ  and RU  (correlation matrix corresponding to U)

when the data is generated by model (3) and the approach accounting for dependence is used
φk Correlations in RU

k = 1 0.826 (0.044)  1
k = 2 0.834 (0.042)  0.010 (0.133)  1
k = 3 0.817 (0.040)  0.245 (0.108)* -0.141 (0.102) 1

Note: 1. Posterior standard deviation is given in the parenthesis;  2. Asterisk (*) indicates
that the true parameter value is not captured by the 95% credible interval.

Table 5. Posterior means and standard deviations of Θ , V , and Σ  when the data is generated by model (3)
and the approach accounting for dependence is used

θ j Diagonal elements of V σ j
2

j =1  0.379 (0.194)*  2.463 (1.295) 3.823 (1.238)

j = 2 0.628 (0.178)  2.777 (1.304) 2.908 (1.002)

j = 3 0.836 (0.100)  2.030 (0.924) 4.368 (1.010)

j = 4 0.801 (0.102)  2.470 (1.127) 4.072 (1.077)

j = 5 0.539 (0.207)  2.634 (1.431) 4.252 (1.509)

j = 6 0.609 (0.121)  2.485 (0.950) 3.279 (0.921)
j = 7 0.650 (0.191)  2.496 (1.457) 2.547 (1.029)

Note: 1. Posterior standard deviation is given in the parenthesis;  2. Asterisk (*) indicates that the true
parameter value is not captured by the 95% credible interval.
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Table 6. Summaries of the posterior distribution for the parameters P  and Σε  when the data is generated by model (3)

but the approach ignoring dependence (given in Remark 1) is used
Param. j 1 2 3 4 5 6 7

P1j Mean
SD

LSCR
LCI
UCI

USCR

0
0
0
0
0
0

0.214*
0.014
0.180
0.190
0.236
0.246

0
0
0
0
0
0

0.084
0.014
0.050
0.060
0.106
0.115

  0.339*
  0.011
  0.314
  0.322
  0.357
  0.365

0.125
0.008
0.105
0.112
0.137
0.144

0.239
0.022
0.189
0.205
0.277
0.297

P2j Mean
SD

LSCR
LCI
UCI

USCR

0.123*
0.012
0.096
0.104
0.142
0.154

0
0
0
0
0
0

0.201*
0.008
0.182
0.187
0.214
0.221

0
0
0
0
0
0

  0.154*
  0.011
  0.125
  0.136
  0.172
  0.179

0.063*
0.007
0.045
0.051
0.074
0.080

0.459*
0.009
0.439
0.445
0.474
0.482

P3j Mean
SD

LSCR
LCI
UCI

USCR

0.292*
0.005
0.281
0.284
0.300
0.304

0.282*
0.005
0.269
0.274
0.291
0.296

0.036
0.007
0.021
0.026
0.047
0.054

0.286*
0.004
0.276
0.278
0.293
0.297

  0
  0
  0
  0
  0
  0

0.103
0.005
0.092
0.096
0.111
0.115

0
0
0
0
0
0

σεj
2

 = 8.882 Mean
SD

5.565*
1.453

8.648
1.853

10.415
1.403

11.375
1.621

  8.275
  2.246

7.873
0.840

7.255
2.768

Note: 1. SD stands for the posterior standard deviation;  2. LCI and UCI stand for the lower limit and upper limit of the 95%
credible interval;  3. Asterisk (*) indicates that the true parameter value is not captured by the 95% credible interval;  4. LSCR
and USCR stand for the lower limit and upper limit of the 80% simultaneous credible region.
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Table 7. Summaries of the posterior distribution for P  for the Atlanta data
Param. Species

j

acetylene

1

propene

2

nButane

3

2MPentan

4

3MPentan

5

benzene

6

CyHx
+2Mhx

7

2,3-DMP

8

2,2,4-TMP
9

roadway Mean
SD

LSCR
LCI
UCI

USCR

0.275
0.008
0.257
0.257
0.295
0.297

0.115
0.004
0.107
0.107
0.124
0.125

0.279
0.013
0.247
0.248
0.305
0.307

0.086
0.004
0.076
0.076
0.095
0.096

0.049
0.003
0.042
0.043
0.056
0.056

0.126
0.004
0.117
0.118
0.135
0.136

0
0
0
0
0
0

0
0
0
0
0
0

0.069
0.005
0.057
0.057
0.081
0.081

gasoline Mean
SD

LSCR
LCI
UCI

USCR

0
0
0
0
0
0

0
0
0
0
0
0

0.172
0.019
0.127
0.128
0.214
0.217

0.191
0.005
0.179
0.180
0.202
0.204

0.113
0.003
0.104
0.105
0.121
0.122

0.088
0.004
0.077
0.078
0.097
0.099

0.123
0.005
0.112
0.112
0.134
0.135

0.098
0.004
0.089
0.090
0.107
0.107

0.217
0.008
0.200
0.201
0.236
0.238

headspace Mean
SD

LSCR
LCI
UCI

USCR

0
0
0
0
0
0

0.009
0.007
0.000
0.001
0.029
0.034

0.693
0.035
0.606
0.609
0.773
0.776

0.116
0.011
0.083
0.087
0.142
0.145

0.063
0.007
0.042
0.045
0.080
0.081

0.052
0.010
0.028
0.029
0.074
0.076

0.021
0.009
0.001
0.002
0.044
0.046

0
0
0
0
0
0

0.046
0.017
0.007
0.008
0.088
0.093

Note: 1. SD stands for the posterior standard deviation;  2. LCI and UCI stand for lower limit and upper limit of the 99% credible interval;  3. LSCR and
USCR stand for lower limit and upper limit of the 80% simultaneous credible region.
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Table 8. Posterior means and standard deviations of Φ  and RU  (correlation matrix corresponding to U) for the Atlanta data

φk Correlations in RU

k = 1 0.775 (0.036)   1
k = 2 0.677 (0.062)   0.207 (0.045)   1
k = 3 0.476 (0.114)   -0.069 (0.051)   -0.049 (0.047) 1

Note: Posterior standard deviation is given in the parenthesis.

Table 9. Posterior means and standard deviations of Θ , diagonal elements of V , and Σ  for the Atlanta data
Species θ j Diagonal elements of V σ j

2

Acetylene 0.512 (0.110) 1.039 (0.243) 1.148 (0.127)
Propene 0.550 (0.066) 0.405 (0.058) 0.506 (0.042)
nButane 0.400 (0.201) 2.929 (1.339) 3.683 (0.751)
2Mpentan 0.221 (0.086) 0.520 (0.102) 0.534 (0.045)
3Mpentan 0.162 (0.073) 0.280 (0.040) 0.349 (0.026)
Benzene 0.360 (0.092) 0.379 (0.055) 0.501 (0.040)
CyHx+2Mhx 0.237 (0.088) 0.341 (0.048) 0.448 (0.036)
2,3-DMP 0.269 (0.086) 0.261 (0.033) 0.360 (0.027)
2,2,4-TMP 0.643 (0.062) 0.681 (0.138) 0.758 (0.070)

Note: Posterior standard deviation is given in the parenthesis.
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Figure Titles and Legends

Figure 1. Autocorrelation function (ACF) plots of Y for Atlanta data

Figure 2. Autocorrelation function (ACF) plots of the residuals for Atlanta data:

Y − ˆ A OLSP where P is the measured source compositions in Table 1

Figure 3. Autocorrelation function (ACF) plots of source contributions (ˆ A OLS) for Atlanta

data

Figure 4. Side-by-side barplots of the true source compositions (P0) and the estimated

compositions obtained from two different approaches, time series approach and

approach ignoring dependence

Figure 5. Side-by-side barplots of the measured source compositions and the estimated

compositions for the Atlanta data
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