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Abstract

One of the principle objectives of air quality monitoring is to determine compliance
with air quality standards. Since many countries maintain online surveillance of air
pollution, sequential detection schemes can be used interactively to control violations
of these standards. The Shiryayev-Roberts (SR) scheme is an e�cient and 
exible
procedure for detecting a change in distribution. This work proposes a three-step
procedure for implementing the SR scheme to air pollution data. The �rst step analyzes
the distributional properties of the process; the second step reformulates the standard
in terms of the respective distribution; and the last step constructs the SR statistic
and calibrates the scheme to attain a prespeci�ed rate of false alarms.

The procedure is demonstrated for daily sulfur dioxide (SO2 ) data from an air
quality monitoring station in Israel. A three-parameter lognormal distribution is �tted
to the detrended series, and serial correlations are incorporated through the respective
likelihood function. The scheme's parameters are determined by a Monte Carlo study.
The results indicate that online surveillance in the considered area would have detected
a signi�cant increase in SO2 levels eleven months earlier than the common once-a-year
inspection scheme.
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length.
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1 Introduction

Ambient air quality standards are promulgated as part of air quality control policy. The
standards specify the level of pollutant concentration, the averaging time and the form of
the statistic used to evaluate compliance. For example, the US federal 24hr sulfur dioxide
(SO2) standard is set at a daily concentration of 0.14ppm (365�gm�3) not to be exceeded
more than once per year.

The level of a pollutant at a given time and location is a random quantity, with associated
probability distribution. Despite some awareness of the role of uncertainty and variation in
the formulation and surveillance of air quality standards (Schwartz and Siegel, 1970; Vaughan
and Russell, 1983), current surveillance of air quality incorporates almost no statistical con-
siderations, but rather treats the level of pollution as a deterministic quantity (Barnett and
O'Hagan, 1997). Compliance with air quality standards is generally assessed in retrospect,
that is, after a prespeci�ed period has elapsed (e.g., one year, for the above SO2 standard).
Recent works by Carbonez et al. (1999) and Thompson et el. (2000) deal with statistical
aspects of the `retrospective' implementation of standards. Speci�cally, Thompson et al.
(2000) suggest a hypothesis testing framework for a retrospective inspection of compliance
with standards. There are situations, however, when a corrective action may or should be
taken before, say, one year would have passed. Examples may include failure of a component
of a major pollution sources, like a power plant or oil re�neries; or an increase in the level of
pollution along certain tra�c routes due to changes in land usage (e.g., new industrial area,
new shopping center). In such cases, compliance with standards can be assessed interactively
using statistical process control (SPC) procedures.

SPC concerns monitoring stochastic processes over time and determining sequentially
whether the process is stable or whether a change in distribution has occurred. (for intro-
ductory to SPC see Wetherill, 1991). Since most countries maintain online monitoring of
air pollution, a surveillance scheme can be designed to detect interactively violations of air
quality standards. Examples of application of SPC, or change-point, procedures in environ-
mental processes include detection of a change in smoke level due to the switch from coal to
oil in England at approximately 1965 (Bennet et al., 1976); change in respiratory conditions
(Malachowski et el., 1994); changes in ozone level in Los Angeles due to the opening of a
freeway and changes in gasoline (Box and Tiao, 1975); and changes in minimal monthly
temperatures (Jandhyala et al., 1999a). Bordignon and Scagliarini (1999) applied SPC pro-
cedures to on-line quality control of hourly ozone data. Other applications are described
by MacNeill et al. (1991) and Abdullah and Husain (1999). These applications deal with
detection of change-points in environmental data in general and not with violations of air
quality standards.

The objective of this study is to formulate an interactive surveillance scheme for detec-
tion of violations of air quality standards, while taking into account the complex stochas-
tic properties of air pollution data. The complexity of air pollution data stems from the
non-stationarity, non-normality and serial correlation inherent in these processes. Our ap-
proach accounts for the non-stationarity by detrending the data. The non-normality may
be dealt with either directly, by �tting a non-Gaussian distribution to the data, or by ap-
propriate transformation. As for serial correlation, much of the published work on tests for
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change-point assume that the data are independent and normally distributed. When `rou-
tine' methods are used for structured data, and their underlying assumptions are ignored,
the protection against false alarms, for example, is reduced (Yashchin, 1993; McGilchrist
and Fraser, 1996). Common remedies include modi�cations of standard test statistics (Tang
and MacNeill, 1993), monitoring residuals from a time-series model (Berthouex et al., 1978;
Malachowski et al., 1994) and application of nonparametric resampling methods (Liu and
Tang, 1996). We take account of serial correlation through the likelihood function.

The report is organized as follows. Section 2 brie
y reviews the Shiryayev-Roberts (SR)
scheme and its properties. Section 3 outlines the steps leading from the statutory de�nition
of a standard, through its formulation in terms of distribution functions and the operational-
ization of the SR test. The proposed method is illustrated for SO2 data from the Ashdod
area, located in the southern coastal plain of Israel. The distributional properties of the
series are studied in Section 4 and the SR procedure is then applied to the data in Section
5. The report concludes (Section 6) with a discussion of possible expansions and extensions
of the proposed procedure.

2 The Shiryayev-Roberts (SR) Procedure

For the purpose of this report, we formulate the change-point problem as follows. Let
X1;X2; : : : be a sequence of variables such that X1; : : : ;X��1 are identically distributed
(i.d.) with density f�0 and X� ;X�+1; : : : are i.d. with density f�s. Note that independence
is not assumed. The time of change, �, is unknown but we assume that f�0 and f�s are
known. Denote by f�s� (x1; � � � ; xn) the joint density of X1; : : : ;Xn when a change occurrs
at � and the pre- and post-change distributions are as above. Let E�s

� be the expectation
with respect to f�s� . The objective is to raise an alarm as soon as possible if a change has
occurred, subject to a restriction on the rate of false alarms. Hence, the detection scheme
is a stopping time on the sequence of observations x1; x2; : : :. For a stopping time N , the
restriction on false alarm may be expressed in terms of the average run length (ARL) when
there is no change, E1N . The expected delay may be expressed by the largest ARL to
detection, sup1��<1 E�(N � �jN > �). Often, this is equal to the ARL to detection given
that a change has occurred at the �rst observation, E1N (cf. Pollak, 1985).

For any 1 � k < n the likelihood ratio statistic based on x1; � � � ; xn for testing H0 : � =
1; � = �0 against H1 : � = k; � = �s is

�n
k (�s) =

f�sk (x1; : : : ; xn)

f1(x1; : : : ; xn)
: (1)

Let the sum of likelihood ratios for all runs ending at n be

Rn(�s) = �n
k=1�

n
k (�s):

The Shiryayev-Roberts (SR) detection scheme (Shiryayev, 1963; Roberts, 1966) is de�ned
by the stopping time N = N(A;�s) satisfying

N = minfnjRn(�s) � Ag: (2)
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The threshold A is determined so that the average run length to false alarm is at least a
prespeci�ed constant B, that is,

E1N � B:

Results concerning the optimality properties of the SR procedure for homogeneous processes,
in terms of speed of detection of an actual change, were obtained by Pollak (1985), Pollak
and Siegmund (1985), Srivastava and Wu (1993), Tartakovsky (1995) and Yakir (1997).
These works show that the asymptotic properties of the CUSUM and the SR procedures are
similar.

To operationalize the SR procedure, a relationship between the speci�ed ARL to false
alarm, B, and the threshold A in (2) should be determined. The following results (Pollak,
1987; Pollak and Siegmund, 1991) are useful:

1. For � =1 and N the stopping time of (2), RN �N is a zero expectation martingale,
that is, E1(RN � N) = 0. We use this property to verify the Monte-Carlo results
presented in Table 3.

2. E1N(A;�s)
A

= C(�s)(1 + o(1)) where o(1)! 0 as A!1.
Hence, if the ARL to false alarm is not smaller than B, then the value of A is given
approximately by A = B=C(�s). The constant C(�s) is determined either through
theoretical formulae or by simulation. For a normal distribution, Pollak and Siegmund
(1991) suggested the approximation C(�s) = exp(0:583�)+o(�2), where � = �s��0.
Pollak's results (1987) indicated that for a change in the mean of normal i.i.d. variables,
the asymptotic approximations are good, even for low values of A. This result is used
in Section 5 to extract the threshold A.

3 Air Quality Standards and the SR Scheme

In this section we outline the steps leading from the statutory speci�cation of air quality
standards to a speci�cation of a standard in terms of the parameters of a distribution func-
tion, and formulate the respective SR statistic. Air quality standards specify the level of
pollutant concentration, the averaging time units and the statistic used to evaluate compli-
ance. In many cases, the standards are formulated, or can be re-formulated, in terms of a
percentile of the pollutant distribution which should not exceed a threshold. For example,
the Israeli 0.5hr SO2 standard is attained when the level of 500�gm�3 is not exceeded more
than 0.25% of the time of the year. Namely, when the 99.75th percentile of the annual
half-hourly SO2 distribution does not exceed 500�gm�3.

For a Gaussian pollution process X1;X2; : : : with Xi � N(�; �2), the p-th percentile of
the marginal distribution xp can be expressed by

xp = �zp + �

where zp = ��1(p) and � is the standard normal cdf. If the respective standard is formulated
in terms of a percentile exceeding c, then the standard is violated if xp > c or � > c� �zp.
Thus, if �2 is known, testing for violation of a standard amounts to testing H0 : � � c�
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against H1 : � > c�, where c� = c � �zp. Often, two points in the parameter space are
chosen and the simple H0 : � = �0 (representing some realized state of compliance) against
H1 : � = �s is tested, where �s is a threshold of interest (e.g., a local standard) satisfying
�0 < �s � c�. In this formulation, the retrospective approach tests a violation of a standard
by studying the observations of, say, the previous year and inferring on a change in the mean.
The change-point approach deals with a similar problem by using a sequential test. That
is, rather than wait a full year, we test interactively (e.g., every day) whether a change in �
has occurred, at an unknown time � during the year.

To illustrate the construction of a SR scheme for such a problem, we consider a Gaussian
process fXig which forms a �rst-order Markov chain. Assume that the process up to time
� � 1 is stationary with mean �0 and from time � it is stationary with mean �s. Let the
variance �2 and the �rst-order serial autocorrelation � be constant over time. For � = 1,
Xi � N(�0; �2) and Xi jXi�1 = xi�1 � N( �xi�1 + �0(1 � �); �2(1 � �2) ), i = 2; 3; : : :.
Omitting the subscript 1 from f1, the joint likelihood of the �rst n observations is

f(x1; x2; : : : ; xn) = f(xnjxn�1; : : : ; x1)f(xn�1; : : : ; x1)
= f(xnjxn�1)f(xn�1; : : : ; x1)

...
= f(x1) �

n
i=2f(xijxi�1)

= (2�)�n=2��(n�1)��1 expf�(x1 � �0)
2=2�2 �

Pn
i=2(xi � �0;i)

2=2�2g:

where �0;i = �xi�1 + �0(1 � �); i = 2; � � � ; n; �2 = �2(1 � �2). To write the joint like-
lihood of the �rst n observations under a change at time � = k, f�sk (x1; � � � ; xn), we as-
sume that f�sk (xkjxk�1) = f�s(xk) (that is, Xk�1 and Xk are not correlated). Denoting
g(xi) = f(xijxi�1), �n

k(�s) of (1) is given by

�n
k (�s) =

f�s
k

(x1;x2;:::;xn)

f1(x1;x2;:::;xn)

=

8>>><
>>>:

f�s(x1)
f�0(x1)

k = 1; n = 1
f�s(xk)
g�0(xk)

�n
i=k+1

g�s(xi)
g�0 (xi)

k = 1; : : : ; n� 1; n > 1
f�s(xn)
g�0(xn)

k = n; n > 1:

The statistic Rn(�s) can be extracted recursively by

Rn =
Pn

k=1 �
n
k

= g�s(xn)
g�0(xn)

Pn�1
k=1 �

n�1
k + �n

n

= g�s(xn)
g�0(xn)

Rn�1 +
f�s(xn)
g�0(xn)

:

For the above Gaussian process we get

Rn = exp
h
f�(xn � �s;n)

2 + (xn � �0;n)
2g=2�2

i
Rn�1+

�

�
exp

n
�(xn � �s)

2=2�2+ (xn � �0;n)
2=2�2

o

where �s;i = �xi�1 + �s(1� �).
So far we have used a simple scenario to illustrate (a) how to express a test for standard

violation in terms of a change-point problem, and (b) how to construct the fundamental
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statistic of the SR scheme. Frequently, however, the pollution process is non-stationary, the
measurements are highly skewed and the serial dependence may be of higher order than one.
Therefore, statistical testing of standard violation may require preliminary data manipulation
(e.g. detrending, transformation). Evidently, such manipulation may be required for both
the retrospective and sequential approaches. Any data manipulation requires, in turn, an
appropriate reformulation of the standard. It is beyond the scope of this report to deal with
this issue in depth. Instead, the following examples illustrate typical di�culties and possible
solutions.

� Seasonal e�ects. Most pollutants have seasonal variation. Suppose that this variation
can be modeled by a discrete function with k values, namely, that the ith observation of
the jth sub-period, xji j = 1; : : : ; k, has mean �j . The overall mean is � =

Pk
j=1 wj�j,

where
Pk

j=1 wj = 1. The goal is to test H0 : � = �0 against H1 : � = �0 + �.
This translates for the seasonally-adjusted series fx�jig = fxji � �jg to a test of H0 :
��j = 0; j = 1; � � � ; k against H1 : ��j = �j; j = 1; � � � ; k where ��j is the mean of
x�ji and

P
wj�j = �. For example, we may choose �j to be proportional to �j, that

is, �j =
�
�
�j. It is straightforward to obtain the expressions for the corresponding

likelihood ratios.

� Transformation. In many cases, normality can be attained by a suitable transformation
of the data. Consider a lognormal variable X, such that Y = log(X � �) is N(�; �2)
(� is a shift parameter). Suppose that a standard is formulated in terms of xp, the
pth percentile of the distribution of X. Then, xp = � + expf�zp + �g and a change of
�x = xsp � x0p in the pth percentile in the original scale corresponds to a change of

�y = �s � �0 = log
x0p +�x � �

x0p � �
(3)

in the log-scale.

Once the parametric setup is resolved and the standard is expressed in a correct scale,
the �nal step in the construction of the SR scheme is to determine A. For this we need to
extract C(�s). For the normal i.i.d. case, theoretical results are available. For more complex
cases, Monte Carlo studies may be useful, as illustrated in Section 5.

4 Analysis of SO2 Data

The proposed procedure is illustrated for SO2 data from the Ashdod air quality monitoring
station, located in the southern coastal plain of Israel. Daily half-hour measurements were
averaged to produce a daily half-hour mean. The 1990-1997 series is displayed in Fig. 1
(n=2854) and the annual distribution in Fig. 2. An increase in level is evident in 1997.

Our next step is to identify sources of non-stationarity in the series. Typically, non-
stationarity in air pollution data is attributed to long term trend, seasonality and possibly
day-of-the-week variability. To eliminate the trend we choose the period 1994-1996 to rep-
resent the `in-control' status. The post-change period in our analysis is 1997.
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Figure 1: SO2 series for daily 0.5hr mean at Ashdod, Israel, 1990-1997 (n=2854).
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Figure 2: Annual distribution of daily SO2 averages.
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Figure 3: Trimmed mean of daily 0.5hr SO2 measurements at Ashdod by year and month.
The numbers 1-4 on the lines correspond to the years 1994 to 1997. Four percent of the
highest and lowest values are truncated.

Some insight into the seasonal variation in the 1994-1997 series is gained from Fig. 3.
statistics by year. The �gure indicates seasonal variation with high levels during the tran-
sitional seasons (April, October-November). This pattern re
ects the meteorological condi-
tions and the fuel-management policy in the area.

The rest of the section discusses adjustment for seasonality, estimation of the marginal
distribution of the seasonally-adjusted series and the stochastic structure of the series.

Adjustment for Non-stationarity

A moving-average �lter of 31 days is used to estimate the seasonality e�ect. The �nal esti-
mate is computed as the average of the estimates for the three pre-change years (1994-1996).
The upper plot in Fig. 4 shows the estimated e�ects for the years 1994-1996 and their mean.
The lower plot shows the estimate and the original data. The seasonally-adjusted series is
obtained by subtracting the seasonality estimate from the raw series.

Marginal Distribution

The distribution of the seasonally-adjusted series is highly skewed (Fig. 5). Either a gamma
or lognormal distribution can be �tted to the data. Since estimation under the assumption
of a lognormal distribution is simpler, we choose a three-parameter lognormal distribution.
A shift parameter is required since the seasonally-adjusted series is centered around zero.

The problem of estimating the shift parameter of the log-normal distribution is well
known. Hill (1963) showed that the global maximum likelihood estimate (MLE) of � is
min(yi) and that the MLE of the other parameters in this environment are in�nite. However,
in many situations a local maximum likelihood estimate (LMLE) exists, and maintains the
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Figure 5: Distribution of the seasonally-adjusted SO2 series, 1994-1996.

optimal properties of e�ciency and consistency of the MLE (Cohen 1951; Harter and Moore
1966; Calitz 1973).

The existence of a LMLE of the shift parameter for the Ashdod series is examined graph-
ically by plotting the pro�le log-likelihood L�(�) against �. The pro�le log-likelihood is
extracted by substituting the MLEs of �̂, �̂ in the log-likelihood function:

L�(�) = �n flog(�̂�) + �̂�g; (4)

where �̂� =
Pn

i=1 log(x
�
i � �) = n, �̂� =

Pn
i=1flog(x

�
i � �) � �̂�g

2=n and x�1; : : : ; x
�
n is the

seasonally-adjusted series. Once the existence of the LMLE is veri�ed, the estimated value
may be found graphically by focusing on a neighborhood of the local maxima. The accuracy
of this estimate is usually su�cient in practice. The graphical method of estimation also
enables a simple construction of an approximate con�dence interval for �, given by

L�(�̂)� L�(�) � �2(�;1);

where �2(�;1) is the � percentile of the �2 distribution with one degree of freedom (Box and
Cox, 1964). Graphical estimation of the shift parameter is illustrated in Fig. 6. We �nd
that �̂ = �22:25 (L� = �2367:8), �2(0:95;1) = 3:84 and the 95% con�dence interval is given by
[-24.80, -20.60].

Fig. 7 and Table 1 indicate that the lognormal �t for the pre-change seasonally-adjusted
data is fair (p = 0:033 for the Shapiro-Wilk test). The estimated shift parameter for 1997
is �̂ = �29:50. Fig. 8 illustrates the �t for 1997: Figs. 8(a) and (c) illustrate the �t for
�̂ = �29:50 and Figs. 8(b) and (d) for �̂ = �22:25 (the 1994-1996 estimate).

Table 1 summarizes the estimated parameters for the two periods and two shift estimates.
It is seen that (a) the �t of the normal distribution is better for the post-change period, even
for �̂ = �22:25, and (b) that for �̂ = �22:25, �̂ = 0:42 and 0:44 for the pre- and post-change
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Perod �̂ �̂ �̂ Skewness Kurtosis Pr<W
1994-1996 -22.25 3.04 0.42 0.21 1.46 0.033
(n=1095) -29.50 3.36 0.31 0.71 1.74 0.0001
1997 -22.25 3.32 0.44 -0.39 1.43 0.289
(n=365) -29.50 3.57 0.34 0.07 0.61 0.638

Table 1: Parameters of the pre- and post-change distributions and tests for normality for
di�erent values of �̂. Pr<W is the P-value for the Shapiro-Wilk test.
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Figure 7: Normal �t for the seasonally-adjusted Ashdod series with shift �̂ = �22:25, 1994-
1996.

periods, respectively. We conclude that we may formulate the change-point problem as a
change in the location parameter � only, and assume that the shift and variance parameters
are constant over time.
Remarks:
a) The `retrospective' di�erence between the 1994-6 and 1997 means is highly signi�cant
(t = 3:89).
b) Equation (4) represents the pro�le-likelihood of i.i.d. observations. Since our data are
serially correlated, the e�ect of dependence on the shift estimate was studied. Four subsam-
ples were created by drawing every fourth observation. The resulting set of shift estimates
for the four subsamples is f-18.8, -21.0, -24.0, -23.0g, with mean -21.7. This estimate is very
close to the estimate obtained for the full dataset (-22.5).

Stochastic Structure

Estimates of the serial correlations for the seasonally-adjusted series are presented in Table 2.
The estimated �rst-order autocorrelations are r1 = 0:42 and 0:28 for the pre- and post-
change periods, respectively. For the pre-change period, there is indication for a higher
order dependence. In particular, r7 = 0:15 and r14 = 0:11, suggesting a day-of-the-week
e�ect. The partial correlations for the pre-change period also support a higher order model.
For the post-change period, all partial correlations are not signi�cant, except for lag eleven.
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Figure 8: Normal �t for the seasonally-adjusted Ashdod series for 1997 with histograms for
(a) �̂ = �29:5, and (b) �̂ = �22:25; (c) and (d) are the respective Q-Q plots.
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Lag Pre-change Post-change
1994-1996, n=1094 1997, n=364
Serial Partial Serial Partial

0 1.0000 * 0.4176 1.0000 *0.2785
1 * 0.4176 -0.0304 *0.2785 -0.0353
2 * 0.1492 * 0.0842 0.0449 -0.0415
3 * 0.1209 0.0341 -0.0352 -0.0766
4 * 0.1055 -0.0600 -0.0932 0.0161
5 0.0130 * 0.1133 -0.0330 0.0451
6 * 0.0834 * 0.0904 0.0356 0.0427
7 * 0.1537 * -0.0865 0.0671 -0.0290
8 0.0355 -0.0150 0.0128 -0.0963
9 -0.0189 0.0482 -0.0905 0.0680
10 0.0436 -0.0436 0.0006 0.0074
11 0.0079 0.0209 0.0103 *-0.1249
12 -0.0080 0.0338 -0.1003 0.0109
13 0.0438 * 0.0706 -0.0309 0.1040
14 * 0.1109 -0.0435 0.0800 0.0126

Table 2: Serial and partial autocorrelations for the pre- and post-change periods. � indicate
signi�cance at an � = 0:05 level

5 Application of the SR Procedure

The Israeli 24hr SO2 standard sets a maximal level of 280�gm�3 not to be exceeded at any
time. Evidently, this type of standard does not allow for any uncertainty or variability in the
pollution process. In addition, the data for Ashdod since 1990 suggest that this standard is
quite liberal. Hence, we do not attempt to test for compliance with this standard but rather
illustrate the SR procedure for two `reasonable' values of �. Assume that the `pre-change'
period (1994-1996) represents a state of compliance with the standard and that we declare
the process to be out of compliance whenever a change of 0:5� in the mean is identi�ed.
We further assume that the pre-change seasonally-adjusted Ashdod series is lognormal with
�0 = 3:04, � = 0:42 and � = �22:5, and that it is stationary �rst-order Markov chain with
� = 0:42. The post-change distribution is assumed to be lognormal with the same �; � and �.
The problem is to detect a change of 0:5� in the mean, where the time of change is unknown.
Note that for p = 0:9975, zp = 2:8070, yp = 4:22 and xp = 45:71, a change of �y = 0:21 in
the log-scale corresponds to a change of �x = 15:9�gm�3 in the original scale (see (3) ).

Estimates of the threshold A of (2) are obtained by a small Monte Carlo study. The
results in Table 3 are based on simulations from a null N(3:04; 0:422) and �s = �0 + 0:5� =
3:25. The i.i.d. (� = 0) and �rst order Markov chain (� = 0:42) cases are studied for
A = 10; 20; 30; 50; 100. The length of the simulated series is chosen so that it provides 200
stopping events for each entry in the table. Each time Rn exceeded the threshold A, the

14



A

� 10 20 30 50 100
0:00 E1NA (s.e.) 13.52(0.64) 28.48(1.52) 42.42(2.22) 63.22(3.56) 144.28(9.44)

E1fR(NA) �NAg(s.e.) 0.53(0.73) -1.29(1.57) -1.72(2.30) 4.07(3.86) -10.19(9.69)
C(�s) 1.35 1.42 1.41 1.26 1.44

0:42 E1NA(s.e.) 12.61(0.49) 24.54(0.92) 38.93(1.85) 56.57(3.22) 119.96(7.55)
E1fR(NA) �NAg(s.e.) 0.50(0.54) -0.16(0.94) -2.78(1.87) 4.50(3.34) -1.12(7.66)
C(�s) 1.26 1.28 1.30 1.13 1.20

Table 3: Monte-Carlo estimates of the parameters of the Shiryayev-Roberts procedure for
� = 0:42, �0 = 3:04, �s = �0 + 0:5� = 3:25. Each estimate is based on 200 stopping events.

surveillance is renewed.
The table is divided into two parts, for � = 0 and � = 0:42. The �rst row in each part

indicates the estimated ARL to false alarm, E1N , and the standard error of N . For the i.i.d.
case, the Monte Carlo estimates are very similar to those given by Pollak (1987, Table 1).
For the non-i.i.d. case, the estimated rates are lower than those for the i.i.d. case. The values
of E1fR(N) �Ng and the standard error of the di�erence R(N) �N are presented in the
second row. We �nd that for both the i.i.d and correlated cases the Monte Carlo estimates
are not signi�cantly di�erent from zero (� = 0:05). Estimates of C(�s) are presented in the
third row. For the i.i.d. case the estimate is 1.44, and for the correlated case it is 1.20.

Using the results in Table 3, the estimates in Table 1 and theoretical results alluded to
in Section 2, the required parameters of the SR for a change in the Ashdod series can be
calculated. We estimate that C(3:25) = 1:20 and require that a false alarm is not raised
earlier than once in ten months, that is B = 304 observations. Hence, A = B=C(3:25) =
304=1:20 = 253.

Application of the resulting SR scheme to the Ashdod series is shown in Fig. 9. Each
of the four pairs of �gures (a)-(d) corresponds to one year, with some overlapping. Each
time R exceeded 253, the surveillance was re-started. The �rst alarm was raised around day
500 (around mid-May 1995, Fig. 9(b)) and then about a month later (mid-June 1995). The
next alarms (Fig. 9(c)) occurred around mid-May 1996 and then about three months later.
The most persistent sequence of alarms was raised a week after the beginning of 1997 (Fig.
9(d)). The mean lag between alarms is 32 days, in accordance with the expected ARL to
detection. Note that the change in mean is detected at the beginning of January 1997, while
a retrospective approach would have declared that the process is out of compliance only
at the beginning of 1998 (assuming that compliance is assessed at the end of each calendar
year). In this case the elevated concentrations were caused by malfunction of the oil re�neries
in the study area. The re�neries were closed for repairs only by mid-1999.

6 Discussion

The purpose of this study is to show that it is feasible to use the Shiryayev-Roberts scheme
for an interactive surveillance of air quality standards. Once a parametric model has been
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Figure 9: SR scheme applied to the Ashdod series, for the detection of a change of 0:5� in
the mean. Four pairs of �gures (a)-(d) correspond to four overlapping segments of the series,
starting on 2/1/94 (Day=1) and ending on 12/31/97 (Day=1461). For each pair, the upper
�gure displays the logarithm of the seasonly-adjusted series plus shift; the horizontal line is
drawn at �0 = 3:04. The lower �gure presents the statistic R; the horizontal line is drawn
at A = 253. 16



developed, the application of the scheme is relatively simple even for complex parametric
setups. Extension of the procedure to detection of a change in two (or more) parameters
is straightforward. A recent review by Jandhyala et al. (1999b) describes applications of
change point analysis in linear regression problems, with or without continuity (see also Kim
and Siegmund, 1989). Such procedures may be used to detect change in non-stationary
series. Future work may compare the parametric scheme to a nonparametric procedure,
suggested by Gordon and Pollak (1995). Other extensions may consider variants of the SR
scheme when the post-change distribution is unknown (Pollak, 1985) or when the initial level
is unknown (Pollak and Siegmund, 1991).

A major issue to be further addressed is the formulation of the statutory standard in
terms of parameters of the pollution process. Such formulation is required for any statisti-
cal procedure which tests for compliance with regulatory standards, whether interactive or
retrospective.
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