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Abstract

This article proposes compactly supported correlation functions, which pa-

rameterize the smoothness of the associated stationary and isotropic random

�eld. The constructions are straightforward, and compact support is relevant

for various ends: computationally eÆcient spatial prediction, fast and exact

simulation, and appeal among practicioners.

Keywords: Fractal dimension; isotropic; kriging; long-memory dependence; pow-
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1 Introduction

Spatial data observed on the d-dimensional Euclidean space R d are frequently modeled
as the realizations of stationary and isotropic random �elds. This approach requires
the �tting of a correlation model. Speci�cally, a candidate function ' : [0;1) ! R

is �tted to the observed correlations such that�
'(kxi � xjk)

�n
i;j=1

(1)

is the correlation matrix for the random �eld restricted to any �nite set x1; : : : ; xn of
points in R d. In other words, the correlation is supposed to depend on the Euclidean
distance between xi and xj only. Isotropic models also form the building blocks of
more sophisticated, nonisotropic or nonstationary models. The ingenious approach
of Sampson and Guttorp (1992), e.g., deforms the geographic coordinate space into
a new coordinate system where a stationary and isotropic correlation structure is
modeled.

The availability of 
exible, parameterized candidate models ' : [0;1) ! R has
been of recent concern in spatial statistics as well as in various areas of application.
We refer to Christakos (1984), Weber and Talkner (1993), Gaspari and Cohn (1999),
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Moreaux, Tscherning, and Sanso (1999), and the discussion on and rejoinder by Dig-
gle, Tawn and Moyeed (1998). In the statistical literature, the powered exponential
class,

'�(t) = exp(�t�); 0 < � � 2; (2)

and the Whittle-Mat�ern family,

'�(t) =
21��

�(�)
t�K�(t); � > 0; (3)

where K� is a modi�ed Bessel function of index �, have been especially popular. If
� is of the form m + 1

2
where m is a nonnegative integer, then (3) reduces to the

product of a polynomial of degree m in t and exp(�t), and we have ' 1

2

(t) = exp(�t)

and ' 3

2

(t) = (1 + t) exp(�t). The powered exponential family has been used by Hall

and Wood (1993), Kent and Wood (1997), Diggle, Tawn and Moyeed (1998), and
Davies and Hall (1999); and the Whittle-Mat�ern class (Whittle, 1954; Mat�ern, 1986,
p. 18) has been employed in the works of Go� and Jordan (1988), Handcock and
Wallis (1994), and Kent and Wood (1997), among others. These functions model
strictly positive correlations. In contrast, the spherical model,

'(t) =

(
1� 3

2
t+ 1

2
t3; 0 � t � 1;

0; t � 1;
(4)

which is commonly used in environmental and geological sciences, has vanishing cor-
relations beyond a cut-o� distance. Indeed, in many applications compact support of
the correlation function is highly desirable, for various ends.

Computationally eÆcient prediction and interpolation. Spatial prediction is the
foremost goal in many studies. The kriging predictor Z�(x) for the realized value Z(x)
of the spatial variable at x 2 R

d is the linear function of the variables Z(x1); : : : ; Z(xn)
at sampling locations x1; : : : ; xn which minimizes the expected squared prediction
error. Hence, the weights of the observations are derived from the estimated, isotropic
correlation structure represented by '. The formalism of dual kriging (Journel, 1989,
pp. 14{15; Wackernagel, 1998, pp. 223{224) shows that kriging is equivalent to linear
interpolation in terms of the radial basis functions '(kx � x1k); : : : ; '(kx � xnk).
Hence, if the dual approach is used compact support of ' reduces the computational
burden of kriging. Compact support also allows for the use of computationally eÆcient
sparse matrix techniques (Sans�o and Schuh 1987, Barry and Pace 1997).

Fast and exact simulation. Spatial statistical inference and methodological studies
frequently rely on simulated realizations of stationary random �elds. For Gaussian
simulations, the method of choice is clearly the circulant embedding approach of Wood
and Chan (1994) and Dietrich and Newsam (1997). The technique is both fast and
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exact, but fails for certain correlation structures. It always works on suÆciently large
simulation domains if ' has compact support (Dietrich and Newsam, 1997, pp. 1092
and 1098).

Appeal among practicioners. For many data sets, observed correlations essentially
vanish beyond a certain cut-o� distance. In meteorology, e.g., it is widely accepted
that geopotential-height forecast error correlations should be set to zero beyond dis-
tances of a few thousand km in the troposphere (Gaspari and Cohn, 1999, pp. 750{751,
and references therein). In the geological and environmental sciences, the popularity
of the spherical model re
ects similar beliefs and points at the intuitive appeal of
compact support.

Yet compactly supported correlation functions have played very minor roles in
the statistical literature. This seems to stem from a lack of 
exible, compactly sup-
ported models other than the spherical function (4). The behavior of the correlation
function at the origin largely re
ects the smoothness of the random function model
(Adler, 1981), and the interpolated surface formed by the kriging predictor inherits its
smoothness from ' too. Thinking of ' as a function on R by setting '(�t) = '(t), the
associated stationary and isotropic random �eld is k times mean-square di�erentiable
if and only if '(2k)(0) exists. Furthermore, if '(t) is of the form

'(t) = 1� cjtj� + o(jtj�) as t! 0 (5)

for some � 2 (0; 2] and c > 0, then with probability one the realizations of the asso-
ciated Gaussian random �eld in R

d have fractal dimension d + 1 � �
2
. The value of

� lies always between 0 and 2, and it is 2 if the random �eld is di�erentiable. The
powered exponential family and the Whittle-Mat�ern class, for which � = 2min(�; 1),
permit the full range of allowable values for the fractal dimension. Moreover, the
Whittle-Mat�ern model '� has 2k derivatives at the origin if and only if � > k. In
other words, these models parameterize the smoothness of the random �eld model. In
contrast, compactly supported correlation functions which parameterize smoothness
have not been available. The intention of the present article is to introduce this type
of correlation model by straightforward constructions. We aim at applications in two
di�erent situations { studies in statistical methodology which rely on conveniently
parameterized correlation models and exact simulation, and large-scale spatial pre-
diction problems where compact support reduces the computational burden { but
focus on mathematical aspects, and collate and extend existing literature in various
scienti�c disciplines.

Speci�cally, Section 2 presents compactly supported correlation functions with an
arbitrary but �xed number of derivatives at the origin. These functions are of simple
analytical form and may be chosen as nonnegative and nonincreasing polynomials on
their support. The construction is due to Wendland (1995) and has been adapted
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Figure 1: The product correlation function (6) for � = 2, � = 7
4
, . . . , � = 1

4
, from

top to bottom. The scale parameters are L� = (2=�)1=� and L = 1, and the model is
permissible in three or less dimensions.

to statistical applications by Gneiting (1999c). Rami�cations that allow for negative
correlations are considered, too. In Section 3, we construct compactly supported
correlation functions which parameterize smoothness for the random �eld model.
Our suggestions include direct, compactly supported approximations to the powered
exponential and Whittle-Mat�ern class as well as product correlation functions. Figure
1, e.g., illustrates the members of the family

 �(t) = '�

�
t

L�

�
'
�
t

L

�
; 0 < � � 2; (6)

where '� is the exponential model (2), ' is Kanter's compactly supported function
(22), and L and L� are scale parameters. This family is compactly supported, pa-
rameterizes fractal dimension, and is permissible in three or less dimensions. The
upper limit function  2 is two and only two times di�erentiable at the origin and
corresponds to a random �eld with one mean-square derivative, thereby avoiding the
abrupt change from not di�erentiable to in�nitely di�erentiable random functions at
the upper limit of the powered exponential family.

Through the article, the argument t of the correlation function should be thought
of as t=L with a scale parameter or cut-o� value L > 0, which might be distinct for
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each factor in a product model of the type (6). Furthermore, unlike the spherical
model, the vast majority of the models proposed here are twice di�erentiable with
respect to the parameters, and thereby satisfy the conditions in the landmark paper of
Mardia and Marshall (1984) on maximum likelihood estimation for spatial processes.

2 Construction of compactly supported correla-

tion functions

2.1 Mathematical background

This section introduces notation and provides a condensed survey of background
material. We denote by �d the class of the continuous functions ' : [0;1) ! R

which represent the correlation function of a stationary and isotropic random �eld on
R

d. In other words, the continuous function ' : [0;1)! R belongs to �d if and only
if '(0) = 1 and the matrix (1) is nonnegative de�nite for every �nite system of points
x1; : : : ; xn in R d. Then �d+1 � �d for all d, and the elements of �d are of the form

'(t) =
Z
[0;1)


d(tr) dF (r); (7)

where F is a probability measure on [0;1), and where


d(t) = �(d=2)
�
2

t

�(d�2)=2
J(d�2)=2(t) (8)

with J(d�2)=2 a Bessel function of the �rst kind of order (d� 2)=2. See, e.g., Mat�ern
(1986, Section 2.3) and Gneiting and Sasv�ari (1999). The members of the powered
exponential and Whittle-Mat�ern class belong to �d for all d, and the spherical model
(4) belongs to �3 but not to �4 (Gneiting, 1999a). Finally, it may be interesting to
recall from Eq. (36) of Gneiting (1998) that the d-variate spectral density associated
with an element ' of �d is unimodal if and only if ' belongs to �d+2, too.

The subsequent constructions rely on transformations between the classes �d

which preserve compact support. Speci�cally, we consider the descente,

I'(t) =
Z
1

t
u'(u) du

�Z
1

0
u'(u) du; t � 0; (9)

and the mont�ee,

D'(t) =

(
1; t = 0:
'0(t)/(t'00(0)); t > 0:

The second derivative '00(0) refers to the symmetrically continued function; and under
mild regularity conditions, I and D are inverse operators.
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Theorem 1 (la descente) Let ' be an element of �d, d � 3. If u'(u) is integrable

over [0;1), then I' is an element of �d�2.

Proof. Suppose ' satis�es the conditions of the theorem, and de�ne 'n(t) =
'(t) exp(�t2=n) for n = 1; 2; : : : By Lemma 2.1(2) of Wendland (1995), I'n 2 �d�2

for all n; hence, I' = limn!1 I'n belongs to �d�2, too. 2

Theorem 2 (le mont�ee) Let ' be an element of �d. If '00(0) exists, then D' is an

element of �d+2.

Proof. Suppose ' is an element of �d for which '00(0) exists. By Lemma 3 of
Gneiting (1999b), '00(0) = �d�1

R
[0;1) r

2 dF (r), where F is the probability measure
in the canonical representation (7). In particular, F has a �nite second moment. From
standard properties of Bessel functions, 
0d(t) = �d�1 t
d+2(t), and the derivative is
bounded. Thus, we may di�erentiate under the integral sign in the representation
(7), so that

D'(t) =
Z
[0;1)


d+2(rt) r
2 dF (r)

,Z
[0;1)

r2 dF (r) ;

this function is clearly an element of �d+2. 2

The theorems seem slightly stronger than previous results. Yet similar �ndings
have been reported by various authors at various times and in various scienti�c dis-
ciplines. Matheron (1965, Chapter I) coined the terms descente and mont�ee, which
originate from an appealing physical interpretation in a mining context (see also Chil�es
and Del�ner, 1999, pp. 72{73). His results are very beautiful and will be rephrased
here in terms of classes �d, de�ned by Eqs. (7) and (8), with possibly non-integral
index d. It can then be shown that �d0 � �d if d0 � d � 1; and under suitable
regularity conditions the operator

I�'(t) =
Z
1

t
u
�
u2 � t2

���1
'(u) du

�Z
1

0
u2��1'(u) du ; t � 0; (10)

maps an element ' 2 �d to an element I�' 2 �d�2�. Matheron provides a wealth of
examples for the fractional descente (10) and its inverse, the fractional mont�ee. His
clavier de Bessel de 2e esp�ece comprises the Whittle-Mat�ern class: if '� is the Whittle-
Mat�ern model (3) and � > 0, then I�'� = '�+�. Wu's (1995) recent construction
corresponds to Matheron's (1965) clavier sph�erique and includes the spherical function
(4) and the cubic model (Wackernagel, 1998, p. 245, Chil�es and Del�ner, 1999, p. 84)
as special cases.
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2.2 Wendland's construction

Here, we review Wendland's (1995) construction as adapted by Gneiting (1999c). The
starting point is Golubov's (1981) result that the truncated power function

'�;0(t) = (1� t)�+ =

(
(1� t)�; 0 � t � 1;
0; t � 1;

(11)

is an element of �d if and only if � � d+1
2
. Wendland (1995) then de�ned

'�;k(t) = Ik'�;0(t); k = 0; 1; 2; : : : ; (12)

by repeated application of the descente (9) to the truncated power function (11). By
Theorems 1 and 2, '�;k is a member of �d if and only if � � d+1

2
+ k. Furthermore,

'�;k is 2k times di�erentiable at zero, positive and strictly decreasing on its support,
and of the form '�;k(t) = pk(t) (1 � t)�+k

+ with pk a polynomial of degree k with
coeÆcients in �. Wendland focused on the case when � is an integer, so that '�;k is a
polynomial on its support. He showed that the polynomial is of minimal degree for a
given order of di�erentiability. Gneiting (1999c) pointed to the use of the parameter
� in covariance estimation and gave explicit formulas for the resulting parameterized
families. Speci�cally,

'�;1(t) =
�
1 + (� + 1) t

�
(1� t)�+1

+ (13)

is an element of �d if and only if � � d+3
2
, and

'�;2(t) =
�
1 + (� + 2) t+

1

3

�
(� + 2)2 � 1

�
t2
�
(1� t)�+2

+ (14)

belongs to �d if and only if � � d+5
2
. These functions have 2 and 4 derivatives at

the origin, respectively. See Gneiting (1999c, Section 4) for illustrations and further
discussion. Finally, one might generalize the construction and de�ne '�;� = I�'�;0

for � > 0 by means of the fractional descente (10). We return to this approach in
Section 3.1.

2.3 Hole e�ect models

The previous construction provides compactly supported, smooth correlation func-
tions that decay monotonically to zero. In this section, we point at rami�cations to
model negative correlations, the so-called hole e�ect of geostatistics. Note that the
representation (7) imposes a lower limit on the negative values attainable by isotropic
correlation functions (Mat�ern, 1986, p. 16).
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Figure 2: The hole e�ect model of Eq. (15) for d = 2 and � = 7
2
, � = 5, � = 15

2
, and

� = 12, from top to bottom for small t.

The turning bands operator transforms a function 'd 2 �d, d � 3, into an element
'd�2(t) = 'd(t) + (d � 2)�1 t '0d(t) of �d�2; and 'd 2 �d if and only if 'd�2 2 �d�2

(Matheron, 1973). The operation preserves both compact support and the local
behavior of the correlation function at the origin; furthermore, if 'd is nonnegative
then 'd�2 will often attain negative values. Applying the turning bands operator to
the family in Eq. (13), e.g., results in

��(t) =
�
1 + � t�

1

d
(� + 1) (� + 2 + d) t2

�
(1� t)�+; (15)

which is an element of �d if and only if � � d+5
2
. Figure 2 illustrates the members of

this family for d = 2 and selected values of � � 7
2
.

As an alternative, Gaspari and Cohn (1999) construct compactly supported el-
ements of �3 which model negative correlations by direct convolution in R

3. See
Figures 7 and 8 of their work. Finally, a third approach is to consider product
correlation functions: if  (t) = '(t) 
d(t=L), t � 0, with a compactly supported,
nonnegative function ' 2 �d, 
d given by (8), and L a suitable length scale, then
 2 �d will display the hole e�ect. We refer to Section 3.3 for a discussion on the
choice of '.
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3 Parameterizing smoothness

3.1 Compactly supported, exponential and Whittle-Mat�ern

like functions

In this section, we seek compactly supported families within �d that approximate
the powered exponential class (2) and the Whittle-Mat�ern family (3) and provide a
continuous parameterization of smoothness.

A natural candidate to approximate the powered exponential class is the truncated
power family,

'�;�(t) = (1� t�)�+ ; 0 < � < 2; � � �d(�): (16)

Clearly, '�;�(t=�
1=�) ! exp(�t�) as � ! 1, uniformly in t � 0. The key ques-

tion then is whether '�;� belongs to the class �d of permissible correlation models.
Golubov (1981) showed that for each positive integer d there exists a nondecreasing
function �d(�), 0 < � < 2, such that '�;� 2 �d if and only if � � �d(�). Further-
more, �d(�) � � + d�1

2
with equality if � = 1, and lim�!2 �d(�) = 1. Finite upper

bounds on �d(�) have recently become available; e.g., �1(
5
3
) � 3, �1(1:9550) � 10,

and �3(1:8095) � 6 (Gneiting, 2000a, 2000b). Yet for any given � the permissible
functions of the form (16) cover only part of the allowable range 0 < � � 2 for the
local behavior (5) at the origin, and therefore for the fractal dimension.

To approximate the Whittle-Mat�ern family (3), let us return to the construction
in Section 2.2 and apply the fractional descente (10) to the truncated power model
(11), so that

'�;�(t) = I�'�;0(t) = c�1
Z 1

t
u
�
u2 � t2

���1
(1� u)�+ du; � > 0: (17)

Here c is the Beta integral B(2�; � + 1); and '�;� belongs to �d if and only if
� � d+1

2
+ �. Moreover, since I�'� = '�+� for the Whittle-Mat�ern model (3),

and lim�!1 '�;0(t=�) = exp(�t) = ' 1

2

(t), uniformly in t � 0, it is immediate that

lim�!1 '�;�(t=�) = ' 1

2
+�(t), uniformly in t � 0. Finally, '�;� and the Whittle-Mat�ern

model ' 1

2
+� have the same type of behavior at the origin.

Unfortunately, closed form solutions of the fractional integral in (17) are not avail-
able unless � is an integer, or � is an integer and � = 1

2
; 3
2
; : : : If � < 1, a straightfor-

ward change of coordinates removes the singularity of the integrand, so that numerical
integration is feasible but cumbersome. In this light, we turn our attention to com-
pactly supported product correlation functions, an approach proposed by Gaspari
and Cohn (1999, Section 4d).
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3.2 Product correlation functions

Suppose f'� : 0 < � � 2g � �d is a parameterized family of correlation models with
a local behavior of the type (5) at the origin, i.e., '�(t) = 1� cjtj�+ o(jtj�) as t! 0,
for a constant c which may depend on �. Let ' be a compactly supported element of
�d which is twice di�erentiable at the origin. Since �d is closed under multiplication,
the product function

 �(t) = '�

�
t

L�

�
'
�
t

L

�
; 0 < � � 2; (18)

where L� and L are scale parameters, belongs to �d too. Furthermore,  � has com-
pact support and behaves like 1 � cjtj� + o(jtj�) as t ! 0. In other words, f �g
parameterizes fractal dimension in the same manner as the original family f'�g does.

Similarly, if '� is the Whittle-Mat�ern model (3) and ' is a compactly supported
element of �d for which '

(2k)(0) exists, then the product function

 �(t) = '�

 
t

L�

!
'
�
t

L

�
; � > 0; (19)

is a compactly supported element of �d; and if '� has 2l � 2k derivatives at the
origin then so has  �. Thus, f �g provides a continuous parameterization of random
functions whose realizations are l times di�erentiable, l = 0; 1; : : : ; k.

Ideally, one would choose the compactly supported factor ' as an in�nitely di�er-
entiable function, so that the product model (19) permits the full range of smoothness
allowed by the Whittle-Mat�ern family. Clearly, compactly supported members of �d

with in�nitely many derivatives exist, such as the suitably normalized self-convolution
of an in�nitely di�erentiable, radial function supported on a ball in R d. However, the
author does not know of a closed-form representation for a self-convolution of this
type. From an applied point of view, an upper bound on the smoothness of the
random �eld does not appear to pose major problems. In simulation studies, an
arbitrarily high upper bound is certainly not of concern. In covariance �tting, it is
frequently reasonable to assume a priori that high values of the smoothness param-
eter are less likely, as in Handcock and Wallis (1994, p. 373) and Handcock (1998).
Furthermore, one might well use the Whittle-Mat�ern model (3) in an initial stage of
the model �tting and shift to compactly supported models at a later stage only, which
retains the bene�ts of either approach. Clearly, there is much scope for methodologi-
cal research in the area, and experiments with real and simulated data sets, as in Dee
and others (1999), are desirable.
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3.3 Examples of product correlation functions

In this �nal section, we discuss the speci�c choice of the two factors in a product of
the form (18) or (19).

The Whittle-Mat�ern class (3) is indeed the only candidate for an analytically
tractable, continuously parameterized family f'� : � > 0g of correlation functions,
which admit the entire range of k = 0; 1; 2; : : : times di�erentiable random �elds. For
an embedding into a larger class of parameterized correlation functions see Section
3 of Gneiting (1999c). The powered exponential class is the standard model for a
parameterization f'� : 0 < � � 2g of fractal dimension. Yet there are other options,
such as the Cauchy family

'�;�(t) = (1 + t�)��=� ; 0 < � � 2; � > 0: (20)

These functions belong to �d for all d, because '�;� has a scale mixture representation
in terms of the upper limit function '2(t) = exp(�t2) of the powered exponential
class (Gneiting, 1997, Example 4). Again, the fractal dimension of the realizations is
d+ 1� �

2
, whereas � is a long-memory parameter. In fact, the Cauchy family seems

to provide the power-law correlation function with non-integral index �, for which
Whittle (1962, p. 314) had called. Beran (1994, Sections 1.3.5 and 1.5.3) gives a more
detailed discussion of long-memory dependence in the random �eld context.

How should the compactly supported and smooth second factor ' be chosen?
If the product correlation function (18) or (19) is supposed to approximate f'�g or
f'�g, respectively, it is natural to minimize the curvature of ' at zero (cf. Gaspari and
Cohn, 1999, Section 4d). To �x the idea, denote by �0

d the class of all the functions
' 2 �d such that '(t) = 0 for t � 1 and '00(0) exists. We seek to minimize j'00(0)j
within the classes �0

d, d � 1. The problem has been solved if d = 1 and if d = 3.

Theorem 3 If ' 2 �0
1, then j'

00(0)j � �2 with equality if and only if

'(t) = (1� t) cos(�t) +
1

�
sin(�t); 0 � t � 1: (21)

This result is due to Bohman (1960), and the compactly supported function (21)
is illustrated in Figure 3.

Theorem 4 If ' 2 �0
3, then j'

00(0)j � 4
3
�2 with equality if and only if

'(t) = (1� t)
sin(2�t)

2�t
+

1

�

1� cos(2�t)

2�t
; 0 � t � 1: (22)
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Figure 3: The extremal functions (21) and (22) of Theorem 3 and 4, solid lines, from
top to bottom; and the function (23) of Gaspari and Cohn, broken line.

To prove Theorem 4, recall from Eq. (36) of Gneiting (1998) that �0
3 can be

identi�ed with the class of functions ' 2 �0
1 for which the associated spectral density

is unimodal. Kanter (1997) solves the extremal problem for the latter class, and his
solution is given here.

For d = 2 and d � 4, the problem is open. However, a very interesting construction
is due to Gaspari and Cohn (1999, Section 4d). They propose to use a product
correlation function of the type  (t) = (1 + (t=L1)

2)�1'(t=L2) in atmospheric data
analysis systems, where L1 and L2 are scale parameters, and

'(t) =

(
1� 20

3
t2 + 5t3 + 8t4 � 8t5; 0 � t � 1

2
;

1
3
t�1 (8t2 + 8t� 1) (1� t)4 ; 1

2
� t � 1;

(23)

is an element of �0
3 for which j'

00(0)j = 40
3
is surprisingly close to the lower bound of

Theorem 4. Furthermore, Figure 3 illustrates that (23) attains larger values than the
extremal function (22) on the joint support, except when t < 0:0617 : : :

These results clearly suggest the use of the functions (21), (22), and (23), respec-
tively, as the compactly supported factor in a product correlation function of the type
(18). For products of the type (19), smoother factors with 2k � 4 derivatives at the
origin may be needed. Then Wendland's function (12) with the minimal value of � for
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Figure 4: The product correlation function (24) for � = 2, � = 7
4
, . . . , � = 1

4
, from

top to bottom. These functions are permissible in one dimension.

the given dimension d and smoothness k might be chosen. Alternatively, choosing the
minimal value of � for dimension d + 2 ensures that the compactly supported factor
has a unimodal spectral density. Clearly, this carries over to the product correlation
function if the spectral density of the second factor is unimodal, too.

We close the paper with a discussion of some speci�c product correlation functions.
The model (6) that we saw in Section 1 is the product of the powered exponential (2)
and Kanter's function (22). Again, we stress that the compactly supported product
model avoids the abrupt change from not di�erentiable to in�nitely di�erentiable
random functions at the upper limit, which is frequently considered a drawback of
the powered exponential class. Figure 4 illustrates the product model

 �(t) = (1 + t�)�3
�
(1� t) cos(�t) +

1

�
sin(�t)

�
; 0 < � � 2; (24)

for t � 1, and 0 otherwise, which is also of the form (18). Here f'�g is the Cauchy
family (20) with � = 3�, ' is Bohman's function (21), and L� = L = 1. Clearly, this
correlation model is valid if d = 1 only. Finally, Figure 5 displays the family

 �(t) = '�(t)
�
1 +

11

2
t +

117

12
t2
�
(1� t)

11=2
+ ; � > 0; (25)
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Figure 5: The product correlation function (25) for � = 5
2
, � = 2, � = 3

2
, � = 11

10
,

� = 4
5
, and � = 6

11
, from top to bottom. This model is permissible in one- or

two-dimensional space.

where '� is the Whittle-Mat�ern model (3). This is of the type (19) with L� =
L = 1, and ' = ' 7

2
;2 an instance of the family (14) whose elements are four times

di�erentiable at zero. The product model is permissible in one or two dimensions and
has up to four derivatives at the origin, too.
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