
ORCA: A Visualization Toolkit for
High-Dimensional Data

Peter Sutherland Anthony Rossini Thomas Lumley
Nicholas Lewin-Koh Dianne Cook Zach Cox

NRCSE
T e c h n i c a l R e p o r t S e r i e s

NRCSE-TRS No. 046

May 18, 2000

The NRCSE was established in 1996 through a cooperative agreement with the United States
Environmental Protection Agency which provides the Center's primary funding.

ORCA: A Visualization Toolkit for

High-Dimensional Data

Peter Sutherland�, Anthony Rossiniy, Thomas Lumleyz,

Nicholas Lewin-Kohx, Dianne Cook{, Zach Coxk

Abstract

This paper describes the background and design of the software, Orca. Orca is
a exible and extensible toolkit for constructing interactive and dynamic linked
data viewers. It is speci�cally designed for data having a multivariate compo-
nent. A main goal of the Orca project is to make interactive and dynamic graph-
ics programming accessible to researchers from diverse �elds and backgrounds.
The approach to displaying data comes from earlier research on building sta-
tistical graphics based on data pipelines. Di�erent aspects of data processing
and graphical rendering are organized conceptually into segments of a pipeline.
The software design of Orca takes advantage of the object-oriented nature of
Java(tm) to open up the data pipeline, which allows developers greater exibil-
ity and control over their visualization applications. Importantly, new types of
data views coded to adhere to a few simple Orca design requirements can easily
be integrated with existing pipe sections. This allows access to sophisticated
linking and dynamic interaction across all (new and existing) Orca view types.
Orca pipe segments can be accessed from modern data analysis packages such
as Omegahat or R, providing a tight-coupling of visual and numerical methods.

Keywords: Multivariate space-time data, dynamic graphics, interactive
graphics, object-oriented software, java, motion graphics, brushing, multiple
linked views, compositional data, data projections, plot matrices.

�Research begun while at NRCSE, University of Washington, Seattle, WA. Currently at

NeoMorphic, Berkeley, CA
yBiostatistics, University of Washington, Seattle, WA
zBiostatistics, University of Washington, Seattle, WA
xStatistics and EEB, Iowa State University, Ames, IA
{Statistics, Iowa State University, Ames, IA
kElectrical Engineering, Iowa State University, Ames, IA

1

1 Introduction

Since the late 1960s research in statistical graphics has exploited the techno-
logical advances provided by the computer and electronics industry. Graphics
terminals facilitated a major advance in using graphics to assist in data analy-
sis. For the �rst time moving pictures could be displayed and a user was able
to interact with a plot in real-time. Chang (1970) explored rotations in 5D, to
detect 2-D structure, and Kruskal (1970) watched a multidimensional scaling
algorithm converge to a stable con�guration. The seminal piece of work, called
PRIM-9 (Fisherkeller, Friedman & Tukey 1974) was the �rst general purpose
interactive statistical graphics system. PRIM is an acronym for Picturing, Ro-
tation, Isolation and Masking. It had tools for drawing plots, rotating variables
into the plot, and conditionally masking points according to variable values.
PRIM-9 was implemented on an IDIIOM vector scope driven by a Varian 620
minicomputer connected to an IBM 360/91 mainframe. It so monopolized the
computing power of the mainframe that all other computing jobs came to a
standstill while it was running! The earliest graphics terminals were vector-
based displays.

In the mid-80s (McDonald 1982) developed Orion II, a set of statistical
graphics methods using an object-oriented programming language on a single-
user workstation with a raster display. (Actually this workstation was the kernel
that developed into Sun workstations). By the late 80s, single user UNIX work-
stations running the X Window System prevailed in the academic community.
The software XGobi (Swayne, Cook & Buja 1998), programmed in C, has its
home in this environment, as does XmdvTool (Ward 1994). In a similar time
frame, silicon graphics workstations became a standard for high-end graphics
applications. ExplorN (Carr, Wegman & Luo 1996) was developed in this envi-
ronment.

Diverging here with a side comment, along with the technological advances,
came a dilemma for researchers working in these areas: how to adequately de-
scribe their work in the printed page. Of course, it is near to impossible. Some
researchers have used �lm and now video technology to record their work for
posterity. Many videos are carefully archived in the American Statistical Associ-
ation Statistical Graphics video lending library (www.bell-labs.com/topic/-

societies/asagraphics/).
Now by the late 90s (and into the new millennium) raster graphics dis-

plays have prevailed, window interfaces are the most prevalent manner for users
to interact with the computer, and computer languages have evolved consid-
erably. Among the new innovations is the Java programming language, an
object-oriented, cross-platform, computing environment from the folds of Sun
MicroSystems. Java uni�es the hardware world facilitating a \develop here, use
everywhere" approach. The Java language o�ers bold new technology for use
with statistical computing and graphics.

When confronted with a new technology, it is important not to simply carry
through old habits and customs, but to understand the complexities and rich-
ness o�ered by the new tools, to foster novel thinking and creativity in future

2

work. In this spirit, we begin by discussing the foundations of statistical graphics
thinking, and develop these into the software design principles for data visual-
ization systems. This paper describes the development and structure of a new
visual toolkit for statistical data visualization which exploits the software inno-
vations made available by Java. Two applications are described that use the
toolkit to provide new types of dynamic graphics for exploring compositional
data and multivariate time-dependent data.

2 Foundations of Data Visualization

Data visualization is the science of picturing data, where \data" is de�ned
to be information that exists in some schematic form such as a table or list.
Data is often but not always quantitative, and some translation of unstructured
information is often required to derive the data. Data always includes some
attributes or variables, such as the number of atoms in a molecule, or the value
of the Australian dollar relative to the US dollar, or the weight of a crab.

Data visualization di�ers from information visualization, scienti�c visualiza-
tion and cartographic visualization. Information visualization is broader and
really encapsulates data visualization. It seeks to visualize more generally un-
structured information, for example, visualizing lines of code in software (Eick
1994). Scienti�c visualization is primarily concerned with visualizing 3-D, or 3-
D+time phenomenon, such as for medical purposes, displaying molecular struc-
ture of drugs, or in construction projects, displaying architectural prototypes.
It involves more physical realism. Cartographic visualization concerns visualiz-
ing maps, geography and spatial domains. But these types of visualizations are
not mutually exclusive and indeed it is common that data arises in conjunction
with a geographic component, or from restructuring lines of code into counts of
particular expressions, or from databases of chemical properties of molecules.
So it is common that data visualization needs to be done simultaneously with
the other types of visualizations.

A characteristic of data visualization is the concern with abstract relation-
ships among such variables: for example, the degree to which income increases
with education. In data, the number of variables is arbitrary: 5-10 are common
and 50 and even hundreds of variables often arise in very real contexts. If we
think of each variable as plotted on axis, with values of that variable mapped
along the axis, and that each axis represents a dimension, then the dilemma
for data visualization is how to picture more than 2 or 3 variable dimensions
simultaneously on a 2-D paper surface. The solution is availablewith computers.

2.1 Representing High-Dimensional Data

The approach we advocate to drawing plots of data is called the \multiple
views" paradigm (Buja, Cook & Swayne 1996). Multiple plots, corresponding
to di�erent views of the data from multiple aspects, are shown to the user
simultaneously. Interaction tools facilitate linking information between plots.

3

The methods adhere to very speci�c guidelines for graphics: use simple, easy-
to-read plots, with a healthy collection of interaction tools, such as refocusing,
linking between plots, easy rearrangement of plots, and automated sequences of
views. We describe the approach in depth in this section.

At the root of graphical methods in statistics is a division of data visualiza-
tion into three areas:

� Rendering, or what to show in a plot;

� Manipulation, or what to do within plots;

� Linking, or what information to share between plots.

The �rst area, rendering of data, comprises all decisions that go into the produc-
tion of a static image. Rendering is concerned with appropriate representation of
information in data variables: a scatterplot, a density plot, a time series plot or
a parallel coordinate plot are examples of renderings. Wegman & Carr (1993)
give an excellent introduction to the wide array of rendering methodology in
statistical data visualization.

The second area, the manipulation of plot elements, refers to how we operate
on individual plots and how we organize multiple plots. The purpose of these
manipulations is to support the search for structure in data.

The third area, linking, refers to the connection of elements from one ren-
dering to another rendering. We most often think of linked brushing, where
points are given the same appearance (color, glyph) between renderings. More
generally, linking can include matching scales, matching axes, linking a point
to a record in a database, or index of chemical compounds. In the practice of
data visualization, there usually exists a larger context of open-ended problem
solving. In such contexts, data visualization systems are most useful if they
provide plot manipulation tools that support extensive searching and linking of
information.

Behind the process of rendering is the concept of a data pipeline, �rst de-
scribed by Buja, Asimov, Hurley & McDonald (1988). It is assumed here that
the data comes in the form of a matrix, with n rows corresponding to cases, and
p columns corresponding to the number of variables. The data pipeline is the
conveyor belt which takes the raw data through a series of transformations to
go from p-dimensional data to a d-dimensional rendering, where d < p. (Most
commonly d = 2.) Figure 1 illustrates the data pipeline for multivariate data.
The steps which we will describe transform the data from a raw form as de-
scribed above, to a unit-free visualization world, and �nally, projected to a 2-D
planar viewing frame (possibly enhanced to 3-D by virtual reality technologies).

Typically the �rst step (between raw and world) in a data pipeline includes
some type of variable standardization. Examples of standardization are stan-
dardizing each variable to mean 0, variance 1; transforming to �t within a
limited range such as [0; 1]; and ordering time variables. It can also be the place
where row information, such as case labels, links to external annotation sources,
appearance of points, and column information, such as variable names are are
formed.

4

The second step (between world and planar) primarily involves dimension
reduction. This step may also include methods for reducing the number of
cases, by binning for example, in the situation of extremely large numbers of
variables. The dimension reduction may be done using variable selection, or
through projection methods such as principal components or discriminant co-
ordinates. Motion graphics, such as tours (Asimov 1985, Cook, Buja, Cabrera
& Hurley 1995, Buja, Cook, Asimov & Hurley 1997), can be applied to address
the dimension reduction problem, also. Although the number of variables may
remain the same, the tour algorithm provides a continuous sequence of low-
dimensional projections to produce a \movie" which shows the data \from all
sides". A tour can also be thought of as display of multiple views across time
rather than space.

The second step, then, can be considered under the scope of building a graph-
ical object: dimension reduction, and construction of components of a speci�c
rendering of the data, including axes. It could also be the site of the de�nition
of appropriate manipulation modes for the type of rendering, for example, a
mechanism for changing bin widths. This essentially scales the data into the
viewing window. The screen coordinates is also the location for translating
mouse actions on a window into manipulation actions on the data.

Selection,
eg Variable

PCA
Mean/SD,

Renderer
Reduction
Dimension

Tour Engine

SCREENPLANARWORLDRAW

eg Scatterplot,
Matrix Layout,
Parallel Coords,
Time Series Plot

eg Min/Max,
Scaling,

2-Dd-D
unit-free

p-D p-D

Figure 1: Data pipeline representing multivariate data.

When the data comes with a much broader mixture of variables, such as
time, space, or sampling weight, more complex methods are required. Figure 2
illustrates such a pipeline. At each step, variables that describe the sampling
structure rather than actual measurements need to be handled di�erently. The
�rst step may now include casting variables into statistically relevant types
for visualization. This would include tagging them as time variables, space
variables, or to be used for weighting measurements. Time variables may need

5

to be passed on in time order, and it is common to construct lags of variables.
A weight variable may be separated out to to de�ne point appearance in a later
plot.

The second step needs to preserve the structural variables rather than re-
ducing them to low-dimensional projections. The structure of the data may also
a�ect the type of dimension reduction to be considered. In a multivariate regres-
sion setting, it may be more appropriate to construct separate low-dimensional
summaries of the predictor variables and response variables, rather than mixing
them together. This is analogous to the distinction between principal compo-
nent analysis and canonical correlation in formal multivariate analysis. We see
that the second step can be considered a re-structuring stage as well as a stan-
dardizing to coordinate-free stage. It may also involve constructing a structure
to maintain linking information in complex cases, for example, linking lag plots
to other types of plots.

The third step involves the construction of views of the data. There are
tradeo�s between accurate representation of high-dimensional data distributions
and representations of the sampling structure. For example, a two-dimensional
time series view that preserves the time structure leaves only one dimension to
show projections of the data. It is useful to augment this view with a second view
that suppresses the time axis and shows two-dimensional projections. These
tradeo�s are even more extreme for data measured over space, or both space
and time, where e�ective display of even one dimension of the data is challenging.

Dimension
Reduction

Renderer

MV p-D

Time

eg Min/Max,

p-D
unit-free

d-D 2-D

Scaling,

Category

Mean/SD,
PCA, time
lagged vars

eg Time Series

+Variable Type

Time
Weight

MV p-D

Time, Lags

Category

Weight

MV d-D

p-D

RAW WORLD PLANAR SCREEN

Figure 2: Data pipeline representing multivariate data, in combination with
other variable types such as time and space.

In general, the multiple views approach speci�es that the data pipeline is
rather more like a river delta, piping the data out into multiple renderings.
The di�culty with this approach is to de�ne appropriate mechanisms to link

6

information from one plot to another. In the simplest case, where one view
has a scatterplot of variable 1 vs variable 2, and another view has a scatterplot
of variable 3 vs variable 4 the points in each plot are linked one-to-one, the
correspondence of a point in one plot is to a point in the other plot (Figure
3). More complex types of linking arise often, for example, if there is a time
or spatial component to the data. In the situation where there is a spatial
component we need to explore the spatial dependence between sample points.
So we may have a point, in one view as an element of a variogram cloud,
corresponding to a pair of locations in another view, the map. In the case
of time dependent data it is often desirable to link a point in one view to a
time series in another view. An example might be a multivariate longitudinal
study, where there are both demographic variables for each patient, and multiple
measurements over a follow-up period. We could think of this as one-to-many,
or indeed many-to-one. Other types of plot element linking are common as well,
for example, axis scale, and projection coe�cients. Figure 4 illustrates linking
of information in association with the data pipeline.

When plot elements are linked, it ensures that manipulation of elements in
one plot directly a�ects the representation of the data in the other plots. The
taxonomy of manipulations is described in Buja et al. (1996). Here we provide
a short summary:

� Focusing views: By focusing we mean any operation that is an extension
of manipulating a camera, such as deciding from which side to look at the
object and in which magni�cation and detail. Focusing views includes
choosing the variables or (more generally) the projections for viewing, but
also choosing aspect ratio, magni�cation (zoom) and location in the data
space (pan).

� Posing queries: In graphical data analysis it is natural to pose queries
graphically. For example, with the familiar brushing techniques, coloring
or otherwise highlighting a subset of the data means issuing a query about
this subset. It is then equally natural that the response to the query be
given graphically. This is achieved by showing information about the
highlighted subset in other views. It is therefore desirable that the view
where the query is posed and the views that present the response are
linked. Ideally, responses to queries are instantaneous.

� Arranging many views: One powerful informal technique is to arrange
large numbers of related plots for simultaneous comparison. Useful ar-
rangements are matrix-like, such as in scatterplot matrices of pairwise
variable plots, but other arrangements such as conditional plots (co-plots)
are also useful. The most common known arranging views approach is
trellis graphics (Becker, Cleveland & Shyu 1996).

In statistical terms, we can further categorize some types of manipulations.
Linked brushing can be considered to be exploring conditional distributions of
variables, where the brush is a conditioning tool. On the other hand, statisti-
cally, motion graphics such as the tour facilitate exploring the joint distributions,

7

��

��

��
����

��

�
�
�
�

��

��
��

��

������
��

��

+ ONE-TO-ONE

ONE-TO-MANY

ONE-TO-TWO

ONE-TO-ONE

��

��
��

��
��

��

��
��

Figure 3: Common types of linking.

8

RAW

SCREEN

MV p-D

Space

OrcaAppearance

PLANAR

WORLD PLANAR SCREEN

MV p-D

Time

Figure 4: Linking is associated with the data pipeline, only in that a wire needs
to be laid connecting the relevant data attribute to the �nal screen rendering.

because the motion facilitates perception of the \shape" of the data from the
sequence of marginal views. If we know the distribution of all low-dimensional
projections of the data then we also know the joint multivariate distribution,
following a result of Cram�er-Wold (Mardia, Kent & Bibby 1979).

2.2 Restructuring Data

Clever restructuring of variables is perhaps one of the most hidden yet valuable
tools for data visualization. Particular types of data lend themselves to obvious
approaches to re-structuring: data with a time or space component, modular
variables such as wind direction, or compositional data where variables contain
a constraint. When there is a time or space component it is important to explore
the time or space dependency using lag plots or variogram cloud plots. With
time, it is also likely that there are di�erent scales of time (daily/weekly/yearly)
to explore. Regrouping these di�erent resolutions into di�erent variables facili-
tate exploring trend (yearly or weekly). A variable such as wind direction can
be better handled in the interactive setting by using sine and cosine values. This
allows the user to brush around the compass points to explore the relationship
with other variables. Compositional data is best approached by pre-projecting
the data into a subspace orthogonal to the variable constraint, a (p� 1)-D sim-
plex, called a ternary diagram in 2-D. In situations where modeling is a part
of the analysis, components associated with the model are useful to append to
the data set, and appending samples or quantiles from standard distributions

9

facilitates inference. When the goal of modeling is classi�cation, exploring a
dendrogram in association with the variables may illuminate clustering in the
data. With any type of prediction, appending the predictions, residuals or di-
agnostics to the data can help improve the visualization of the model.

3 Orca Design

One of the main design principles behind Orca is to provide researchers with
a graphics framework that will allow easy development and integration of new
types of graphics with existing Orca implementations and other statistical lan-
guages. Integration with the framework allows access to sophisticated linking
and dynamic interaction across all Orca view types. Basic features for �le pars-
ing and standard data interaction are built into the system, so the developer
need only concentrate on the speci�c aspects of rendering and implementing
the graphics that interest them. The amount which they adhere to few simple
principles will reect the level of system integration that their graphics exhibit.

Orca is an API framework that enables new graphics to be quickly developed
and linked to existing modules. While it is possible to create an application that
provides run time access to all the features that Orca provides, there are no plans
to implement such an environment. Several simple command-line and GUI-
capable environments already exist that provide the ability to link and interact
with pipeline segments in real time (BeanShell, www.beanshell.org; JPython,
www.jpython.org; Omegahat www.omegahat.org; R, lib.stat.cmu.edu/R/CRAN/).

3.1 Orca Visualization Framework Overview

The Orca framework separates di�erent aspects of data processing and render-
ing into segments of a pipeline. A complete graphics pipeline links some or all
of the following segments: Source pipe, Preprocess pipe, Transformation pipe,
Tour pipe, Render pipe, Window pipe. Each segment of the pipeline performs
its function independent of what pipes are connected to it, and communicates to
the adjacent pipes using a limited set of functions described by the OrcaPipe in-
terface. This allows exibility in the design of new pipes and in linking together
previously created pipes, but does sacri�ce some error checking. For example,
the order of the pipes can be important but is not enforced by the software.

A pipe segment links backward to only one pipe but may be linked forward
to any number of other pipes. By branching multiple pipe segments in this way,
one can easily create multiple views of the same data source, and by choos-
ing the stage at which the branches diverge one can control what linking and
viewing information is shared between these branches. Two di�erent windows
could provide one- and two-dimensional views of the same tour if their pipelines
branched downstream of the Tour pipe, or have independent tours but common
linking if they branched upstream of the Tour Pipe.

Java interfaces are used throughout the API design to create the graph-
ics pipeline metaphor that underlies the main structure of the software. Java

10

interfaces provide a exible way to specify just enough of the behavior of an
object to allow other objects to communicate with it. The OrcaPipe interface,
for example, speci�es that the object can accept new brushing information from
pipes downstream of it and suitably update its output. This may be done by
calculations in the object itself or merely by passing the new information back
upstream. Since the upstream segment itself implements the OrcaPipe inter-
face it guarantees that the upstream pipe will do something sensible with this
information.

The di�erent Orca object types have been designed with the goal of being
simple to grasp, and to provide relevant conceptual landmarks. These design
features should allow the majority of the developer's e�ort to be focused on more
the more important issues of developing interesting views of data pertinent to
their �eld of interest.

To date, resources for this project have focused on re�ning the API design,
improving data structures, and implementing the basic pipe segment function-
ality. This has provided a foundation for experimentation and evaluation of new
methodology through the addition of new pipes to the API.

3.2 Java Interfaces and Object Oriented Design

The Java programming language provides a powerful way to approach multiple
inheritance (extending roles and responsibilities of existing classes) while avoid-
ing some of its complications. Java Interfaces allow a programmer to specify
certain methods that an object must implement but leaves the speci�cs to the
designer of each instance of that interface. Objects that do implement interface
methods can then be referred to via the interface type. This simple contractual
agreement allows for far greater exibility and looser coupling between objects
than allowed for by traditional object inheritance as found in C++ and Java
inheritance classes.

In object oriented programming, polymorphism provides the ability to refer
to an object by any of the classes that it inherits fromor any of the interfaces that
it implements. Through careful use of inheritance and interfaces, very exible
systems of objects can be built. This exibility results from only making an
object's references to other objects at the most abstract level needed only.

Objects that are only interested in the functionality of other objects speci�ed
through an interface will only need to refer to that object as that particular
interface type (see the section on Observables for an example). Referencing
objects at this level allows the main object to interact with any number of
di�erent classes that implement the same interface, without needing to know
their speci�c class.

Inheritance is often not the right way to get at the strengths that polymor-
phism provides. Extending an object through inheritance means that one must
then also override the methods it provides to achieve any distinct functional-
ity. There is then not really any savings in code reuse and one of the basic
assumptions of inheritance has been disregarded.

11

Interfaces approach polymorphism with the idea that the contract meth-
ods provided will allow objects to implement similar but unique functionality,
which is really what is desired for creating multiple objects. For a mathemat-
ical analogy, the real numbers can be thought of as implementing the vector
space, �eld, algebra, and metric space interfaces, independent of whether they
are constructed from Cauchy sequences or Dirichlet cuts, or exist purely by as-
sumption. We choose the interface that guarantees the desired properties, and
do not worry about the implementation.

3.3 Details of the Framework

Seven Orca interfaces make up the foundation: OrcaPipe, OrcaData, OrcaAp-
pearance, OrcaNavigation, OrcaControl, OrcaEvent, and OrcaCommand.

The basic pipe section functionality is speci�ed by the OrcaPipe interface.
Here contract methods to assure pipe section linking and proper data ow are
de�ned. An example of multiple pipes linked up to create a complete pipeline
is illustrated in Figure 5.

Figure 5: Pipe segment diagram for the insect example, illustrating how two
views of one data source are created.

Each of the seven interface types serves a distinct function in the Orca frame-
work. OrcaPipe implementations provide the basic infrastructure for linking
other pipeline segments and passing data. OrcaData, OrcaAppearance, OrcaNav-
igation and OrcaControl can all be thought of as types of data. OrcaPipe segments
are responsible for passing these four types of data through the system. Each
data type is passed through a separate channel. OrcaEvents and OrcaCommands
provide ways for pipe segments to communicate among one another, to update
or augment the data set.

OrcaPipe objects handle aspects of linking pipe segments and of propagat-
ing data and events along the pipeline. The structural properties involving
linking segments are common to all pipe objects and therefore implemented in
an abstract base class that all other OrcaPipe objects can inherit from. These

12

linking methods include functions to maintain connections between pipes and to
branch pipes. Additional commonmethods allow for event propagation through
the pipeline are also implemented in is abstract class.

Individual sections of pipe are responsible for implementing the four major
data ows through each section. These ows (core data, navigation data, ap-
pearance data and control methods) will at a minimum allow data from the
previous pipe to ow through to the downstream pipes as needed. Often a sec-
tion of pipe may only augment one or two of the types of data in some way as it
passes through. For the data channels that handle the data that is untouched,
methods should simply pass the object through to the next segment of pipe.

The segments of the pipeline communicate with four data channels:

OrcaData The OrcaData interface speci�es �ve contract methods that a pipe
must implement: getValue(int x, int y), getNumRow(), getNumCol(), getAt-
tribute(String name), and setAttribute(String name, Object attribute).

With the exception of setting attribute information the object is im-
mutable (it is not possible to change it), and will provide only information
about the size of the data and access to the data values. To operate on
the data once it is in the OrcaData format the OrcaData object must be
wrapped with another OrcaData object. By allowing OrcaData objects to
`wrap' or adapt other existing data objects a programmer can add func-
tionality to an object without needing to make his object aware of all other
existing functionality.

The basic OrcaData object maintains a local array of data or a link to
another OrcaData object that it can use as a data source. This allows
several data objects to chain together and delegate operations to data
objects farther down the chain if it is queried for information it does not
have locally.

OrcaAppearance For each root OrcaData object there is a corresponding Or-
caAppearance object. The handle to this object can be requested by any
section of the pipeline through the pipelines getAppearance method. The
client object that requests the OrcaAppearance object must register itself
to allow for method callbacks. Both objects will then have handles to one
another, allowing the OrcaAppearance object to contact the client object
when changes have occurred to the appearance data and also allowing the
client object to notify the OrcaAppearance object of any changes it has
made to the appearance data.

The OrcaAppearance object allows views to register as observers and then
request di�erent appearance types. An appearance type is nothing more
than a name representing the type of appearance and an integer array that
represents an appearance state of each row of the OrcaData object. It is
the responsibility of the client object to maintain a naming convention
that is consistent with the other Orca graphics. Additionally, there are
no set types of appearance; if an appearance is requested that does not

13

yet exist the OrcaAppearance object will create and initialize one by that
name. This means that new appearance attributes can be added at any
time, without needing to update preexisting code to handle or ignore them.

Information that is associated with the appearance object can in a way
be thought of as information associated with the rows of the data object.
The most immediately visible row appearance is the color used to draw
each point or line.

OrcaNavigation The functions of the OrcaNavigation objects are not currently
as well resolved as the other types. We see navigation data as represent-
ing information regarding variables, or columns of the data. Information
about axes, limits of scale and variable selection can be managed through
the OrcaNavigation object. To date only information about axes is routed
through the navigation channel.

Navigation views will augment the data views. These subordinate graph-
ics may also provide additional control functionality to an aspect of the
pipeline. They may provide any type of information for placing the data
in the context of the variable space, which might include geographic map-
ping, scale axes or directional axes. An example of a navigation view is
the tour axes: how each variable in a tour contributes to the linear com-
binations that are in the data view. This allows the user to see which
variables are important when an interesting feature is visible.

OrcaControl The OrcaControl channel passes a collection of control widgets and
other GUI elements that can be used to manage di�erent segments of
the pipeline. As the control panel object is passed forward through the
pipeline it allows pipe sections to add control panels to a single container
of controls that it manages. This allows a collection of controls to be
available to the window segment of pipe from any or all of the other
segments. Control panels make extensive use of interfaces for interacting
with pipe segments as it is anticipated that many of the control panels
maybe reused. Examples of a OrcaControls include the speed control for
a tour and the color chooser for brushing.

The OrcaPipe interface includes methods for propagation of events and com-
mands throughout the system, as well as the four main data channels. Or-
caEvents provide a methods for communication between pipes; OrcaCommands
provide a way of managing simple operations on the OrcaData objects. By mak-
ing these operations objects it becomes straightforward to control when and how
they execute their operations. As objects they can delay their execution until
they have all the parameters they need. They can also be more easily queued
and threaded for more e�cient batch processing.

An OrcaEvent is propagated through the pipeline and can check the type
of each segment to �nd an appropriate segment to operate on. Once it has
located the segment it can either operate directly on the pipe segment, execute
an OrcaCommand on the data at that segment, or create a new OrcaData type

14

and add it to the data chain. For example, loading a new data set into an
existing pipeline is currently implemented by an OrcaEvent.

OrcaCommands in some ways duplicate the ability of OrcaData objects to
operate on the data they manage. OrcaCommands should be considered for
lighter weight operations. Modifying or extending the OrcaData interface is a
relatively major task, and as noted previously, long chains of OrcaData objects
incur overhead in processing. Operations for adding attributes to a data object
would be a good candidate for an OrcaCommand object. For example, an Orca-
Command is used to specify that a particular variable is a space or time index
rather than an observed measurement.

3.4 Callbacks and the Observer pattern

Linking between views is perhaps the most important functionality that Orca
provides. With this type of linking, views are considered peer objects with one
another. That is, there is no master{slave relationship where a single view is
responsible for linking or notifying other views of state change. Instead all views
link directly to an OrcaAppearance object that acts as a broker between them.
Each view need not know how many other views are active on the same data set,
they only need concern themselves with the state of the appearance data and
act accordingly when it is modi�ed. To achieve this, each view must register
itself with the OrcaAppearance object so that both objects can actively contact
each other.

The need for this type of callback is common in all types of programming.
The basic idea involves registering an interest in the state of another object
and being noti�ed when state changes are made, rather than continually polling
an object to look for changes. In Java the ability to organize these callbacks
is implemented with the Observer interface and the Observable object. The
OrcaAppearance objects are based on the built-in Observable class, which pro-
vides methods to maintain a list of Observers that are interested in the object.
When the object changes, the Observers are noti�ed and can update themselves
appropriately.

This Observable object becomes a type of broker between all objects inter-
ested in the same properties. They do not have to know about each other, only
the single broker that they communicate to each other through. This is also a
good example of the strength that Java Interfaces provide. Here the Observable
can interact with any type of object that implements the Observer interface.
The Observable is only interested in the one contract method that the Observer
interface speci�es (update()) and does not need to know anything else about the
object.

3.5 Adaptor Pattern and Operations on the Data Form

Several complications with data management arise while the data objects are
propagated through the pipeline. Some operations on the data are of the kind
that should only be visible to the downstream side of the pipe, while there are

15

other operations that should be global in scope. Adaptor objects are common
in Java, they are a way of providing additional functionality to existing objects
by wrapping them. Adaptor objects do this by implementing the same methods
(often under an interface) and act as an interpreter for the values that they
return and the object requesting the method call.

To create a exible system that can both localize some of the data and
also access other global attributes the OrcaData objects are designed to allow
chaining together of multiple data objects. Each OrcaData object in a chain of
objects will act as an adaptor for the previous object. It will respond to any
requests that it recognizes by interpreting the data from the OrcaData object
that it wraps. For the requests that do not pertain to its function it will delegate
to the next object down the chain and return these results untouched.

This scheme of data management presents important tradeo�s. By chaining
objects each can be designed with only its main function in mind. However, by
keeping the functionality of each object restricted to a small domain, it might
mean that a chain of data objects could become quite long to incorporate all
the operations needed on a data set. Longer chains will increase the overhead of
operations by increasing the number of method calls that are needed to access
the data.

3.6 View types

The seven interfaces creating the main framework for the Orca system do not
provide a total view of the system. In fact none of them address the real is-
sue at the heart of the Orca framework, the graphics renderings. While object
oriented programming does provide an exciting new way to think about and
organize graphics programming, there are costs associated with this sophistica-
tion. Many researchers cannot a�ord to devote the resources to learn advanced
object oriented techniques and the students who may actually be doing much
of the coding may not have the experience to approach design issues properly.
Our hope is that Orca can scale conceptually, that is, that it can be picked up
quickly by a novice Java programmer or a graduate student with only a few
applets under his or her belt, and still appeal to a seasoned object oriented
programmer.

To integrate a rendering within the Orca framework an object should have
access to an OrcaData object and the OrcaAppearance object that is associated
with that object. Through proper use of the �ve or six methods that these two
objects provide for data and appearance access, a graphics rendering can easily
be integrated into the system.

4 Example Applications

This section describes piecing together Orca pipe segments for two fairly unique
data visualization applications. The �rst describes working with compositional
data, where the data is constrained by a sum across all variables. It is common

16

when studying populations or soils. The unique aspect of this example is insert-
ing in a dimension reduction step into the data pipeline, to reduce the viewing
space to to be the space of the simplex containing the data. The second example
describes an application containing multivariate space and time measurements.
Here, multiple viewers are wired together facilitating exploring the multivariate
structure with regard to time, and to some extent space.

4.1 Compositional Data

When data, x = (x1 x2 : : :xp)0, is constrained by the relationship x1+x2+: : :+
xp = 1 it poses special problems for graphics. Typically, a ternary diagram (al-
ternatively a reference triangle, or barycentric coordinate space) is used, which
works well when there are only 3 components in the composition. It has been
vexing to naturally extend the ternary diagram to arbitrary dimensions. Various
solutions and work-arounds are used: conditional ternary diagrams to explore
sub-compositions, or plots of the percentages as the ratio of the xi (i = 2; : : : p)
to x1.

Compositional data e�ectively lies in a (p � 1)-D simplex in p-space. If we
naively examine the raw data space using a grand tour we will see the data
\collapse", when the viewing dimension contains the empty 1-D subspace. This
is undesirable for examining the distribution of the data in the simplex. So our
approach is to �rst project the data into the (p � 1)-D space where the data
exists, and build barycentric axes (the simplex shell) around the data. This is
done using the SimplexPipe in Orca. The SimplexPipe projects the data into the
(p � 1)-D subspace, and adds barycentric axes to the data.

The data for the example come from a designed experiment, conducted by
Dr Bill Fagan, University of Washington, to evaluate the e�ect of increased
omnivorous predators on arthropod community stability. The data are counts of
bugs in one of 5 functional groups: apical herbivores, basal herbivores, chewing
herbivores, generalist predators, and specialist predators. The 5 compositional
location parameters describe the relative abundance of each group in each of 6
di�erent experimental treatments. The 6 di�erent treatments are:

1 increased omnivory - vegetation disturbance (OV)
2 increased specialist - vegetation disturbance (SV)
3 control predator - vegetation disturbance (CV)
4 increased omnivory - control vegetation (OC)
5 increased specialist - control vegetation (SV)
6 control predator - control vegetation (CC)

The data are samples from the posterior distributions of each treatment for the
compositional location parameters. If omnivory has a stabilizing inuence, then
the composition for treatments 1 (OV), 4 (OC) and 6 (CC) should be similar.
Also, treatments 2 (SV), 3 (CV) and 5 (SV) should be similar but di�erent from
1, 4 and 6.

17

Two viewers are used, a scatterplot matrix, and a tour (Figure 6). (Figure
5 contains the Orca pipe diagram for this example.) The tour view shows the
projected data in a tour over the 5-dimensional subspace in which they lie,
e�ectively rotating the simplex in front of the viewer. It can be observed that
there are di�erences in the location between groups, but also that the shape of
each group (the variance-covariance) is similar, which is not surprise because
the variances and covariances were constrained to be the same in the simulation.

Figure 6: Scatterplot matrix and tour viewers for the insects population data.

4.2 Multivariate Time Data

The Tropical Atmosphere Ocean (TAO) project consists of 70 moored buoys in
equatorial Paci�c, measuring air temperature, relative humidity, surface winds,
sea surface temperatures. The TAO buoy data is collected to monitor the El
Ni~no phenomenon, which is the e�ect of the Paci�c Ocean oscillating in its

18

basin on the weather patterns observed in North America. We use a subset
of the TAO buoy data dating from 7 March 80 to 3 May 98, giving 178080
observations. Ongoing measurements are available from:

http://www.pmel.noaa.gov/toga-tao/home.html.
We reduce the data set further to monthly averages of meridian winds, zonal
winds and sea surface temperatures from buoys moored at�2o lat, and (�110o;�140o)
long. (Humidity has many missing values so we ignored it. Air temperature is
so strongly correlated to sea surface temperature that it was dropped, too.)

The example has three viewers. Figure 7 illustrates the pipe structure of the
application. Figure 8 displays a snapshot of the three viewers.

Figure 7: Pipe diagram for the TAO example.

From the time-constrained tour we can see: (1) There is a variance di�er-
ence between the two longitudes; (2) There are some projections where the two
series are completely shifted from each other. That is the measurements of the
projections at the two buoys are distinctly di�erent; (3) There are some global
trends which are di�erent for each variable; (4) The seasonal trends (peaks and
valleys) mostly match, although at some projections there are strong lag depen-
dencies (peaks and valleys slightly o�set), which can di�er from year to year. If
you look at the variable axes you can work out which combinations of variables
are present when the lag relationships exist; The very last part of the series,
corresponding to 1998, shows a di�erent, or more extreme pattern than all other
years.

From the scatterplot matrix we can see: The two locations have location
di�erences visible in the pairwise plots. The scatterplots overlap considerably,
though; Brushing on the outliers in the plot of Meridian Winds and SST, and

19

linking the scatter plot to the time plot shows that these points all correspond
to 1998.

Figure 8: Scatterplot matrix, multivariate tour, and time-constrained tour view-
ers for the TAO buoy data.

From the multivariate tour we can see: The di�erence in location is even
more pronounced in the 3 dimensional space, so that there is almost a boundary
between the two buoys measurements on the 3 variables. This was reected
occasionally in the time tour, when the two time curves are virtually distinct
in some projections; The outliers noted in the pairwise plots are even more
outlying in these plots. The plot shows that 1998 was a very strange year. The
outlying values are extreme even in the multivariate space, so they are di�erent
from all previous years in this data set (1985-1997).

5 Current and Future Developments

Three current applications being developed are clustering, mapping and graph
layout. In the clustering application, two issues are being explored: dynamic
updating of the appearance of points, based on a running clustering algorithm
and secondly, the display of uncertainty related to the classi�cation of points into
clusters. In the mapping application, the issues being explored are: displaying

20

maps, constructing spatial dependence viewers, and projection pursuit methods
for spatially constrained data. The graph layout application is being used for
examining statistical models for social network analysis.

Structurally in Orca there are two compelling areas of work: building graph-
ical objects that can draw themselves, and providing base classes to more easily
perform interactive tasks. Graphical objects are at the core of any statisti-
cal graphics application, discussed in Wilks (1995) and Murrell (1998). In the
language of multivariate data visualization, graphical objects can be consid-
ered to be coordinate-free renderings of the data. For interactive tasks, a small
collection of mouse objects need to be developed that will be commonly used
throughout most of the graphics to interface querying and focusing.

Beyond the core of Orca, several tools and utilities are being developed. A
visual programming interface to the current Orca pipes is available, which allows
the user to lay out pipes, and wire them together, using icons on the screen.
Connections with R and omegahat are currently possible, and are actively being
developed further. Developing closer connections with numerical algorithms is
of high priority, since many graphical methods require complex optimization
procedures.

In �nishing, we hope that this work inspires others to think about data
visualization, pick up and delve into the code, and implement new ideas.

Acknowledgments

This work was initiated by funding from the National Research Center for Statis-
tics and the Environment (NRCSE) and has been subsequently supported by
NRCSE, the Center for AIDS Research, University of Washington, Seattle, WA,
and a Spring Research Initiation Grant from the College of Liberal Arts and
Sciences, Iowa State University. The authors wish to thank Peter Guttorp,
Deborah Swayne, Andreas Buja, Duncan Temple-Lang, Julie Dickerson and
Graham Wills for helpful discussions in relation to the work discussed in this
paper. In addition, we would like to thank Dean Billheimer for providing us
with the insect population data. This paper was started while the �fth author
was visiting BiometricsSA, Adelaide, Australia, and the Software Production
Research Group, Lucent Technologies, Indian Hill, IL.

Appendix

The web page for the project is
http://pyrite.cfas.washington.edu/orca/.

It contains a brief overview of the project, and a picture gallery of applications
developed. There is a mailing list for the project, where inquiries can be made:

orca-devel@pyrite.cfas.washington.edu.

One can �nd subscription information on the web site, and help with getting
started coding, and implementing new features.

21

Access to the Code

The code is available through anonymous CVS from the web site. The code is
released under the Lesser Gnu Public License (LGPL), which basically permits
the use of Orca in closed-source and commercial projects, as long as Orca and
any changes to Orca are made available. Please mail the authors for directions
on how to download the code. The web site runs a CVS to WWW gateway, for
viewing the code.

References

Asimov, D. (1985), `The Grand Tour: A Tool for Viewing Multidimensional
Data', SIAM Journal of Scienti�c and Statistical Computing 6(1), 128{
143.

Becker, R., Cleveland, W. S. & Shyu, M.-J. (1996), `The Visual Design and Con-
trol of Trellis Displays', Journal of Computational and Graphical Statistics

6(1), 123{155.

Buja, A., Asimov, D., Hurley, C. & McDonald, J. A. (1988), Elements of a
Viewing Pipeline for Data Analysis, in W. S. Cleveland & M. E. McGill,
eds, `DynamicGraphics for Statistics', Wadsworth, Monterey, CA, pp. 277{
308.

Buja, A., Cook, D., Asimov, D. & Hurley, C. (1997), Dynamic Projections
in High-Dimensional Visualization: Theory and Computational Methods,
Technical report, AT&T Labs, Florham Park, NJ.

Buja, A., Cook, D. & Swayne, D. (1996), `Interactive High-Dimensional Data
Visualization', Journal of Computational and Graphical Statistics 5(1), 78{
99. See also www.research.att.com/�andreas/xgobi/heidel/.

Carr, D. B., Wegman, E. J. & Luo, Q. (1996), ExplorN: Design Considera-
tions Past and Present, Technical Report 129, Center for Computational
Statistics, George Mason University.

Chang, J. (1970), `Real-time Rotation', ASA Sta-
tistical Graphics Video Lending Library (
http://www.bell-labs.com/topic/societies/asagraphics/).

Cook, D., Buja, A., Cabrera, J. & Hurley, C. (1995), `Grand Tour and Projec-
tion Pursuit', Journal of Computational and Graphical Statistics 4(3), 155{
172.

Eick, S. G. (1994), `Graphically Displaying Text', Journal of Computational

and Graphical Statistics 3(2), 127{142.

Fisherkeller, M., Friedman, J. H. & Tukey, J. (1974), PRIM-9: An Interactive
Multidimensional Data Display and Analysis System, Technical Report
SLAC-PUB-1408, Stanford Linear Accelerator Center, Stanford, CA.

22

Kruskal, J. B. (1970), `Multidimensional Scaling',
ASA Statistical Graphics Video Lending Library (
http://www.bell-labs.com/topic/societies/asagraphics/).

Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979), Multivariate Analysis, Aca-
demic Press, London.

McDonald, J. A. (1982), Interactive Graphics for Data Analysis, Technical Re-
port Orion II, Statistics Department, Stanford University.

Murrell, P. (1998), Investigations in Graphical Statistics, PhD thesis, University
of Auckland, Auckland, New Zealand.

Swayne, D. F., Cook, D. & Buja, A. (1998), `XGobi: Interactive Dynamic
Graphics in the X Window System', Journal of Computational and Graph-

ical Statistics 7(1), 113{130.

Ward, M. (1994), XmdvTool: Integrating Multiple Methods for VisualizingMul-
tivariate Data, in `Proccedings of Visualization '94', IEEE Computer So-
ciety Press, Los Alamitos, CA, pp. 326{333.

Wegman, E. J. & Carr, D. B. (1993), Statistical Graphics and Visualization, in
C. R. Rao, ed., `Handbook of Statistics, Vol. 9', Elsevier Science Publishers,
Amsterdam, pp. 857{958.

Wilks, D. S. (1995), Statistical Methods in the Atmospheric Sciences, Academic
Press, San Diego, CA.

23

