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Abstract:

Governmental environmental protection is often implemented  by specifying a
standard value of pollution, measured or actual, not to be exceeded. We consider the
standard for ozone in the United States, interpreting it using a hypothesis testing
framework, and show (in a simplified setting) how a statistician could implement this
standard. This implementation is contrasted to the implementation by the United States
Environmental Protection Agency. Some of the issues are illustrated using ozone data

from three areas in the United States. In addition, we look at potential biases in using data
collected for standard compliance monitoring purposes to assess health effects of ozone.



1. Introduction

In order to protect the population from adverse health effects due to pollution of air,
water and soil, many governments choose to set a standard, i. e.,  a value (such as daily
average concentration of a particular pollutant) not to be exceeded, or to be exceeded
only infrequently. In addition to the standard, an implementation rule, indicating under
what circumstances the standard will be considered violated, is usually part of the
regulations. Finally, penalties and other procedures for dealing with regions out of
compliance with the standard may also be part of the legislation.

In this paper we consider the US national ambient air quality standards (NAAQS),
and particularly the standard for ozone. Due to a complicated legal issue, there are

currently two ozone standards in effect, but we focus here on the older one. This standard
requires states to maintain an air quality such that the expected annual number of
maximum hourly averages exceeding 0.12 ppm is equal to or less than one.  The
implementation rule allows the state no more than three daily maximum hourly average
measurements in excess of 0.12 ppm during three years at each approved monitoring site.
Finally, the consequences of violating the standard depend on the severity of the
noncompliance: if the measurements placing the state out of compliance exceed 0.18
ppm, the state must develop a comprehensive air quality model, demonstrate that the
model can reproduce current data, and develop a plan for air quality improvement which,
according to the model, eventually will put the state in compliance.

Previous work looking at statistical aspects of environmental standards include

Watson and Downing (1976), O’Brien et al. (1991), Symon et al. (1993), Barnett and
O’Hagan (1997), Cox et al. (1999) and Carbonez et al. (1999).  This paper is structured as
follows. In section 2 we give a statistician’s first approach to the problem of determining
compliance with the ozone standard. In section 3 we analyze in a similar fashion the
implementation rule of the United States Environmental Protection Agency (EPA).
Section 4 has some data analyses from different parts of the United States, and a
discussion of the validity of the simplifying assumptions made in sections 2 and 3. A
statistical framework for setting environmental standards have been developed by Barnett
and O’Hagan (1997), and we outline how this can be applied to the US ozone standard in
section 5. Finally, in section 6 we look at the potential bias of using compliance
monitoring networks to assess health effects of air pollution.



2. A statistical setup

Consider a monitoring network with I sites, and let Ni,t denote the number of daily

maximum hourly averages in excess of 0.12 ppm at site i, i= 1,…,I, during year t,

t=1,…,T. Let θi = E Ni,t . For simplicity, let us first consider the case  I =  1. Then the

standard requires that θ1 ≤ 1. A natural approach (at least for a classically schooled

statistician) to the decision as to whether the standard has been met is a hypothesis test.
Since the Clean Air Act (CAA) requires the EPA first and foremost to protect people
from adverse health effects of air pollution, the more serious error would be to declare a
region in compliance when it is not. Hence the null hypothesis must be that of
noncompliance, i.e.,  testing

H0: θ > 1

against

HA: θ ≤ 1.

Assume now that different days of the year are independent. If the monitoring site
lies on the boundary between the null and alternative hypotheses, i.e., has θ = 1, we

would have N1,t   ~ Bin(365, 1/365). If we, as the EPA implementation rule requires, base

the decision on T = 3 years of data, we have N1,3   ~ Bin(3 •365, 1/365) or, to a very good

approximation, Po(3). The optimal test (Rao, 1973, section 7a) is to reject for small

values of N1,3 , and a level 0.05 test rejects only if N1,3 = 0. In other words, from the

Neyman-Pearson testing point of view, any exceedance of 0.12 ppm during a three-year
period would render a site in violation of the standard.

Considering now I independent sites, sufficiency suggests basing a test on

N N Iii

I

•, , ~̇ ( )3 31
3=

=∑ Po . Again, the test would reject for small values of the test statistic,

chosen so that P( ) .•, ,N CI3 ≤ ≤α α

In this analysis we have made (at least) three simplifying assumptions: that Ni,t is an

observable random variable, that subsequent days are independent, and that different sites
in the state are independent. We discuss these assumptions in section 4.



3. The EPA compliance criterion

Following the same line of thought as in the previous section, we first consider the
EPA implementation rule for a single site in a state. The rule declares a site in

compliance whenever N1,3  ≤ 3, which when θ = 1 has probability α = 0.647 under the

assumption of consecutive daily maxima being independent. As no statistician would
even consider values of α this high, one may argue that the EPA are not performing their

mission under the CAA: given that the CAA requires the EPA to protect public health,
and that the agency has decided that 0.12 ppm maximum daily hourly average is a limit
above which serious health risks to the public occur, the agency appears to make type I
errors much too frequently under their implementation rule.

One naturally wonders how this implementation rule was arrived at. The explanation
in the regulation (Title 40 of US Code of Federal Regulations part 50, Appendix H) says:

The ozone standard states that the expected number of exceedances per year

must be less than or equal to 1. The statistical term “expected number” is

basically an arithmetic average. The following example explains what it would

mean for an area to be in compliance with this type of standard. Suppose a

monitoring station records a valid daily maximum hourly average ozone value

for every day of the year during the past 3 years. At the end of each year, the

number of days with maximum hourly concentrations above 120 ppb is

determined and this number is averaged with the results of previous years. As

long as this average remains “less than or equal to 1,” the area is in compliance.

In other words, this section of the United States Code requires the law of large
numbers to be applied to n = 3.

For a region with more than one site, the EPA implementation rule uses the test

statisticT NI i I i= ≤max ,,3  again rejecting H0 if TI ≤ 3. For example, assuming again

spatially independent sites, we find for I = 7 that α = 0.05. The corresponding rule from

section 2 would be to reject when N•,3 ≤ 13, regardless of where in the network the

violations have taken place. It should be noted here that the calculation is made assuming
that all the sites have θ = 1, so it would be quite unlikely, for example, that one site

would have 13 violations and all the other none. In fact, using a simple multinomial

calculation, with a frequency of about 0.36 the maximum number of violations at any of
the seven sites, given that 13 violations occurred, would be three, so both
implementations agree about 1/3 of the time.



4. Data analysis

In this section we consider data from three heavily polluted regions in the United
States: the Chicago area in Illinois, the South Coast region of California, and the Houston
area in Texas. Previous analyses (e.g., Carroll et al., 1998; Cox et al., 1999) have
indicated that a square root transformation frequently has the effect of symmetrizing the

ozone data, making a Gaussian assumption reasonable. The data are available from the
AIRS data base (Chicago and Houston; http://www.epa.gov/airs) and from the California
Air Resources Board (South Coast California; http://www.arb.ca.gov/homepage.htm). Table
1 contains summary statistics for the three data sets. The EPA defines the ozone season to
be the entire year in California and Texas, and April 1 – October 31 in Illinois.

***Table 1 about here***

If the square root of ozone has a Gaussian distribution with mean µ and standard

deviation σ we have that

P(exceedance of level c) = 1 − −





Φ c µ
σ

 .

Using the standard deviation for the Houston network, a simple Gaussian calculation
shows that one expected exceedance (for a single station) would correspond to a mean of
0.146 on the square root scale, or about 0.022 ppm on the raw scale. Hence, in order to
bring Houston into compliance, the average daily maximum hourly readings must be
reduced by a factor of three, from the current average of 0.066 ppm. Of course, corrective
action that reduces only high readings may also be possible.

The considerations so far in this paper have all assumed (at least implicitly) that the

quantity Ni,t is an observable random variable, i.e., that we can determine without error

the number of exceedances of a given level at a site from the measured daily maximum
hourly ozone averages. This is not strictly speaking the case, since the measurements are
made with error. In order to take this into account, we need to make a conditional

calculation. Assume for simplicity a Gaussian additive measurement model on the square
root scale, namely Y = Z + ε, where Y is the observed square root daily maximum hourly

ozone average, Z is the square root of true maximum daily hourly ozone average,
assumed N(µ, σ2), and ε an independent measurement error, assumed N(0, τ2). Here σ2

corresponds to  the natural variability of the ozone field, and τ2 to the uncertainty due to



imprecise measurement techniques. Then we have, using a standard regression
calculation for the case µ = 0 12. , that

P Z Y y P y Y y
y

( . | ) ( . | )
.
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where ∆2=σ2/τ2 is the signal-to-noise ratio. This corresponds to increasing the standard

deviation of the underlying pollution field by a factor of ( )∆2 11 1+ − − .

The analysis in Cox et al. (1999) for California Central Valley data indicates that the
standard deviation τ of the measurement errors for common instruments are about

0.020–0.027 on the square root ppm scale, corresponding to a error standard deviation of
the raw measurements of about 0.002–0.003 ppm at a mean level of 0.12 ppm.
Comparing these values to those in Table 1 indicates that the measurement error is a
fairly large proportion of the observed variability. Using τ2=0.00041 and σ2=0.00381,

corresponding to the South Coast California data, we get the multiplier ( )∆2 1 1+ −
equal to 2.19. Figure 1 shows the conditional probability, given an observation of y, that
the true field actually is above 0.12 ppm. In order for this probability to be bigger than
0.95, we need an actual reading of at least 0.156 ppm.

***Figure 1 about here ***

The assumption of iid data is overly simplistic. First, it fails to take into account the
seasonal distribution of ozone, which is very pronounced in the data we consider in this
paper. For example, in the California Southern Coast data the ozone levels are lower in
the winter and higher in the summer. This can be taken care of in a more realistic fashion
by  using time-varying mean and variance. More seriously, perhaps, is the fact that the
time series of daily maximum hourly average ozone show some autocorrelation. Data
analysis indicates that an AR(2)-model can take care of most of the autocorrelation. The

calculations for single station exceedances can be redone, using simulation techniques,
for a more realistic model.

Finally, we need to consider the spatial correlations. In the Chicago data set, the site-
to-site correlations are 0.7 or higher. Hence, the calculations earlier in the paper assuming
spatially independent stations are not valid for the Chicago network. Simulation studies,
matching the distribution of hourly maxima over the network with independent hourly
maxima indicate that the 10-station networks correspond to about two independent



stations. Hence, regional spatially expressed standards would be preferable to the current
formulation.

5. The Barnett-O’Hagan setup

In a report written for the Royal Commission on the Environment in the UK, and
subsequently published as a book, Barnett and O’Hagan (1997) developed a framework
for the statistical implementation of environmental standards. They distinguished
between ideal standards, setting limits on the true pollution field, and realizable

standards, set in terms of actual measurements. Ideal standards (the US ozone standard is
an example) are a natural approach to standard setting, in that they can be related to or
even based on the scientific evidence regarding health effects, crop damage, etc. On the

other hand, it is impossible to implement an ideal standard. In the US ozone case, we
cannot measure the number of exceedances  everywhere in the state, much less measure
the expected value of this random variable. Thus, realizable standards are much easier to
implement (both politically and practically), since they specify exactly what
measurements constitute a violation of the standard. The downside is that it is very
difficult to relate a realizable standard to the actual pollution field and consequent health
effects.

It is natural to seek a compromise between these two extremes. Barnett and O’Hagan
suggest a statistical implementation of an ideal standard, in their terminology a
statistically verifiable ideal standard. In the case of the US ozone standard, this amounts
to specifying statistical quality parameters for deciding whether a given region is in

compliance with the standard. In the testing setup, a natural approach is to fix the type I
and type II errors, the former at a value beyond which health effects are serious, and the
latter at a value for which there is no evidence of health effects, or at a value
corresponding to peak background levels.

6. Network monitoring bias

The states are responsible for monitoring compliance with the standards in the CAA.
To this effect, they operate monitoring networks, which have to be approved by the local

EPA authorities. Since the network is primarily aimed at finding large values of air
pollution, a site that consistently shows lower values than another is likely to be closed
down. Hence, the monitoring network setup keeps changing over time, with sites selected
based on high values rather than in a random or systematic fashion. In this section, we



illustrate the potential bias in a network using a very simple space-time model for air
pollution.

Suppose Xt = ΑΑΑΑ Xt-1+ εεεεt is a stationary vector time series, mean µµµµ, with εεεεt ~ N(0,Σ)

where  Σ has diagonal elements one, and off-diagonal elements σij  = ρ, i≠j, i.e., an

exchangeable spatial process. The spatial structure of some of the ozone data mentioned
in the previous section can be reasonably described by this correlation structure. Also
assume that A = diag (α1,…αk). A simple Gaussian calculation shows that

E(X1,t|X1,t-1 > X2,t-1) = α1 E(X1,t-1| X1,t-1 > X2,t-1)

Defining the network bias as the excess over the mean µ1, given that during the previous

time period site 1 was chosen and site 2 deleted on the basis of the former site having a
higher reading than the latter, we see that  the autoregressive parameter α1 is the main

contributor to a potential network bias. The largest bias occurs for high temporal
correlation and negative spatial correlation (an unlikely situation for air pollution data),
with a maximum bias of 0.40 standard deviations. The autocorrelation is generally
decreasing with larger temporal scale, so one would not expect the bias to be substantial
on an annual time scale in this very simple model. Research continues into what can be
expected in long term memory processes (Beran, 1997), where the autocorrelation dies

off very slowly with time. These types of models have been found appropriate, e.g.,  for
some temperature data (Smith, 1992).

The consequence of using compliance monitoring networks to study health effects
can be serious even in absence of the bias discussed above. Most health effect studies
(see e.g., Thomas, 2000) take the ambient measurements closest to an individual’s home
and/or workplace as a surrogate for exposure. Clearly, if the ambient concentration
measurements are from data chosen to find peaks in the mean spatial field, the exposure
of an individual will be overestimated, resulting in an underestimate of the health effects
of exposure to a given level of pollution. This is a potentially very serious bias,
particularly since the relative risk estimates in environmental epidemiology often are
close to 1. Studies using personal monitors may be helpful in order to assess more

precisely the health effects of a given exposure. Current technology, however, produces
rather unwieldy monitors, which are likely to affect personal behavior.
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TABLE 1. Regional ozone data, 1989-1991.

n Mean1 Standard
deviation1

Number of
stations

Number of
exceedances

Number of
days

Chicago

South Coast

Houston

0.218

0.250

0.254

0.043

0.068

0.072

10

  8

  8

  15

661

265

  642

1095

1095

1Calculated on square root scale (raw data in ppm)

Figure legend:

Figure 1. The conditional probability of the true concentration being above 0.12
ppm,  given that the observed concentration is that shown on the x-axis. The parameter
values chosen correspond to values suitable for the South Coast, California, region. The

dotted line is the value 0.12 indicated in the US 1-hour ozone standard.
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