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ABSTRACT

Many ecological and environmental studies result in bimodal data. Such data may be
modeled as a mixture of two normally distributed populations. Model parameters must be
estimated using numerical optimization. We tested three optimization algorithms,
expectation-maximization (EM), minimizing-sums (MS), and evolutionary computation
(EC), on a data set generated from known parameters. All of the algorithms tended to be
biased. Comparisons were then made on the algorithms for consistency using assessment
statistics on the sample distribution of the known parameters (30 samples). We found the
evolutionary computation algorithm, when optimized on multiple objective functions, to
have the most strongly consistent estimators of the algorithms we tested. We also
recommend this algorithm for analyzing bimodal data from ecological and environmental
studies because it allows one to include additional information, such as expert knowledge
on a particular parameter of interest, in the optimization process.

Keywords: mixture models, consistency, expectation-maximization, evolutionary
computation, multiple objective function optimization
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1. INTRODUCTION

Many ecological and environmental studies result in bimodal data: for example, plant

competition for light (Ford 1975), echinoderm egg size production (Sewell and Young

1997), Atlantic salmon growth (Skilbrei, Hansen and Stefansson 1997), and female bank

vole reproduction (Tkadlec and Zejda 1998). Such data are often modeled as a mixture of

two normally distributed populations. The density function of this mixture model is:

( ) ),;(1),;();( 2211 σµπσµπθ xxx fff −+=           (1)

where x=x1,...,xn are the n observations in the data set and θ =(µ1,µ2,σ1,σ2,π) are the model

parameters. f(·) is the normal density function with mean, µi, and standard deviation, σi,

where i=1 for the first and i=2 for the second population (Everitt and Hand 1981). π is the

mixing parameter. Ideally, a likelihood equation is derived from (1) and maximized for

parameter estimation. However, for this model, the likelihood equation is unbounded and

may have multiple roots, so a maximum likelihood may not exist (McLachlan and Basford

1988). Instead the parameters of the mixture model may be solved for using numerical

optimization.

Many parameter estimation methods for mixture models by numerical optimization

have been presented and compared in the literature (e.g., Everitt 1984, Woodward et al.

1984, McLachlan and Basford 1988). Two common methods involve some variation of

either the expectation maximization (EM) algorithm (Dempster, Laird and Rubin 1977) or a

gradient-search algorithm such as the minimizing sums (MS) function in Splus (Chambers

and Hastie 1993). In this paper, we examine evolutionary computation (EC) as an

alternative optimization method (Srinivas and Deb 1995). In section 2, we discuss the three

algorithms. In section 3, details are given for testing the algorithms on a single sample, a

data set simulated from known parameters. In section 4, the results are given.

It has been shown that likelihood estimators are strongly consistent (Keifer and

Wolfowitz 1956), but if one has only a single sample of a limited size, which algorithm

produces the most consistent estimates? To assess which estimators were most consistent,

the algorithms were tested on a small number of samples; 30 data sets were generated from

the known parameters to create a sample distribution of the mixture model. The details of
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these tests are also discussed in section 3. In section 4, the estimators were evaluated by

different assessment statistics of consistency; bias, standard error, mean squared error, and

the ratio of bias over standard error. To improve the estimation by the EC optimization, EC

allows for multiple objective function optimization (Reynolds and Ford 1999). We show

the objective function optimization may improve the consistency of specific parameters of

interest. We discuss the implications of these results in section 5.

2. OPTIMIZATION METHODS

2. 1. Expectation-maximization

There are many variations of the expectation-maximization (EM) optimization method

(McLachlan and Krishnan 1997), but they all use some form of the method generalized by

Dempster, Laird and Rubin (1977). For the mixture model, the EM computes maximum

likelihood estimates (MLEs) analytically derived from the mixture model rewritten as a

complete data problem. The likelihood equation for the complete data problem is:
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where the complete data set, y, is the set which includes data that are observable, x, and

data that are not observable (or latent), z. θ is equivalent to the parameter vector described

for (1). For the mixture model, an unobservable datum, zi, indicates whether an observation,

xi, is from the first or the second population.

To start the optimization, the  EM algorithm calculates the conditional expectations

of the unobservable data using starting parameter estimates, values supplied to EM, and the

observed data. These expected values are then used in the analytical solutions of the MLEs,

which result in new parameter estimates. The new estimates are used in the conditional

expectations to calculate new expected values for the unobservable data. This sequence of

expectation and maximization continues until convergence. The algorithm converges when

iterative changes in the parameter estimates fall below a tolerance level ( = 0.00001) or a

maximum number of iterations has been performed ( = 50).
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2.2. Gradient-based methods

There are also many variations of gradient-based (a.k.a. Newton-type) optimization

methods, but their common feature is the utilization of first and second derivatives of the

objective function to direct the search. We used a gradient-based method available in Splus,

the minimizing sums (MS) function (MathSoft 1995, Chambers and Hastie 1993). To use

the MS function, the objective function must be written as a sums equation to be

minimized. For the mixture model, the negative log-likelihood of (1) is an appropriate

objective function and is:

∑
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where x and θ are defined as above.

To start the optimization, the MS algorithm calculates the value of (3) at the starting

parameter estimates, values supplied to MS. It calculates the gradient from this value using

quadratic approximation (or by derivatives if they are supplied) based on an algorithm by

Gay (1983). The gradient directs the search toward the optimal parameter estimates. The

algorithm increments the current parameter estimates by some step size change in the

direction of the gradient. It calculates (3) at the new parameter estimates. If (3)’s value

decreases, MS recalculates the gradient and increments the current parameter estimates by

some step size along the new gradient to produce new parameter estimates. It recalculates

(3) at the new parameter estimates and so on. If (3)’s value increases or does not change,

MS takes a smaller step size change of the parameter estimates and repeats the calculation

of (3) with these estimates. The algorithm repeats these calculations of (3) and movements

along the gradients to optimal parameter estimates at convergence. MS converges when any

of several measures of the optimization process are satisfied, e.g., iterative changes in (3) or

the parameter estimates fall below the tolerance level ( = 0.001) or a maximum number of

iterations has been performed ( = 50).

2.3. Evolutionary computation

Evolutionary computation is a stochastic optimization method based on ideas of

evolutionary theory; populations evolve through breeding techniques of crossovers and
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mutations where breeder selection depends on one’s fitness (Michalewicz 1992). As an

optimization method, a population is a set of parameter estimate vectors. Each parameter

estimate vector, such as θj =(µ1,µ2,σ1,σ2,π)j, is referred to as an individual where there are

j=1,...,m individuals in a population.

To start the algorithm, a population is randomly chosen from the parameter space.

An objective function such as (3) is evaluated with each individual. The individuals are

ranked in order of their objective function values and assigned a fitness value. For example,

for the optimization goal of minimizing (3), an individual receives a high fitness value for a

low value of (3). Individuals are randomly selected with replacement to breed the next

population of individuals, or offspring. One’s chance for selection is based on their fitness

and some individuals may be selected more than once. The selected individuals are called

parents. Once the parents are selected, they are randomly assigned to receive a crossover, a

mutation or both.

For a crossover, two parents exchange portions of their parameter vectors with each

other to create two new individuals. For example, two parents, (12, 35, 1.0, 3.0, 0.8) and (7,

23, 2.0, 2.5, 0.3), when crossed, may produce (12, 23, 2.0, 3.0, 0.8) and (7, 35, 1.0, 2.5,

0.3). Crossovers occur on one or more parameters, but not on all parameters. For a

mutation, small, random increments of change within the parameter space are applied to a

selected parent to produce a new individual. For example, a parent, (11, 25, 1.5, 3.0, 0.8),

might be mutated into (12, 28, 1.5, 3.0, 0.6). Mutations occur on at least one and up to all

parameters. Mutations and crossovers may both occur on a parent. The offspring population

is of a size equal to the current population’s size.

The EC algorithm then evaluates the offspring similarly with regard to (3). They,

too, are ranked, assigned fitness measures, selected to breed, and crossed and/or mutated.

The algorithm repeats these steps of breeding and selection until convergence. EC

converges when iterative changes in (3) or in individuals fall below a tolerance level ( =

0.00001) or a maximum number of iterations has been performed ( = 1000).

The EC algorithm also has another feature, which allows it to optimize on multiple

objective functions simultaneously (Reynolds and Ford 1999). EC uses Pareto Optimality
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to compare how well individuals do in terms of all functions simultaneously. To calculate

Pareto Optimality, Reynolds and Ford (1999) say:

“Given a set of vectors from which you wish to select the optimum, compare the vectors
and remove all [the] dominated ones, where vector X dominates vector Y if and only if: X
is at least as good as Y with respect to all criteria and there is a criterion for which X is
strictly better than Y. The Pareto Optimal Set consists of those vectors left after all
dominated ones have been removed.”

In the mixture model context, the vectors are the multiple objective function values for each

individual of the population evaluated per iteration of an EC search and are called

assessment vectors. As an example, suppose three objective functions, f = (f1, f2, f3), are to

be minimized simultaneously. Two individuals have assessment vectors, f1= (378, 25, 0.75)

and f2 = (378, 18, 1.78) and are compared using Pareto Optimality. Both do equally well for

f1, yet individual 1 does better for f3 and worse for f2 than individual 2. Individual 2 does

better for f2, but worse for f3 than individual 1. The Pareto Optimal set would include both

individuals since neither individual dominates the other.

We used the multiple objective optimization feature with the mixture model to

improve the consistency of a particular parameter of interest. Since π is a parameter of

particular importance for mixture models (Woodward et al. 1984, McLachlan and Basford

1988), a criterion to optimize that parameter was added to the algorithm: a function of the

absolute difference between the parameter estimate, π̂ , and the mean of the conditional

expectations of π. The mixture data were then optimized to find the parameter estimates

that simultaneously minimized (3) and this additional objective function, the mixing

parameter function. This search is referred to in the paper as EC-P.

3. SIMULATION METHODS

3.1. Data

For the single sample examination, a sample of size n = 100 was generated as test data for

the mixture model given by (1). To generate an observation, a random value was chosen

from a uniform (0,1) distribution and compared to the mixing parameter, π = 0.4. If the

value was less than or equal to π, a random value was generated from the first normal
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density, which had parameters µ1 = 18.0 and σ1 = 2.0. If the value was greater than π, a

random value was generated from the second normal density, which had parameters µ2 =

31.0 and σ2 = 5.0. For the consistency tests, 30 samples were generated similarly to above.

3.2. Optimization methods

We wrote code in C, including a pseudo-random number generator, to generate the data

samples. We wrote code for Splus to run the mixture model with EM and with MS. We

wrote code in C to run the mixture model with EC. Version 1.0 (alpha-test-stage) software

is available at http://faculty.washington.edu/edford/research. Our software is generic and

may be modified to optimize small to medium sized nonlinear statistical and mathematical

process models.

Starting parameter values were supplied to EM and MS: µ1=25.0, µ2=30.0, σ1=3.0,

σ2=3.0, and π=0.23. EM and MS were both sensitive to starting values, but were not a

focus of interest in this paper. See Woodward et al. (1984) for an analysis on the effects of

starting values and mode separation on the EM algorithm. Parameter search ranges were

supplied to EC: µ1∈(15.0, 27.0), µ2∈(27.0, 40.0), σ1∈(0.75, 10.0), σ2∈(0.75, 10.0), and

π∈(0.20, 0.60). EC was insensitive to starting values since it used a population of randomly

selected individuals from within the parameter search ranges.

For the consistency investigations, each algorithm was optimized on the same 30

samples. Since EC is a stochastic algorithm, each sample was optimized 20 times. Each

sample’s EC results were summarized by the optimal set, which was the parameter estimate

vector of the 20 searches with the lowest objective function value. Previous analyses

showed that the optimal set had the lowest bias and smallest variance as compared with

other summary statistics such as mean and median. In the multiple objective case, the EC

searches resulted in Pareto Optimal sets. Since the Pareto Optimal sets contained multiple,

optimal parameter estimate vectors, the results were summarized by taking the parameter

estimate vector with the lowest objective function value for the likelihood function, then for

the lowest mixing parameter function.



07/17/00 9

3.3. Estimator assessment

For the single sample investigation, the parameter estimates were found using the three

algorithms described above. Their standard errors were calculated with the covariance

matrix, which was formulated using Fisher’s information matrix (Louis 1982). The

estimates on the single sample investigation were informally assessed for their consistency

using 95% confidence intervals.

In the sample distribution investigation, several assessment statistics (Lunneborg

2000) were used to judge which algorithm produced the most strongly consistent

estimators. Bias measured how close an estimator was on average to the true parameter.

Since the parameters were known, bias was calculated by:

θθθθ −= ∑
=

m

j
jm

Bias
1

ˆ1
)|ˆ(           (4)

where j=1,...,m=30 samples, )ˆ,ˆ,ˆ,ˆ,ˆ(ˆ
2121 πσσµµθ ∈ , and θ∈(µ1,µ2,σ1,σ2,π).

Bias assesses how accurate an estimator is, but another characteristic of a good

estimator is precision. The standard error of an estimator quantified the variability of an

estimator and did not depend on the true parameter. It was calculated by:
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where X was the population distribution of the data and θ̂  was defined as above. A small

standard error measure is desirable as it would indicate that there is little sample variability.

Any sample would be as good as another for parameter estimation.

Since accuracy and precision are both important qualities for an estimator, some

assessment statistics include both the bias and the standard error in a single statistic such as

the mean squared error or a ratio of the bias over the standard error. Some authors consider

the mean squared error as the best criterion for comparing biased estimators (Arnold 1992,

p.266). Mean squared error was calculated by:

22 )|ˆ()|ˆ(),|ˆ( XSEBiasXMSE θθθθθ +=           (6)
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 A low mean squared error indicates that an estimator has both low bias and low variance,

but it is arguable as to whether accuracy and precision deserve equal weighting in the

assessment of an estimator.

The ratio of the bias over the standard error was also calculated to assess the

estimators’ consistency. This statistic implies that the error of bias should be small relative

to the variability of the estimator. If bias is large and standard error small, there is little

chance any sample will be close to the true parameter. If both bias and standard error are

large, there is better chance that a sample will be close to the true parameter. If the ratio is

below 0.10, the estimator’s bias is considered not too problematic (Cochran 1977). Even a

ratio of 0.20 is still not too much bias for an estimator.

4. RESULTS

Parameter estimates on the single sample were found using each optimization algorithm

(Table 1). The MS, EC, and EC-P searches had similar estimates and standard errors. The

EM search had estimates the furthest from the true parameters and its standard errors were

larger, too. Confidence intervals on the parameter estimates showed that none of the

algorithms contained the true parameter for σ1 at 95% confidence (Table 2). The EM

intervals also did not contain the true parameter for π. These results suggested that all of the

algorithms were biased.

To assess which algorithm produced the most consistent estimators and in

particular, least biased, the algorithms were tested on the sample distribution using four

assessment statistics. The bias of the estimators were calculated (Table 3). All of the

algorithms produce biased estimators, but some were less biased than others. EC had the

most estimators with the least bias (µ1,σ1,σ2). Interestingly, EC-P was the least biased on

the other parameters (µ2, π) and it was the second least biased on µ1,σ1, and σ2. In terms of

accuracy across all parameters, the EC-P algorithm did the best.

Another estimator assessment statistic was the standard error (Table 4). EM had the

most estimators with the smallest standard errors, so in terms of precision across all

parameters, it did the best. Having the greatest precision came at the cost of slow

convergence of the EM. EC and EC-P generally had larger standard errors than the others
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since their results included the uncertainty of the optimization routine. Since EM and MS

are deterministic algorithms, their results did not include any quantitative uncertainty of the

optimization search in the standard errors. To investigate their optimization uncertainty, a

user had to repeat the search some number of times with different starting values to be sure

the algorithm had converged to a maximum (McLachlan and Basford 1988).

The mean squared errors were also calculated (Table 5). Since this estimator used

the standard error, the results were similar to the standard error results. MS had the most

estimators with the smallest and/or second smallest mean-squared errors, so it was judged

the best for this assessment statistic. The EC-P did the worse on all estimators, as expected.

Since it optimized the mixture model on two objective functions simultaneously, its

standard error estimate quantified the additional uncertainty associated with optimizing on

a plane instead of just a vector.

 Another criterion for judging the estimators was the ratio of the bias over the

standard error (Table 6). EC-P had the most estimators with the smallest ratio values and all

were below 0.20. EC also had small ratios values, all also under 0.20.

5. DISCUSSION

When ecological and environmental studies result in bimodal data, the data may be

analyzed using a mixture model of two normally distributed populations, where the model

parameters are estimated using numerical optimization. There are many methods of

numerical optimization; here we investigated three, the expectation-maximization (EM)

algorithm, the minimizing sums (MS) function, and the Evolutionary Computation (EC)

algorithm. Each algorithm was tested on a single sample, a data set generated from known

parameters, and the results showed that some algorithms tended to be more consistent than

others.

To investigate the consistency of the algorithms, each was assessed on four statistics

on a sample distribution, i.e., 30 data sets generated from the known parameters. The

statistics -- bias, standard error, mean-squared error, and a ratio of bias over standard error -

- tested the estimators for accuracy and precision in different ways. The bias and the ratio

of bias over the standard error were judged to be the most useful statistics for estimator
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assessment of consistency. The standard error was considered less useful since it did not

evaluate the deterministic and the stochastic algorithms equally. That is, the standard errors

did not include the optimization uncertainty of the deterministic algorithms. The mean

squared error was also considered less useful since it assumed that accuracy and precision

were equally important. The ratio of bias over the standard error was helpful because it

allowed for relative comparisons of the estimators across and within the algorithms.

We concluded that the Evolutionary Computation algorithm, when optimized on

multiple objective functions simultaneously (the EC-P case), produced the most strongly

consistent estimators of the algorithms investigated in this paper. The estimators from the

EC-P search tended to have the smallest or nearly smallest biases on all parameters and had

the smallest bias on the parameter of interest, π.  The EC-P search also resulted in the most

estimators with the smallest values for the ratio of bias over standard error statistics. Its

standard errors were the largest since they included the optimization uncertainty, but the

were generally of the same magnitude as the standard errors for the other algorithms.

Using evolutionary computation on even a single objective function (the EC case)

also produced more strongly consistent estimators than the gradient search (MS) and the

expectation-maximization (EM) algorithms. Its estimators had smaller biases and ratios

than the MS or EM algorithms, and its standard errors were generally of similar magnitude

as the others.

We recommend the evolutionary computation algorithm optimized on multiple

objective functions over the others not only for its consistency, but also because it allows

one to include additional information in the optimization process. This feature is quite

important for ecological and environmental studies where the modeling of data could be

improved by including such information as expert knowledge on particular parameters of

interest. The additional information is expressed by objective functions that the model must

simultaneously satisfy during optimization. The difficulty is writing the objective functions

to express that knowledge. Optimizing models on multiple objective functions should open

up new paths for investigating models, including such simple models as the mixture model.



07/17/00 13

ACKOWLEDGEMENTS

"Although the research described in this article has been funded in part by the United States

Environmental Protection Agency through agreement CR825173-01-0 to the University of

Washington, it has as not been subjected to the Agency's required peer and policy review

and therefore does not necessarily reflect the views of the Agency and no official

endorsement should be inferred." Marianne Turley was also partially funded by the

University of Washington Presidential Fellowship.

LITERATURE CITED

Arnold, S. F., 1990. Mathematical Statistics, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 636.

Chambers, J. M., and Hastie, T. J., 1993. Statistical Models in S, Chapman and Hall, New York,  pp. 608.

Cochran, W. G., 1977. Sampling Techniques, John Wiley & Sons, Incorporated, New York, pp. 428.

Dempster, A. P., Laird, N. M.,  and Rubin, D. B., 1977. Maximum likelihood from incomplete data via the
EM algorithm, Journal of the Royal Statistical Society B, 39: 1-38.

Everitt, B. S., 1984. Maximum likelihood estimation of the parameters in a mixture of two univariate normal
distributions; a comparison of different algorithms, The Statistician, 33(2): 205-215.

Everitt, B. S., and Hand, D. J., 1981. Finite Mixture Distributions. Chapman and Hall, London, pp. 143.

Gay, D. M ., 1983. Algorithm 611: subroutines for unconstrained minimization using a model/trust-region
approach. ACM Trans. Math. Software. 9: 503-524.

Keifer, J., and Wolfowitz, J., 1956. Consistency of the maximum likelihood estimates in the presents of
infinitely many incidental parameters, Annual Mathematical Statistics,  27: 887-906.

Louis, T. A., 1982. Finding the observed information matrix when using the EM algorithm, Journal of the
Royal Statistical Society. Series B (Methodological), 44(2): 226-233.

Lunneborg, C. E., 2000. Data Analysis by Resampling: Concepts and Applications, Duxbury Press, Pacific
Grove, California, pp. 568.

MathSoft, Incorporated, 1995. Splus Guide to Statistical and Mathematical Analysis, Massachusetts Institute
of Technology, Boston, Massachusetts, pp. 629.

McLachlan, G. J., and Basford, K. E., 1988. Mixture Models, Marcel Dekker, Incorporated, New York,
pp.208.

McLachlan, G. J., and Krishnan, T., 1997. The EM Algorithm and Extensions, John Wiley & Sons,
Incorporated, New York, pp. 274.

Michalewicz, Z., 1992. Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New
York, pp. 251.



07/17/00 14

Reynolds, J. H., and Ford, E. D., 1999. Multi-criteria assessment of ecological process models, Ecology,
80(2): 538-553.

Sewell, M. A., and Young, C. M., 1997. Are echinoderm egg size distributions bimodal? Biological Bulletin,
193(3): 297-305.

Skilbrei, O. T., Hansen, T., and Stefansson, S. O., 1997. Effects of decreases in photoperiod on growth and
bimodality in Atlantic salmon Salmo salar L.,  Aquaculture Research, 28: 43-49.

Srinivas, N., and Deb, K., 1995. Multiobjective optimization using nondominated sorting in genetic
algorithms, Evolutionary Computation, 2(3): 221-248.

Tkadlec, E., and Zejda, J., 1998. Density-dependent life histories in female bank voles from fluctuating
populations, Journal of Animal Ecology, 67(6): 863-873.

Woodward, W. A., Parr, W. C., Schucany, W. R., and Lindsey, H., 1984. A comparison of minimum distance
and maximum likelihood estimation of a mixture proportion, Journal of the American Statistical Association,
79(387): 590-598.



07/17/00 15

TABLES

Table 1. Parameter estimates for the single sample investigation were found by optimizing likelihood
functions with the algorithms. The searches were EM = expectation-maximization, MS = gradient search with
minimizing sums function, EC = evolutionary computation on a single objective function, and EC-P =
evolutionary computation on two objective functions The standard errors were calculated by the covariance
matrix.

source µ1 standard

error

µ2 standard

error

σ1 standard

error

σ2 standard

error

π standard

error

true 18.000 31.000 2.000 5.000 0.400

EM 18.952 0.592 32.304 0.839 4.353 0.418 5.684 0.593 0.541 0.0498

MS 18.117 0.240 31.916 0.705 1.550 0.170 5.392 0.499 0.416 0.0493

EC 18.096 0.234 31.907 0.715 1.499 0.166 5.501 0.506 0.409 0.0492

EC-P 18.170 0.247 32.020 0.678 1.594 0.174 5.178 0.480 0.417 0.0493

Table 2. The 95% confidence intervals were calculated on the parameter estimates for the single sample
investigation. None of the algorithms had the true parameter for σ1 (=2.0) within their intervals and EM also
did not have the true parameter for π (=0.40) within its interval.

source µ1 µ2 σ1 σ2 π

EM 17.792, 20.112 30.660, 33.948 3.534, 5.172 4.521, 6.847 0.4433, 0.6386

MS 17.647, 18.587 30.534, 33.298 1.217, 1.883 4.414, 6.370 0.3194, 0.5126

EC 17.637, 18.555 30.506, 33.308 1.174, 1.824 4.509, 6.493 0.3126, 0.5054

EC - P 17.686, 18.654 30.691, 33.349 1.253, 1.935 4.237, 6.119 0.3204, 0.5136

Table 3. The absolute bias values were calculated for the parameter estimates resulting from the sample
distribution investigation. The * indicates the estimate with the smallest bias for that parameter. The +
indicates the estimate with the second smallest bias for that parameter. The EC-P did the best overall.

source µ1 µ2 σ1 σ2 π

EM 0.4950 0.0399+ 2.3004 0.5638 0.1946

MS 0.0659 0.0474 0.1023 0.1294 0.0082+

EC 0.0018* 0.0730 0.0486* 0.0692* 0.0115

EC - P 0.0640+ 0.0160* 0.0700+ 0.1110+ 0.0030*
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Table 4. The standard error values were calculated for the parameter estimates resulting from the sample
distribution investigation. The * indicates the smallest variance estimate for that parameter. The + indicates
the second smallest variance estimate for that parameter. The EM did the best overall.

source µ1 µ2 σ1 σ2 π

EM 0.3225* 0.7514+ 0.0375* 0.0676* 0.0581*

MS 0.3842+ 0.7282* 0.2843+ 0.9826 0.0630

EC 0.4020 1.0490 0.3140 0.7990+ 0.0590+

EC - P 0.4760 1.1570 0.4840 0.8190 0.0670

Table 5. The mean squared error (MSE) values were calculated for the parameter estimates resulting from the
sample distribution investigation. The * indicates the smallest MSE for that parameter. The + indicates the
second smallest MSE for that parameter. The EM did the best overall.

source µ1 µ2 σ1 σ2 π

EM 0.5908 0.7525+ 2.3007 0.5678* 0.2031

MS 0.3898* 0.7297* 0.3021* 0.9911 0.0635+

EC 0.4020+ 1.0515 0.3177+ 0.8020+ 0.0601*

EC - P 0.4801 1.1571 0.4895 0.8263 0.0673

Table 6. The bias/standard error ratio values were calculated for the parameter estimates resulting from the
sample distribution investigation. They are reported here as percentages times 100. The * indicates the
smallest ratio for that parameter. The + indicates the second smallest ratio for that parameter. The EC-P did
the best overall.

source µ1 µ2 σ1 σ2 π

EM 1.535 0.0531+ 61.350 8.346 3.348

MS 0.1717 0.0651 0.3598 0.1317+ 0.1305+

EC 0.0044* 0.0697 0.1550+ 0.0866* 0.1954

EC - P 0.1353+ 0.0140* 0.1443* 0.1360 0.0382*


