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Abstract

Receptor models apportion an ambient mixture of pollutants to the contributing pollution sources. Often,

neither the number of sources nor their chemical profiles are known precisely. The dual goals of modeling are

to estimate the chemical “signature” of the sources, and to characterize the mixing process. I develop a novel

modeling approach for receptor data where all model components are compositions (i.e., vectors of propor-

tions). This approach maintains positivity and summation constraints for source contributions and chemical

profiles. Further, it incorporates available prior knowledge regarding the source chemical profiles. Including

prior knowledge allows parameter estimation while avoiding restrictive assumptions regarding presence or

absence of chemical tracers. I illustrate this approach by modeling air pollution data collected from a re-

ceptor near Juneau, AK. The compositional model produces point estimates of source profiles and mixing

proportions similar to those obtained in a previous study. However, interval estimates for mixing proportions

are roughly 30% shorter than those found previously.

�Thanks to Karen Bandeen-Roche for providing the Juneau, AK air pollution data.
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1 Introduction to Source Receptor Modeling

Air quality management is a difficult problem with important consequences for human and environmental

health. The difficulties arise primarily from problems with pollution measurement and transport: identification

of sources, estimation of emission rates, physical transport of substances, and physical and chemical transfor-

mation processes occurring during transport (Hopke, 1999). Source apportionment, or receptor, models address

these issues by analyzing pollution concentrations measured in ambient air. These models aim to identify pol-

lution sources and apportion pollutant loadings to those sources. Observations consist of a convex mixture of

chemical species originating from different sources. In the most general case, neither the number of sources,

nor the individual source chemical profiles are known. The dual goals of receptor modeling are to estimate the

chemical “signature” of the sources, and to characterize the mixing process. A comprehensive review of receptor

modeling as well as source-oriented dispersion models is available in Hopke (1991).

To illustrate the air pollution receptor problem, consider the study described in Aldershof and Ruppert (1987)

and Bandeen-Roche (1994; hereafter referenced as BR). Researchers collected n = 50 ambient air samples at

a receptor near Juneau, Alaska. Each observation is a “daily” (time averaged) vector of the relative mass of five

chemical species (fluoranthene, benzoanthracene, chrysene, benzofluoranthene, and pyrene). Two sources are

believed to contribute to local pollution: wood-stove smoke and motor vehicle emissions. Although much is

known about the chemical profiles of these sources, they are not known precisely. Further, little is known about

the mixing process. The study’s goal is to estimate the contribution of wood-stoves to the local pollution load.

Estimation of the individual source profiles is of secondary interest.

In this paper I develop an approach to receptor modeling that incorporates prior knowledge of pollution

sources to estimate source profiles. Further, I use a novel statistical error structure, based on principles of

compositional data, that ensures model parameter estimates conform to physically based constraints. I maintain

the Juneau receptor example through the remainder of the paper to illustrate this modeling approach.

Current receptor models are based on the principle of chemical mass balance. That is, the total amount of

a chemical species present in a sample is the sum of the contributions of the individual sources. For a fixed
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number of sources, p, observation i (i = 1; 2; :::; n) is modeled as a linear combination of sources’ chemical

species.
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Here, Yi is a vector of concentrations of k chemical species, �i is a p-vector of mixing coefficients, and �j (for

j = 1; 2; :::p) is a k-vector describing the chemical profile for source j. Often some form of measurement error

is included in the model.

In the case of the Juneau study, this model reduces to

E [Yi] = �wi �w + �mi �m (2)

Here, �wi and �mi are the contributions of wood-smoke and motor vehicle exhaust, respectively, with source

profiles �w and �m. In this case Yi, �w and �m are vectors of the relative masses of the five measured chem-

ical species. The quantity of primary interest is the amount of pollution attributable to woodstoves (�w). To

determine this we must also estimate the source chemical profiles.

When data are measured as relative concentrations (as in the Juneau study), there are constraints on the

quantities in (1) not generally applicable to all source apportionment models. Observations, Yi, and the source

profiles (�j) are assumed standardized to compositional form (all elements nonnegative, and all elements sum

to one). Further, �ji > 0, and
Pp

j=1 �ji = 1; thus �i is also a composition. There are advantages to modeling

relative, rather than absolute, concentrations. Models for relative concentrations are more widely applicable

since some aggregates are measured only in compositional form (whereas “raw” concentrations can always be

normalized to compositions). More importantly, relative concentrations may be measured with greater precision

than absolute concentrations (BR; Kowalczyk, et al. 1978). However, requiring observations to be compositions

limits inference if the total amount of pollutants collected is correlated with a particular subset of the sources.

This problem might be addressed by incorporating the total as a predictive covariate (BR).
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Modeling Difficulties

As noted by BR, Park et al. (1999), and others, a number of difficulties arise in fitting (1). Because �i is a

vector of mixing proportions (for day i) its elements must satisfy positivity and summation constraints. Such

constraints can be awkward to include in parameter estimation. A second difficulty is encountered when the

�j’s are assumed fixed and each observation, Yi, is associated with a unique �i. This is an example of the

incidental parameter problem identified by Neyman and Scott (1948) and addressed in detail by Kiefer and

Wolfowitz, (1956). In related problems the fixed �j’s are often the quantities of interest, and the incidental

parameter(s) are treated as a “nuisance” in estimation. However, for receptor modeling problems in which the

mixing process is of interest, the incidental parameters are paramount since they describe the amount of pollution

attributable to different sources.

Finally, if the source profiles (�j) are unknown, the parameters of (1) are not identifiable. Other researchers

(e.g., BR; Park et al., 1999) have thoroughly examined identifiability conditions. Their approaches parallel

considerations described in Reiersol (1950) and Lindsay (1983), and require each source to be absent from at

least one observation. Alternatively, the presence or absence of “tracer” elements (chemical species known to be

absent from a source, or confined to a single source) can also indicate the presence/absence of a source. Modern

approaches to receptor modeling (see e.g., Park et al., 1999) require p�1 species to be absent from each source.

When such conditions are met, the “source polytope” can be defined and the model parameters identified (BR).

In the remainder of this paper, I propose a modeling approach for a restricted version of the source appor-

tionment problem. The problem characteristics are

1. observations are the relative concentrations of the chemical species under study,

2. the number of sources, p, is known, and

3. partial information is available about the individual source chemical profiles.

To accommodate compositional observations, I use a non-additive error structure described in Billheimer, et
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al. (1997, 2000), and based on Aitchison’s (1986) perturbation operator. This structure ensures that compo-

sitional quantities satisfy positivity and summation constraints. The incidental parameter problem is allevi-

ated by modeling the mixing proportions as (unobservable) realizations from a distribution (Kiefer and Wol-

fowitz, 1956). This modeling choice also aids interpretation of the mixing process by shifting our focus to

characteristics of the distribution. Finally, information about source profiles is incorporated into the modeling

framework by means of informative (hyper) prior distributions. Prior information about sources avoids the iden-

tifiability concerns mentioned above, and allows estimation of model parameters. No assumptions regarding the

observations or missing species are required.

The next section describes the general model formulation and methods for inference, while section 3 spec-

ifies the implementation for analysis of the Juneau, AK receptor data. Section 4 presents the results of this

analysis, and compares these results with BR. The final section compares the compositional model with other

recent approaches, and describes directions for future development.

2 Model Formulation

A statistical source apportionment model for relative concentrations is formulated as follows:

Yi = ��i � �i (3)

where Yi; � and �i are interpreted as before, but are restricted to be compositional quantities. Note that Yi is

an element of the (k � 1)-dimensional simplex (rk�1). That is, Yit > 0 8t, and
Pk

t=1 Yit = 1. Further, the

columns of � are elements of rk�1, and the �i’s are elements of rp�1. Multivariate random error, �i 2 rk�1

(i = 1; 2; :::; n), is assumed independent and identically distributed from a logistic normal distribution with

location parameter vector 0k�1 = (0; :::; 0)
0

(k � 1-vector), and dispersion matrix ��.

As the notation suggests, the symbol “�” denotes an addition operator for compositional quantities, where

addition is defined on rk�1 (see Appendix I for details). This operation, Aitchison’s (1986) perturbation op-

erator, provides a natural definition for “additive error” for compositional data (Billheimer et al., 1997, 2000).
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Briefly, for two compositional quantities u and v in rk�1,

u � v =

 
u
1
v
1Pk

i=1 uivi

;
u
2
v
2Pk

i=1 uivi

; � � � ;
ukvkPk
i=1 uivi

!0

(4)

resulting in another composition in rk�1. Billheimer et al. (2000) show that the perturbation operator can be

used to construct an algebra and a complete, normed, vector space for compositions. This construction allows

the usual notions of additive error and projection (estimation) to be extended to compositional data.

To complete the model specification, I cast �j and �i, in a hierarchical framework. Each source profile, �j ,

is equipped with an informative prior distribution describing (partial) knowledge of the relative concentrations

of its chemical species. Typically, a logistic normal is used for this specification, although any compositional

distribution suffices. Less information is available about the mixing proportions. The �i’s are modeled as

independent draws from a logistic normal distribution with unknown location parameters �� (2 <p�1
) and

dispersion matrix �. These parameters are given diffuse, but proper, conjugate hyper-prior distributions. I use

Markov chain Monte Carlo (MCMC) for inference about model parameters. While a convex combination of

compositional quantities presents difficulties for analytic description (Aitchison and Bacon-Shone, 1999), it is

easily accommodated by the MCMC algorithm.

To summarize the distributional assumptions,

�(�;�i; �i;��;�;��) = �(�i j ��;�)�(�i j ��)�(��)�(�)�(��)�(�)

where

�i � L
k�1

(0k�1;��) ; ��1

� � Wishart (aN ; �)

�j � L
k�1

�
��j

; ��j

�

�i � L
p�1

(��; �) ; �� � Np�1 (�;	) ; ��1 � Wishart (bN ; Æ)

Here, Lk�1
(�;�) denotes the logistic normal distribution of dimension k � 1 with location parameter vector

�, and dispersion matrix �. Specification of the parameter values is postponed to the next section.
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For notational convenience, let �(�) denote Aitchison’s (1982) additive logratio transformation. That is, for

z 2 rk�1
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�
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�
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�
z
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�
; : : : ; log

�
zk�1

zk

��0
(5)

Thus, �(�) is a bijection mapping rk�1 onto <k�1.

Combining likelihood and priors, the joint posterior distribution is proportional to the following expression:
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where [yi]t denotes the t
th element of yi.

Markov Chain Monte Carlo Estimation

From this expression, full conditional distributions for �j ; �i; ��; � and, �� can be obtained (up to normal-

izing constants) for use in MCMC sampling (Besag and Green, 1993). The choice of conjugate distributions

results in a multivariate normal distribution for ��, and inverse Wishart distributions for � and ��. These

components can be updated by direct (Gibbs) sampling. Conversely, � and �i do not have simple analytic

distributional forms. Metropolis-Hastings algorithm can be used to update these components.

3 Implementation for Juneau Air Pollution Data

I apply the model formulated above to analyze data from the Juneau, AK air pollution receptor. First, I select

prior distributions for the wood-smoke and motor vehicle emission profiles to facilitate comparison with BR’s
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analysis of these data. This is referenced as “model A” in the following sections. Then I re-run the analysis using

less restrictive prior information by considering both source profiles to be unknown (referenced as “model B”).

Note that this is not an exhaustive analysis of the Juneau receptor data. The focus is to compare results with

previous modeling efforts, and to evaluate the sensitivity of results to restrictions on prior distributions.

Recall that n = 50 daily ambient air samples were collected, and that the data were comprised of the relative

mass of five chemical species: fluoranthene, benzoanthracene (benzo a), chrysene, benzofluoranthene (benzo

b), and pyrene. Two pollution sources were believed to contribute to the pollution load: woodstove smoke, and

motor vehicle emissions. BR’s analysis assumes that the chemical profile for woodstove smoke is “known”,

but that motor vehicle exhaust profile is unknown. Both are considered constant. The goal is to estimate the

contribution due to wood-smoke. Achieving this goal requires estimation of the motor vehicle exhaust profile.

I make similar assumptions in specifying prior distributions. Namely,

� wood-smoke source composition is assumed known and fixed at the concentrations used by BR.

� The motor vehicle emission composition prior distribution is centered at BR’s MLE. The prior variance

of this distribution is specified to be informative, but to retain substantial variability for �m.

� Daily mixing proportions are modeled as independent, identically distributed.

� Prior distributions for mixing parameters and error variance are quite diffuse (but proper).

Model–A Specification

The prior distributions are defined as follows:

�m � L
k�1

(�m; aN )

. The logistic normal location parameter vector, �m, is more easily interpreted as a composition, thus, ��1(�) =

(0:04; 0:08; 0:29; 0:35; 0:24)
0

This distribution “center” corresponds to the maximum likelihood estimate from

BR’s analysis. The dispersion matrix, N specifies a “null” correlation structure between log-ratio transformed
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compositions. That is, a priori one may consider the compositional elements “independent except for the sum-

mation constraint” (Aitchison, 1986; Billheimer et al., 1997) . This matrix has the form

N =

2
6666666664

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

3
7777777775

The value a = 0:10 is chosen for the motor vehicle profile, and provides substantial variability for the elements

of �m. Table 1 summarizes medians and marginal 95% prior probability intervals for each chemical species of

the motor vehicle emission profile.

Table 1. 95% Prior Probability Intervals for Motor Vehicle Emissions

Quantile

Chemical Species 0.025 0.50 0.975

fluoranthene 0.019 0.040 0.076

pyrene 0.039 0.079 0.147

benzo(a) 0.160 0.293 0.451

chrysene 0.201 0.344 0.519

benzo(b) 0.129 0.244 0.388

The mixing proportions �i are independently sampled a priori from a logistic normal distribution with

location parameter �� and dispersion matrix �. Because p = 2 sources, �� and � are both scalar quantities. I

center the prior distribution for �� at zero, with a variance 0.8. This corresponds a 95% prior probability interval

for ��1(��) ranging from approximately (0:1; 0:9)
0

to (0:9; 0:1)
0

, with mode at (0:5; 0:5)
0

. The prior variance

for �i is an inverse gamma distribution with shape parameter 1.0, and scale parameter 100. This specifies a

diffuse, but proper prior for �.

Finally, the measurement error dispersion matrix, �� is modeled with an inverse Wishart distribution with
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parameters bN and � degrees of freedom. For this problem, b = 0:1, and � = 4 = k � 1. Again, this specifies

a diffuse, proper prior for the measurement error.

Markov Chain Monte Carlo Sampling

MCMC is used to sample the posterior distribution for �m;�i;��;�, and ��. Quantities used in the convex

combination, �m and �i are updated using the Metropolis-Hastings algorithm, while ��;�, and �� are updated

using Gibbs sampling. Each parameter was updated once per sampling cycle, and the chain sampled for 100,000

cycles (after a burn-in period of 1000 cycles). Realizations from every 20
th cycle are saved for further analysis.

This subsampling is done solely to reduce storage space requirements and post-MCMC processing. Results

are not sensitive to starting states of the chain, and appear to converge quickly to the limit distribution. Visual

inspection of sampler output suggests that mixing is somewhat slower than in better identified hierarchical

models. However, comparison of multiple chains initiated at different starting points, and sampler diagnostics

(gibbsit, Raftery and Lewis, 1992) indicate run length to be adequate for reliable inference.

Model–B Specification

Next, I relax the assumption that the wood-smoke emission profile is known, and model it via an informative

prior distribution. I center the prior distribution at the “fixed” value in the previous analysis (used by BR), and

specify a prior variance identical to that of the motor vehicle emission profile (e.g., 0:1N ). The 0.025, 0.50,

and 0.975 quantiles of the prior distribution for wood-smoke emissions are presented in table 2.
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Table 2. 95% Prior Probability Intervals for Wood-Smoke Emissions

Quantile

Chemical Species 0.025 0.500 0.975

fluoranthene 0.201 0.346 0.509

pyrene 0.156 0.280 0.434

benzo(a) 0.052 0.103 0.183

chrysene 0.057 0.112 0.198

benzo(b) 0.082 0.159 0.270

The Juneau data are re-analyzed with this prior distribution for wood-smoke emissions. All other assump-

tions and distributions are identical to those described in model A. The results from this model are summarized

in the next section.

4 Modeling Results for Juneau Data

Model A Results

Using the model A specification to fit the Juneau receptor data results in a sample from the joint posterior

distribution of �m;�i;��;�, and ��. Figure 1 shows point estimates and credible intervals for daily proportion

attributable to wood-smoke.

Figure 1 about here.

Points indicate median daily proportion estimates, while pointwise 50% and 95% credible intervals are

indicated by dashed and dotted lines, respectively. The plot shows that daily 95% credible intervals range from
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roughly 0.2 to 0.7. This wide range of values suggests that we have little information for estimating daily mixing

proportions. Focusing on the median (point) estimates, we also see substantial day-to-day variability in the

proportion attributable to wood-smoke (range 0.33 to 0.52). Further, the observation from day 41 and possibly

days 3 and 28 are suggestive of outlying observations. Finally, there is slight evidence of an upward trend in

wood-smoke proportion through the time series. Regressing the the log-ratio transformed point estimates against

day reveals a positive slope (0.003), with a marginally significant p-value (0.035). (NB. This trend disappears if

days 3 and 41 are omitted). These last remarks are not intended as analysis “results”. Instead, they are included

to indicate that better, formal methods for diagnostics and inclusion of covariates are needed for analysis of

receptor data.

The marginal distribution for the proportion attrubutable to wood-smoke is summarized by the histogram in

figure 2. The estimated (median) contribution of wood-smoke is 0.41 (denoted by the “+”), and an approximate

95% credible interval (endpoints denoted by “*”) is (0.27, 0.60).

Figure 2 about here.

These values compare favorably with those obtained by BR. She obtained a maximum likelihood estimate

(including outliers) of 0.37 with a 95% confidence interval of (0.10, 0.56). Note that the credible interval above

is approximately 30% narrower than BR’s confidence interval. (One should also note that with two outliers

removed, BR’s point estimate is 0.42, with a much narrower confidence interval of 0.34 to 0.49). Factors

contributing to this narrower interval are discussed in the next section.

Finally, the estimated motor vehicle emission profile was similar to that obtained by BR, and is summarized

in Table 3. The similarity is not surprising since, to facilitate comparison, the prior location parameter vector for

�m was set at BR’s maximum likelihood estimate.
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Table 3. Motor Vehicle Emission Profile

Chemical Species Estimate MLE from BR

fluoranthene 0.039 0.040

pyrene 0.075 0.079

benzo(a) 0.294 0.293

chrysene 0.395 0.344

benzo(b) 0.197 0.244

Slight discrepancies between estimates exist for chrysene and benzo(b). The hierarchical compositional

model estimates slightly more chrysene and less benzo(b) than does the method of BR. However, marginal (el-

ementwise) 95% credible intervals for chrysene (0.27, 0.53) and for benzo(b) (0.11, 0.31) are clearly consistent

with BR’s estimates.

Model B Results

MCMC sampling from model B again provides a sample from the joint posterior distribution. However, with

this model both the wood-smoke source profile and motor vehicle emission profile are included in the posterior

distribution. Figure 3 shows posterior estimates from these distributions.

Figure 3 about here.

The posterior distributions for both wood-smoke and motor vehicles are very similar to their prior distri-

butions. This similarity likely reflects 1) that the prior distributions are centered near the maximum likelihood

estimators, and/or 2) there is little information in the data for updating the prior distribution. This issue is
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discussed further in the next section.

Figure 4 shows point estimates and credible intervals for daily proportion attributable to wood-smoke.

Figure 4 about here.

Clearly, there are strong similarities between figure 4 and figure 1. One difference of note is that the vari-

ability in figure 4 is smaller. Credible intervals for daily proportions are about 0.10 narrower for model B than

in model A. Indeed, point estimates also shrink toward the central value of 0.42. Increasing the source profile

uncertainty appears to reduce observed variability in estimation of the mixing parameters.

Figure 5 summarizes the posterior distribution for the “mean” mixing proportion, ��. Again, results are

similar to those obtained from model A; the primary difference is reduced variability in the present model.

Figure 5 about here.

The median for this distribution is about 0.42 with a 95% credible interval of (0.30, 0.54). This credible

interval is roughly 30% narrower than the credible interval produced by model A. As before, allowing increased

variability in the source profiles results in reduced variability in the distribution of the mixing parameters.

5 Discussion

In this paper, I explore a restricted version of the receptor modeling problem where the number of sources

is known, and partial information is available about the individual source profiles. Further, I assume only
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relative concentrations of the chemical species are observed. Source profiles and mixing proportions are treated

in a hierarchical modeling framework where all quantities, including measurement error, are compositions.

Source chemical “signatures” are outfitted with informative prior distributions summarizing our knowledge of

their profiles. Conversely, little is (typically) known of the mixing process. Thus, mixing proportions (and

measurement error) are modeled with proper, diffuse prior distributions. Measurement error is incorporated in

the model by means of Aitchison’s (1986) perturbation operator. Inference is performed using MCMC sampling

of the joint posterior distribution.

Among recent statistical contributions to receptor modeling (BR and Park, et al., 1999), my approach is

most similar to BR. We both address the nuisance parameter problem by modeling mixing proportions as ran-

dom quantities (Kiefer and Wolfowitz, 1956). Further, we model compositional observations and constrain

components of the convex mixture to also be compositional quantities. However, one point of difference is the

method by which compositional errors are incorporated in the model. BR uses a Dirichlet convolution process

to account for measurement error, while I use a perturbation error structure (explained in detail in Billheimer, et

al. 1997; 2000). The perturbation construction allows the usual notions of additive error and projection (estima-

tion) to be extended to compositional data in a natural way. Further, it avoids the multidimensional numerical

integration required for the Dirichlet convolution model.

By way of contrast, Park, et al. (1999) model absolute concentrations of chemical species. They assume

source profiles to be compositions, but contributions of individual sources and measurement error are not con-

strained. Further, source contributions (incidental parameters) are treated as fixed, unknown parameters. Park,

et al. (1999) achieve a consistent sequence estimators by adapting the quasi-random functional model or repli-

cated functional model of Gleser (1983) to source contribution estimation. However, the resulting estimators for

source profiles do not satisfy the summation constraint for compositions, nor are source contribution estimators

required to be nonnegative.

A second difference concerns assumptions required for model identifiability. Park, et al., (1999) specify

identifiability conditions that rely on “tracer” species in the source profiles. That is, at least p � 1 distinct
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chemical species must be absent from each source profile. BR identifies model parameters by determining

facets of the source polytope. This is accomplished by specifying a subset of observations that lie on facets of

the polytope. Here, at least one source does not contribute to each observation on a facet. Parameter estimation

is conducted conditionally on the facet observations. In both cases, these assumptions allow model identifiability

by reducing the dimensionality of the parameter space.

My approach differs from both BR and Park et al., (1999) by using (partial) knowledge about source pro-

files to define their prior distributions. This is similar to the approach described in Press and Shigemasu (1989)

for achieving unique estimates in factor analysis. Informative prior distributions for the source profiles help to

“focus” the posterior distribution, and thus allow parameter estimation. That is, they provide sufficient struc-

ture to the posterior distribution to define a maximum over this surface. This approach is quite different from

mathematical “identification” of the model by restricting the parameter space.

Choice of the “identification method” clearly depends on the problem under consideration and the informa-

tion avaliable for modeling. In spite of their (seemingly) different approaches to identifiability, these methods

are not mutually exclusive. Indeed, it appears that one could combine both methods in a Bayesian framework by

specifying prior distributions on source profiles (to reflect tracer elements), or on mixing proportions (to reflect

observations on the boundary of the source polytope). Exploration of such combinations of prior information is

planned for future work.

Finally, I address issues related to reduced variability in mixing proportion estimation associated with source

profile prior distribution(s). The analysis in section 4 presents a comparison between the Bayesian hierarchical

modeling method of this paper, and the maximum likelihood approach of BR. An important difference in re-

sults is a 95% credible interval for the wood-smoke contribution that is approximately 30% shorter than BR’s

95%confidence interval. While these intervals are not strictly comparable, they each describe a range of values

in which one would expect the parameter. This difference in interval length is likely due to 1) use of an informa-

tive prior distribution in the Bayesian model, and 2) use of an explicit “additive” error structure, instead of BR’s

Dirichlet convolution.
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The results from model B show that estimation of multiple unknown source profiles is possible in the compo-

sitional modeling framework. Allowing increased uncertainty in both source profiles further reduces variability

in the mixing parameters posterior distributions. Such a result is not surprising since increased flexibility in

specifying source compositions allows mixing proportions to be more homogeneous in describing observed

variability. In model A, where one source profile (motor vehicle emissions) is unknown, the range of plausible

values of the proportion attributable to wood-smoke is roughly 30% narrower than that estimated by BR (where

the motor vehicle profile was estimated by the MLE). Further, by allowing both source profiles to be unknown,

the range of values is reduced by an additional 30%. These results suggests we need further clarification of the

relationship between fixing observations on facets of the source polytope, fixing vertices of the polytope, and

specification of a prior distributions for source profiles.

In addition to these issues, the analysis of the Juneau receptor data identifies directions for new method-

ological developments. First, methods for incorporating and assessing the effect of covariates are needed. Both

environmental and anthropogenic factors are likely to be important determinants of source contributions. Quanti-

tative methods for evaluating such covariates would provide powerful tools for understanding observed variation.

Second, most methods used in receptor modeling assume observations are mutually independent. (Indeed,

only Park, et al., 2000 have attempted to account for serial dependence.) As with other atmospheric data, one

anticipates temporal dependence between multiple observations from a single site, and spatial dependence for a

network of samplers. While correlation complicates evaluation of inherent variability, it can be used to benefit

prediction. Indeed, one might anticipate substantially improved estimation of the mixing process by “borrowing

strength” from neighboring observations.

Finally, there are many challenges of receptor modeling not directly suggested by the Juneau data analysis.

These include treatment of “below-detection-limit” values (in chemical applications), formal diagnostic proce-

dures for identifying missing sources, and multiple levels of measurement error. We need to accommodate such

“real world” complexities in statistical models for air pollution data.
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6 Appendix I - Logistic Normal Distribution and Compositional Algebra

The appendix follows the development in Billheimer et al. (2000). Compositional data are vectors of pro-

portions describing the relative contributions of each of k categories to the whole. Mathematically, z =

(z
1
; z

2
; :::; zk)

0

; where zi > 0; for all i = 1; 2; :::; k and
Pk

i=1 zi = 1. Hence, z is an element of the

(k�1) dimensional simplex (rk�1). Aitchison (1982, 1986) introduces the logistic normal (LN) distribution as

a framework for analysis of compositional data. These methods rely on the additive logratio transform (�(�)) to

take observations from rk�1 to (k � 1)-dimensional Euclidean space (<k�1). The additive logratio transform

of z 2 rk�1 to <k�1 is defined as

�(z) =

�
log

�
z
1

zk

�
; log

�
z
2

zk

�
; � � � ; log

�
zk�1

zk

��0
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This transformation is a bijection with inverse transformation denoted by �
�1. Aitchison (1986) terms the

inverse transformation the additive logistic transform.

Aitchison models the transformed data via the (k � 1) multivariate normal distribution. Assuming multi-

variate normality of the transformed data induces a distribution on rk�1: the logistic normal (LN) distribution.

A key benefit of the multivariate normal assumption is that its rich covariance structure transfers to the logistic

normal. This allows positive or negative covariances between pairs of the k elements of the composition. In

addition, inference tools developed for multivariate normal data can be applied to the transformed compositions.

The LN density function is

f (z j �;�) =

�
1

2�

� k�1

2

j � j�
1

2

 
1Qk
i=1 zi

!
exp

�
�
1

2
(� � �)

0

�
�1

(� � �)

�

where � = �(z) for z 2 rk�1. We denote the density function by L
k�1

(�;�). While the parameters depend on

the ordering of the elements of z, the density is invariant with respect to permutations of the elements. Aitchison

(1986) also establishes moments and other properties of this distribution, including its role as a limit distribution.

Associated with the additive log-ratio transform is a perturbation operator for compositional data (Aitchison,

1982). Perturbations allow an error structure on rk�1 analogous to the usual additive error model used in other

areas of statistics. An observed proportion vector, z, can be modeled as a location vector (�) “perturbed” by an

error (�). For �;� 2 rk�1,

z = � � � =

 
�
1
�
1Pk

i=1 �i�i

;
�
2
�
2Pk

i=1 �i�i

; � � � ;
�k�kPk
i=1 �i�i

!0

and z 2 rk�1. The vector � need not be an element of rk�1 for the perturbation operator to be defined. It is

sufficient that �i > 0 for all i = 1; 2; :::; k. Aitchison (1986) shows a number of properties of the perturbation

operator including an inverse perturbation, an identity element

Ik�1 =

�
1

k
;
1

k
; � � � ;

1

k

�0

and a power-transformation for compositions (Aitchison 1986, p. 120).
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Algebra for Compositions

Following Aitchison’s (1986, 1992) suggestion, we use the perturbation operator to define an addition operator

for compositions. Further, the power transformation allows us to define scalar multiplication of a composition z

by a scalar a as,

za =

 
z
a
1Pk

i=1 z
a
i

;
z
a
2Pk

i=1 z
a
i

; � � � ;
z
a
kPk

i=1 z
a
i

!

Billheimer et al., (2000) show that rk�1 equipped with the perturbation operator and scalar multiplication

constitutes a complete inner product space. This additional mathematical abstraction allows the definition of a

norm on rk�1. Further, it provides a framework for algebraic operations on compositions. The inner product

and norm are defined as follows.

Definition 6.1 For u; z 2 rk�1, let � = �(u), and � = �(z). Define by

hu; zi = �
0

N�1�

the inner product of u and z.

Here, N =

h
Ik�1 + jk�1j

0

k�1

i
, where Ik�1 is a (k � 1)-dimensional identity matrix, and jk�1 is a (k � 1)

column vector of ones. Note that

N�1

= Ik�1 �
1

k
jk�1j

0

k�1

Definition 6.2 Define the norm for u 2 rk�1, kuk, by hu;ui 1=2.

Inclusion of the matrix N�1 ensures that the inner product and norm are invariant to permutations of ele-

ments of u. Note also that the norm defined above is a sum of squares of log-ratios. This definition is contained

in the class of functions meeting Aitchison’s (1992) criteria for a compositional metric.

Differences Between Compositions

The definition of an (inverse) addition operation and a norm allow us to measure the difference between compo-

sitions. For demonstration, consider three compositions inr2, z
1
= I

2
= (1/3, 1/3, 1/3), z

2
= (0:80; 0:10; 0:10),
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and z
3
= (0:98; 0:01; 0:01).

We first note the norms of these compositions are

kz
1
k = 0; kz

2
k = 1:698; and kz

3
k = 3:744

Thus, the defined norm measures the distance of a composition from Ik�1, the “center” of rk�1.

Next, using the inverse of the perturbation operator, we find the difference between pairs z
1

and z
2
, and z

2

and z
3
. To find the difference between two compositions we perturb the second by the elementwise inverse of

the first. That is,

z
2
	 z

1
= z

2
� z�1

1
= z

2

since z
1

is the identity element. Similarly,

z
3
	 z

2
=

 
[z
3
]
1
[z
2
]
�1

1P
3

i=1[z3]i [z2]
�1

i

;
[z
3
]
2
[z
2
]
�1

2P
3

i=1[z3]i [z2]
�1

i

;
[z
3
]
3
[z
2
]
�1

3P
3

i=1[z3]i [z2]
�1

i

!

= (0:860; 0:070; 0:070)

where [zi]j is the j
th element of the composition zi. Thus, (0:86; 0:07; 0:07) is the composition by which we

need to perturb z
2

to obtain z
3
. By taking the norm of the difference composition, we measure the distance

between z
2

and z
3
.

kz
3
	 z

2
k = k (0:86; 0:07; 0:07) k = 2:046

Note that the distance from z
1

to z
2

is 1.698, while the distance from z
2

to z
3

is larger at 2.046. For

additional details of the compositional algebra and proofs of its Hilbert space characteristics, see Billheimer et

al. (2000).
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Estimates of Daily Woodsmoke Proportions - Model A

Figure 1: Point estimates and credible intervals for daily wood-smoke proportion. Points indicate median pro-

portion attributable to wood-smoke for each daily observation. 50% and 95% credible intervals are indicated by

dashed and dotted lines, respectively.
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Figure 2: Histogram for median mixing proportions. This histogram show the distribution of MCMC realizations

for the median of the mixing proportion distribution, ��. The median of this distribution is approximately 0.41,

and a 95% credible interval is (0.27, 0.60).
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Figure 3: Sample of Posterior Distribution of Source Profiles. The webplot shows the (a sample from) the

posterior distribution of wood-smoke and motor vehicle emission profiles. Dark lines superimposed on the

figure represent point estimate compositions for each source
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Estimates of Daily Woodsmoke Proportions - Model B

Figure 4: Point estimates and credible intervals for daily wood-smoke proportion – model B. Points indicate

median proportion attributable to wood-smoke for each daily observation. 50% and 95% credible intervals are

indicated by dashed and dotted lines, respectively.
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Figure 5: Histogram for median mixing proportions – model B. This histogram show the distribution of MCMC

realizations for the median of the mixing proportion distribution, ��. The median of this distribution is approx-

imately 0.42, and a 95% credible interval is (0.30, 0.54).
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