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Abstract

Extrapolation relationships are of keen interest to chemical risk assessment where

they play a prominent role in translating experimentally derived (usually in animals) tox-

icity estimates into estimates more relevant to human populations. A standard approach

for characterizing each extrapolation relies on ratios of pre-existing toxicity estimates.

Applications of this \ratio approach" have overlooked several sources of error. We exam-

ine the case of ratios of benchmark doses (BMDs), and try to better characterize their

informativeness by modeling the process by which they are generated in practice. Both

closed form and simulation-based models of this \data-generating process" (DGP) are

developed, paying special attention to the in°uence of experimental design. Our results

show signi¯cant limits to informativeness, and revealing dependencies. The impreci-

sion and bias of the ratio approach can no longer be ignored. We recommend bootstrap

techniques, but they alone can only gauge imprecision. Proper characterizations of infor-

mativeness require more complicated techniques. Other recommendations are provided

for better estimating and/or mitigating the errors. This analysis has implications that

extend beyond the ratio approach to any empirical extrapolation study (involving quan-

tal data). Such insights demonstrate the bene¯ts of understanding the DGP and the

advantages of using the notion of calibration in better characterizing informativeness.

Keywords: Noncancer risk assessment, relative potency, extrapolation, MLE, likelihood,

sampling distribution, experimental design, uncertainty analysis, calibration, censoring, ig-

norability, measurement error, bootstrap, Monte-carlo simulation, dynamic optimization.
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1 Introduction

Most determinations of chemical safety are based on animal experiments and must invoke

extrapolation relationships to derive a toxicity estimate relevant to human populations. Con-

sequently, approaches for characterizing each extrapolation relationship are of keen interest.

A standard approach tries to discern each relationship from a dataset formed from ratios of

pre-existing toxicity estimates. For example Baird et al. [1] found 51 chemicals for which ratios

of chronic/subchronic toxicity could be formed, and used them to study subchronic to chronic

extrapolation. Several others have applied the same empirical approach to look at this and

other extrapolations (e.g., between species, routes of administration, and e®ect endpoints).

Although sensible1, this \ratio approach" can be undermined by several sources of error.

Owing to the relatively small number of chemicals for which ratios can be assembled, infer-

ences are subject to ¯nite sample error. Moreover, measurement error a®ects each of the

estimates forming the ratios. Additional error can arise due to the patchwork of experimental

conditions under which the various toxicity estimates were obtained. To date, applications of

the approach have overlooked these errors.

This paper focuses on better characterizing informativeness. It builds upon a previous

paper [2], which examined ratios of no-observed-adverse-e®ects-levels (NOAELs) | a toxicity

estimate used in noncancer risk assessment. Here we examine ratios of a di®erent toxicity

estimate, the benchmark dose (BMD). This alternative estimator is widely thought to have

better statistical properties than its NOAEL counterpart [3, 4, 5, 6, 7]. A motivating question

is whether BMD ratios can transcend the substantial limitations found for NOAEL ratios [8, 2].

Our approach involves modeling the way BMD ratios are generated in practice and then

using the model to study the impact of the aforementioned errors. For illustration, the analysis

focuses on the problem of extrapolating between mouse and rat toxicity. The intent, however,

is to be instructive for the more general use of BMD ratios.

We pay special attention to dose selection, a fundamental aspect of experimental design

1The approach presumes that the true underlying extrapolation relationship is well represented by a pro-

portionality constant with some random variation (perhaps due to inter-chemical heterogeneity). Ratios are

inappropriate for studying other types of relationships.
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that can in°uence the quality of each BMD estimate. The practice of dose selection is an art,

involving a certain degree of guesswork about the doses at which the agent in question will

yield the most informative responses, and it is unlikely to be optimal across all experiments.

To explore this complicated issue, we o®er two simpli¯ed models of dose selection and examine

their implications.

The paper begins with a background section which: i) summarizes the process by which

BMD ratios are generated; ii) speci¯es the restricted form of extrapolation relationship con-

sidered in this analysis; and iii) introduces the framework we use to de¯ne informativeness.

Next, the methods section introduces an idealized model of the data-generating process (DGP)

for BMD ratios and then proceeds to describe assumptions needed for quantitative modeling.

Our simulation approach is then described. The results section begins with the idealized case,

comparing closed-form and simulation based results, and then presents results for a less ideal-

ized model of the DGP. Finally, results are interpreted, wider implications are identi¯ed, and

recommendations are made for improving future extrapolation studies.

2 Background

Before examining the ability of measurements to reveal the underlying property, it is useful

to clarify: i) the nature of the measurements; ii) the nature of the underlying property being

measured; and iii) the notion of informativeness used in gauging correspondence between the

two.

2.1 The Measurement and its Data-Generating Process

Fig 1 illustrates a hypothetical application of the ratio approach. It examines the case of

mouse to rat extrapolation. After mouse and rat toxicity estimates are gathered for a set of

chemicals, the paired (by chemical) data are checked for consistency with the assumption of

a proportional relationship (see Fig 1A). Upon con¯rmation, ratios are calculated from the

paired data to obtain the empirical distribution shown in Fig 1B. Its central tendency (solid

vertical line) is used to infer the systematic di®erence in toxicity between mice and rats, and
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its spread (variance) is used to infer the inter-chemical heterogeneity of that di®erence. In

practice, geometric measures of central tendency (Geometric Mean, GM) and spread (Geo-

metric Standard Deviation, GSD) are preferred, because of the consistency of observed ratios

with lognormality and their restriction to non-negative values.

2.1.1 The Data Generating Process

In modeling how the empirical distribution (Fig 1B) arises in practice, we face several chal-

lenges. The Data-Generating Process (DGP [9, 10, 11]), entailing any factor (step) capable of

in°uencing the individual BMD estimates (typically these are measured independently), can

be complicated. We only consider three key steps:

1. The in°uence of experimental design. Dose selection is our primary concern, but we also

consider other aspects such as the number of animals per study.

2. The BMD estimation procedure(s) and in particular the protocol(s) for dealing with

atypical bioassay outcomes. For example, stipulating what estimate, if any, is to be

recorded for a dataset showing no signi¯cant dose-response trend.

3. The \measurement error" a®ecting each BMD estimate. Speci¯cally we model the im-

pact of sampling error that occurs when only a ¯nite number of animals are available to

gauge the underlying expected response at each test dose.

These three steps are included in our model of the DGP, which is then used to study

the informativeness of BMD ratios. Modeling the ¯rst two steps is particularly challenging

because each is a®ected by traditions, precedents, or regulatory standards, which may go

undocumented and may be inconsistent across BMD estimates. A more complete discussion

of the DGP for BMD ratios is provided in Ref [8].

2.1.2 The BMD Estimate

A BMD can summarize either continuous (e.g., average body-weight change) or quantal (e.g.,

fraction of animals surviving) experimental outcomes, and can re°ect either \best" or lower-

bound estimates [4, 12, 13, 6]. We restrict attention to best estimates (Maximum Likelihood
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Estimates, MLE) obtained from quantal data and denote them using the standard notation,

EDq; where q denotes the quantal level response of interest (a value of 10%, 5% or 1%, is

typical). Focusing on the mouse/rat example, we use the random variable µ to denote the

pertinent ratio of BMDs,

µ =
ÊDqm

ÊDqr
(1)

where the subscripts m and r are used to index mouse and rat attributes and the ÊDq's, being

estimates (as denoted by the hats), are random variables.

We are interested in both asymptotic and ¯nite-sample properties of µ. The asymptotic,

or large-sample, properties suggest the best that one can do as sample size (number of ratios)

becomes e®ectively in¯nite. In reality samples are ¯nite; thus ¯nite sample error is of interest.

2.2 The Property

The property is an underlying biological relationship, presumed to exist between the two

toxicity endpoints of interest (mice and rats in our case). A standard practice assumes a

proportionality relationship,

EDqm = £EDqr (2)

where EDq denotes the true e®ect-dose, and £, the \constant of proportionality," de¯nes the

property.

The property, £, is conceptualized as a random variable, representing the net result of a

systematic di®erence in toxicity between mice and rats as well as inter-chemical heterogeneity

in that di®erence. Systematic di®erences could accrue from the gross di®erences between

species (e.g., rats are roughly 10-fold larger by mass), while inter-chemical heterogeneity could

result if the chemicals invoke di®erent toxicokinetic and or toxicodynamic mechanisms. In

practice doses are often scaled, that is expressed in units which are intended to adjust for

the systematic di®erence, so the observed systematic e®ect represents only that which is

unaccounted for by the chosen scaling rule.

Because the interchemical heterogeneity is conceptualized as arising from multiplicative
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deviations from the norm, a lognormal distribution is a sensible choice for representing £.

£ =
EDqm

EDqr

» ¤(GM£;GSD£) (3)

where GM£ denotes the geometric mean, and GSD£ denotes the geometric standard devia-

tion. These parameters correspond to the systematic e®ect and inter-chemical heterogeneity,

respectively.

When the mouse and rat dose-response relationships are parallel, the property £ applies

to all e®ect levels, i.e., to any choice of q (See Ref [14, 8] for more detail). That is,

£ =
ED10m

ED10r

=
ED50m

ED50r

=
EDqm

EDqr

We restrict our analysis to this special case of parallelism, noting that it is a standard as-

sumption in research on comparative potency [15, 16, 17, 14, 18, 19], but further noting that

the implications of non-parallelism deserve closer attention in future research.

2.3 De¯ning Informativeness by Analogy to Calibration

A basis for comparing the property £, with its' measurement, µ, is needed. Rather than

comparing distributions directly, it is more convenient to compare their associated parameters

(GM£ versus GMµ and GSD£ versus GSDµ).

We use the concept of calibration to evaluate informativeness. Calibration usually in-

volves: i) engineering a series of standards (e.g., standard weights in gravimetric analysis)

with a known value of the quantity being measured, ii) subjecting each standard to replicate

measurements; and iii) plotting the replicate measurements, or some summary thereof, against

their associated standards. This yields a calibration curve, well suited for conveying the con-

cept of \informativeness," which we de¯ne as connoting not only accuracy and precision but

also how each depends on the magnitude of the underlying standard (truth) [8, 2]. Our analysis

uses a similar process to gauge the informativeness of an empirical distribution of ÊDq ratios,

where the modeled \measurement device" encompasses the entire data-generating-process

(DGP).

Figures 2a through 2c illustrate three potential calibration results. In Fig 2a, the device

being calibrated is both accurate (unbiased) and precise (repeatable). In contrast, Fig 2c
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exempli¯es an uninformative device (despite good precision) | i.e., the measurements do not

respond to changes in the standard. Fig 2b, illustrating a case where bias (and precision)

depend on the truth, exempli¯es the need for the more rigorous de¯nition of informativeness.

An actual calibration is impossible for various reasons, not the least of which is the un-

availability of standards (i.e., strains of mice and rats for which £ is either known or can be

engineered). Modeling the DGP can partially bridge the impasse. Ideally a statistical model

can express the distribution of observations as a function of the truth. More generally, simu-

lation can be used. Here Monte-Carlo sampling is applied to simulate replicate measurements

| the fundamental element in a calibration exercise. A su±ciently large number of replicates

(i.e., in our case a large number of simulated ratios) allows a large-sample approximation of

f(µ), the distribution of observed ÊDq ratios. A calibration curve is built by re-computing

a large-sample f(µ) for each of a sequence of standards (speci¯cations of GM£ and GSD£).

Thus, the procedure for constructing a simulated calibration curve is identical to conventional

procedures, the only di®erence being that replicate measurements are generated by simulation

rather than actual experiment.

3 Methods

We use closed-form and simulation based approaches to model the DGP. The closed-form

approach is examined ¯rst. Then, the assumptions necessary for quantitative modeling are

introduced and ¯nally the more generally applicable simulation approach is described.

3.1 The Idealized Data Generating Process

Under certain idealized conditions, a closed-form expression can be derived for the large sample

GM or GSD estimate [8]. The modeled bioassays (mouse and rat) must be \identical" to each

other up to a scalar transformation in dose (applied to their test doses and underlying dose-

response curves). Under these conditions, Eq 1 can be re-expressed as,

µ =
um
ur

£ (4)
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where £ is the property of interest and um and ur represent ÊDqs conditional upon a stan-

dardized set of conditions (i.e., experimental design and dose response attributes). The stan-

dardization implies that um and ur are independent and identically distributed (iid) with one

another. The large sample GMµ can therefore be expressed as,

GMµ = exp (E[log (£) + log (um)¡ log (ur)])

= GM£

(5)

where, E[log (um)¡ log (ur)] = 0, because um
iid» ur. The expression reveals that under

idealized conditions large sample estimates of the systematic e®ect are unbiased.

Similarly, applying the variance operator and appropriate transformations to Eq 4 obtains

an expression for the large sample GSDµ.

GSDµ = exp
³q

Var[log (£) + log (um)¡ log (ur)]
´

= exp
µr

log2 (GSD£) + 2
³
log2 (GSDu)

´¶ (6)

where GSDu = exp (
q

Var[log (um)]) = exp (
q

Var[log (ur)]). Equation 6 reveals that large

sample estimates of the inter-chemical heterogeneity (GSDµ) are upwardly biased. The mag-

nitude of the bias depends on GSDu, which essentially represents the measurement error

associated with the standardized bioassay.

Both Eq's 5 and 6 provide important qualitative insight2, however, only the expression

for GMµ (Eq 5) provides complete quantitative insight for large sample results (i.e., since

additional analysis is required to quantify GSDu). In addition, these expressions do not

address ¯nite sample imprecision. To get more complete insight and to examine less idealized

DGPs, we turn to simulation.

3.2 A Simulation Approach

This section begins by outlining several categories of assumptions underlying our simulation

analysis. Although logically unrelated to the property of interest, £, and therefore theoreti-

cally exogenous, these assumptions a®ect the `lens through which we view' the property and

2It can be shown that these expressions also apply to NOAEL ratios (if the same idealized conditions hold).
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therefore must be speci¯ed to fully characterize the DGP. Two factors including dose selection

and the BMD estimation protocol, are given special attention. Several others, including dose-

response and experimental design factors, are referred to collectively as `contextual factors'

and examined ¯rst.

3.2.1 Dose-Response Relationship

The response data used to estimate each ÊDq must be generated from the underlying dose-

response relationship. A three-parameter Weibull model is used to represent this relationship

for both mice and rats. The model expresses the expected response (fraction of animals with

adverse e®ects), denoted R, as

R(d) = Pr[ adverse e®ect jd] = 1¡ exp

0
@¡®¡ log (2)

"
d

ED50

#k1
A (7)

where d is the dose, ® corresponds to a background response rate, ED50 is a `location' param-

eter, k determines dose-response shape, and log () is to the base e throughout.

The inclusion of ® in Eq 7 allows for nonzero background response. We assume it to be

equivalent in both species (®m = ®r).

Adjusting the location parameter (ED50) ¯xes the 50% response of the underlying dose-

response curve, enabling the dose-response curve to be shifted. Adjusting the shape parameter

k achieves varying degrees of non-linearity | as k is increased (for k > 1) the dose-response

curve becomes increasingly sub-linear.

As described earlier (Section 2.2) parallel dose-response relationships are assumed through-

out this analysis. The restriction, implying equivalent dose response shapes (i.e., km = kr),

should favor informativeness.

In this analysis, only the relative location of the mouse and rat dose-response relationships

matters. Thus for the purposes of analysis, the rat ED50 is treated as the frame of reference and

assigned an arbitrary value (ED50r = 1). With this de¯nition, Eq 2 dictates that ED50m = £.
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3.2.2 Experimental Design Factors

Two aspects of experimental design have the potential to signi¯cantly in°uence ÊDq's and

associated ratios:3 the number of animals in each dose group and dose selection.

We assume that the number of animals (denoted na) is the same in each dose group for

both mice and rats. For the base case, calculations are run with na = 20 animals.

A mouse (or rat) bioassay is assumed to consist of a control group (with dose d0 = 0) and

a set of nd dosed groups arranged symmetrically on the logarithmic scale around their central

test dose, denoted dc. Two further assumptions are required to fully specify the test doses.

These include i) the dose spacing, denoted s, which we de¯ne to be the geometric spacing

between the highest and central test doses (dmax=dc), and ii) the general strategy for centering

the test doses in each of the bioassays. The latter amounts to specifying dc for both mouse

and rat bioassays.

Mouse and rat bioassays are assigned equivalent nd and s. Plausible values for these

parameters are readily based on general practice [21, 22, 23, 24, 25, 13].

The issue of dose centering is more complicated. Any model of this process must re°ect not

only the general strategy used by the experimenter to center test doses (for each chemical),

but also its success. We o®er two simpli¯ed models. The ¯rst, referred to as \enlightened

dose centering," was implicitly assumed in Section 3.1's derivations for the idealized DGP.

The second, referred to as \default dose centering," is intended to examine the implications

of less optimal dose centering, more typical of practice.

Both models make use of a working de¯nition for ideal dose centering wherein the experi-

menter is assumed to place the central test dose, dc, exactly at the tested chemicals' underlying

ED50 (i.e., dc = ED50)4. The enlightened model presumes ideal centering in both mouse and

rat bioassays (across all chemicals).

The default model presumes ideal centering only for the rat bioassays. For mouse bioassays

experimenters are assumed to set dcm = dcr which would seem a sensible recourse when there

3Other experimental design decisions such as caging arrangement, feeding protocol, etc are well known to

a®ect experimental outcomes [20], but are not considered, to simplify discussion.
4We do not claim that centering test doses exactly at the ED50 is optimal (this would depend on other

factors such as dose response shape). We simply use it as a reasonable working strategy.
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is no chemical speci¯c evidence to prompt otherwise. Being centered around the rat ED50

(or equivalently dcr), the mouse doses will be `misplaced' whenever ED50r is a poor proxy for

ED50m. The misplacement will generally involve a random component (since GSD£ > 1), and

will involve a systematic component when GM£ 6= 1.

3.3 Replicate datasets

To re°ect the impact of measurement error on each ÊDq estimate, we use Monte-Carlo simu-

lation [26]. It involves generating replicate measurements, subject to identical experimental-

design and dose-response parameters. Each replicate's outcome is modeled as the number

of animals showing a response (e.g., death) in each dose group and is denoted ~x, which in-

cludes the set of nd + 1 responses (i.e., one per dose group). It is the variation in ~x owing

to chance that is responsible for measurement error. This is captured by modeling ~x as,

xj » Bin(na; Rj), for j = 0; 1; : : : ; nd+1. That is, the response in the jth dose group is drawn

from a binomial distribution where the \success probability," Rj, is the expected response in

the jth dose group determined by evaluating the true dose-response function (Eq 7) at dose

dj. A total of Nrep ~x's, is generated per experiment to simulate the impact of chance.

3.4 BMD Estimation

For each replicate, an ÊDq estimate is obtained using maximum likelihood estimation (MLE)

to ¯t a model to the dose-response data. In our analysis, the model form ¯tted to each

simulated dataset is chosen to be identical to the three parameter Weibull model de¯ning the

truth (Eq 7). In reality, less compatibility between true and ¯tted relationships is expected.

Since our analysis requires estimating parameters for a large number of datasets (approxi-

mately 50; 000 per large sample estimate) we developed our own algorithm for Maximum Like-

lihood estimation. The procedure needs to be automated, reliable, and e±cient and also needs

to allow parameters to be constrained (since standard practice precludes negative Weibull pa-

rameters). To do this, the Amoeba Downhill algorithm [26] was modi¯ed for non-negativity

constraints, and an automated method for specifying starting values for the optimization

`search' was developed [8]. The automated method, which exploits the delta method [27],
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yields rapid and reliable convergence [8]. Unlike some analysts, we do not constrain the shape

parameter to be greater than 1 (some restrict k · 1 so as to preclude supra-linearity [4]).

Once the constrained MLE parameters are obtained, the ¯tted model is used to back-

calculate the dose associated with an extra risk of q percent [4, 29]. De¯ning extra risk as,

(R(d)¡ ®)=(1¡ ®), ÊDq, is calculated as,

ÊDq =

Ã
log (1¡ q)
log (1=2)

!( 1

k̂
)

ÊD50

where the hat notation is used to identify MLE parameter estimates. In this analysis, ÊDq's

are calculated for an extra risk of 10 %, thereby obtaining an ÊD10.

Not all datasets are suitable for standard maximum likelihood estimation. Here, two classes

of unsuitable datasets are considered: (a) those failing a test for positive trend (referred to as

\non-signi¯cant"), and (b) those yielding unbounded MLE parameter estimates (referred to as

\un¯ttable").5 Any analysis must specify a protocol for dealing with such datasets. We assume

that they are dropped from further analysis. This `drop-protocol,' which has the potential for

distorting the DGP, is just one of several possibilities. One might also defer to another related

dataset, invoke alternative e®ect estimation techniques (e.g., NOAEL estimation as suggested

in Ref [7]), assign \working values" to the dose-response data so as to avert the di±culty [30,

p. 130], or even re-do the experiment, perhaps with di®erent dose levels.

To identify \non-signi¯cant" datasets we use a Cochran-Armitage trend test [14]. Datasets

either failing to exceed the signi¯cance criterion (p · 0:05) or demonstrating negative trend

are dropped from further analysis. Though intended to mimic practice (see for e.g., Barnes

et al. [7] who advocate signi¯cant trend as a prerequisite for BMD estimation), the screen

is also partially motivated by pragmatic concerns associated with convergence of our MLE

algorithm.

The retained datasets are then examined to screen out un¯ttable datasets which are,

in the case of ¯tting Weibull models, characterized by an unbounded MLE for the shape

parameter [30, 31, 18]. Un¯ttable datasets are identi¯ed (see Ref [8] for convenient criteria)

and dropped from further analysis.

5Some guidance documentation for BMD estimation also recommends tests for goodness of ¯t as a prereq-

uisite for obtaining the ÊDq estimates. We have not implemented this screen.
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3.5 Methods for Simulating a Calibration

Given a particular set of speci¯ed \contextual factors," calibration curves are plotted to

explore informativeness. The curves are constructed by simulating replicate bioassay experi-

ments for each calibration standard (i.e., speci¯cation of the true distribution of £) and tracing

out the DGP steps for each replicate. With a su±cient number of replicates, the outcomes

provide a large-sample approximation of f(µ). These distributions, which correspond to the

schematic distributions appearing in Fig 2, play a fundamental role in the construction of our

calibration curves.

Because each f(µ) is a function of the distribution of ÊDqs observed in mice and in rats,

we begin by describing the generic procedure for obtaining a Monte-Carlo approximation of

f(ÊDqjED50); where the distribution is conditional on a ¯xed ED50.

3.5.1 Sampling distribution for BMD (ÊDq)

The procedure for computing f(ÊDqjED50) involves: (i) generating Nrep replicate datasets,

~x as described in Section 3.3; (ii) discarding all replicates that are deemed unsuitable (see

Section 3.4); and (iii) estimating the EDq (Section 3.4) for each of the N
0
rep retained datasets.

The resulting N
0
rep estimates form the Monte-Carlo approximation of f(ÊDqjED50).

The sample distribution f(ÊDqjED50), corresponding to the case of ED50 = 1 is of partic-

ular interest. We refer to it as the \unit distribution," denoting it f(u). It corresponds to the

ÊDq sample distribution modeled for rats (since ED50r = 1). In the case of enlightened dose

centering, it also applies (with simple scalar transformations) to all mouse bioassays.

3.5.2 Assembling the Sampling Distribution for Ratios

The sampling distribution for ÊDq ratios, f(µ), can be obtained by combining the mouse

and rat ÊDq sampling distributions. The former, f(ÊDqr), is simply the aforementioned unit

distribution, f(u).

Obtaining the mouse distribution, f(ÊDqm), is more complicated because there is no single

ED50m . Instead the inter-chemical heterogeneity speci¯ed in our model implies a distribution

for ED50m consistent with £. The mouse distribution, f(ÊDqm), requires \averaging" condi-
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tional distributions f(ÊDqmj£) across £, where the distribution of £ was given in Eq 3. This

is implemented using a statistical procedure called Monte-Carlo integration. The result is a

numerical approximation of f(ÊDqm) consisting of a set of
PNsim
i=1 N

0
repi

realizations. Again

the prime notation indicates that Nrep may be reduced after discarding unsuitable datasets.

Once the sampling distributions for the mice and rats have been approximated, their

respective realizations are combined using independent resampling (Nresamp times with re-

placement) to approximate f(µ). Independent resampling is appropriate because of the way

every rat bioassay is modeled; each is standardized (i.e., ED50r = 1) and consequently their

outcomes are independent of one another as well as their counterpart mouse outcomes.

All \observed" summary statistics are computed from the approximation of f(µ). Large

sample estimates of central tendency (GM) and spread (GSD) are readily computed using

standard methods, while bootstrap techniques are applied to study the ¯nite sample impreci-

sion in either estimate (detail is available [8, 2]).

Throughout the analysis, choices of simulation size (Nrep, Nsim, andNresamp) are made with

the objective of getting a su±ciently stable approximation of the large-sample distribution;

where stability is assessed informally by inspecting repeated analyses.

Simulation, computation, and graphics were programmed in S-PLUS V3.4.1 for SunOS

5.3 (StatSci Division, MathSoft, Inc., Seattle, WA, USA [32, 33]). The modi¯ed Amoeba

Downhill algorithm was implemented in Fortran and linked to Splus. See Ref [8] for details.

4 Results

We examine the informativeness of GM and GSD estimates by presenting results in the form

of calibration curves. The curves plot simulated observations versus their counterpart truths

(standards). Here, each observation represents either a GM or a GSD estimate, while the

speci¯ed value for its counterpart (GM£ or GSD£ respectively) acts as the standard.

In order to convey informativeness both large and ¯nite sample results are plotted. Large

sample estimates are plotted using +s, while the imprecision associated with a more realis-

tically sized sample (nratio = 50) is examined using 95 % con¯dence intervals (plotted using

14



triangle symbols).

To help in gauging bias, a one-to-one reference line is plotted on each graph. It represents

an ideal calibration curve, i.e., the case for which the estimate perfectly tracks the truth. A

calibration curve falling on this line suggests an unbiased estimator; an implicit assumption

when GM or GSD estimates are taken at face value. Curves falling o® this line may still be

informative provided they show a trend which is not obscured by the ¯nite sample error.

Calibrations for the enlightened and default models are run separately to look at the

in°uence of dose centering. All primary analyses assume a base-case set of contextual factors

including, a background rate of ® = 0:05, a dose response shape of k = 2, a number of animals

per dose group of na = 20, a dose spacing of s =
p

10, a number of dosed groups of nd = 3,

and (in the case of a GM calibration) a nominal value of GSD£ = 2:5 (or GM£ = 1:0 in the

case of a GSD calibration).

4.1 Enlightened Dose Centering

The enlightened case is of interest for two reasons. First, it provides an upper-bound on the

informativeness of ÊDq ratios. Second, being subject to the closed-form solutions derived in

Section 4.1, it provides an opportunity to cross-check our simulation algorithm.

4.1.1 GM Calibration

The calibration shown in Fig 3 examines the informativeness of GM estimates. The large-

sample results (+'s) closely track the one-to-one line and thereby reveal an unbiased estimator;

as a±rmed by the associated closed-form solution (Eq 5). Evidently, in the enlightened case,

a su±cient sample size (number of ratios) can give a good estimate of the systematic e®ect.

The con¯dence intervals (triangles) shown in Fig 3, reveal non-negligible imprecision

(nratio = 50). Implications of this imprecision can be explored by interpolating between

the upper and lower bounds. For example, an observed GM of 3 is roughly compatible with a

truth of anywhere between 2:2 and 4:0. Larger intervals would apply for GM > 3, since the

intervals increase linearly with increasing GM£. Similar logic can be used to gauge the power

to di®erentiate rival hypotheses about the true GM.
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4.1.2 GSD Calibration

Turning to the issue of inter-chemical heterogeneity, Fig 4 examines the informativeness of

an observed GSD. The large-sample results (+) demonstrate upwards bias as a±rmed by the

closed form solution (Eq 6) presented in Section 4.1.

As in the case of GM calibrations, ¯nite sample imprecision can be substantial. The

triangle intervals plotted in Fig 4, show that imprecision increases exponentially with the

true GSD. Judging from these 95% bounds, an observed GSD of 3.0 is compatible with a

true underlying GSD of anywhere between 2.2 and 4.0 (a sizeable range for a GSD), with a

corrected central estimate of 3.2.

The results presented in Figures 3 and 4 provide a reassuring cross-check of our simulation

algorithm; the large sample results are consistent with closed form expressions presented in

Section 4.1. The consistency is of particular interest because we are forced to rely on the

simulation algorithm to evaluate the case of default centering (presented next).

4.2 Default Dose Centering

The default model explores the implications of imperfect dose centering. When severe, the

imperfection can increase the number of unsuitable datasets, which in turn (by virtue of our

drop-protocol) causes the censoring of ÊDq's and associated ratios. The censoring can cause

a distinct pattern in the calibration curves; a plateau-e®ect (i.e., curve °attens out, relative to

the one-to-one line), which a®ects both GM and GSD calibration curves (in the default case),

and undermines informativeness.

To conserve space we present results only for GSD calibrations (results for GM calibrations,

similar to those for GSDs, are available [8]).

Recognizing the prominent role of censoring we have added a diagnostic bar-plot to each

calibration curve. Solid vertical bars are used to indicate the fraction of censoring associ-

ated with each observed GSD. It is a rather crude diagnostic because it lumps all censoring

together [8]. More sophisticated censoring diagnostics will be explored in future research.
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4.2.1 GSD Calibration: Default

Fig 5 shows a GSD calibration corresponding to the case of default centering. Although the

large-sample results (+) show a trend with the truth, the trend °attens with higher values

of the standard, displaying the aforementioned plateau e®ect. Notably, informativeness is

undermined. For example, Fig 5 shows a limited capacity for resolving truths between 2.6

and 4 | the calibration suggests that truths within this range will yield roughly the same

distribution of observed GSDs.

Finite sample error, as depicted by the triangular con¯dence intervals (nratio = 50), exac-

erbates the limitations. For example, judging by the con¯dence intervals, an observed GSD

of 2:5 is roughly compatible with any true GSD larger than 1:8.

The bar-plots shown in Fig 5, are suggestive of an association between censoring and

the plateau e®ect. The increase in censoring (ranging from 15% to 50%, left to right) with

increasing values of the standard, parallels the onset and progression of the plateau e®ect.

To better explore the interplay between measurement error and censoring, Fig 5 results are

viewed di®erently. The sample distributions, f(µ), underlying each of the ¯ve GSD plotting

points are examined and compared with their underlying standards. Fig 6 plots each sample

distribution (on a log-scale) as a histogram, and superimposes a Gaussian distribution corre-

sponding to the lognormally distributed standard (Eq 3). Note the breadth of the Gaussian

distributions increases from (A) to (E) re°ecting the GSD£ increments requisite to a GSD

calibration.

A comparison of the histograms with their Gaussian standards reveals the in°uence of

measurement error and censoring. For example, in panel A (GSD£ = 1:2), the wider breadth

of the histogram (observed ratios) relative to its Gaussian counterpart is indicative of mea-

surement error which has in°ated the observed variance. As the GSD£ increases, however, the

role of censoring increases, culminating in histograms whose tails are noticeably truncated rel-

ative to their Gaussian counterparts (see panels D and E). The truncation causes the plateau

e®ect seen in Fig 5.
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4.3 Dependence Upon Contextual factors

The results presented above demonstrate that informativeness strongly depends on dose cen-

tering. Next we explore the impact of varying the contextual factors.

4.3.1 Enlightened Case

The closed form expressions derived for the enlightened case prove that some estimation

properties are independent of contextual factors. Namely, GM and GSD estimates remain

asymptotically unbiased and upwardly biased, respectively, regardless of context. However,

the extent of GSD bias varies with context as does ¯nite sample imprecision. Both depend

on measurement error (i.e., GSDu) in an intuitive manner.

4.3.2 Default Case

The sensitivity to contextual factors is not as easy to gauge under default centering because the

more prominent role of censoring, complicates matters. Predicting sensitivity for a particular

contextual factor requires anticipating the net result of its impact on both \measurement

error" and censoring; impacts which can be opposing. To illustrate the extent of sensitivity

we present one set of results for the informativeness of GSD estimates (results for GM estimates

are presented elsewhere [8]).

Fig 7 is obtained by repeating the calibration process; varying the numeric value of two

contextual factors (others are maintained at base-case values). Dose response shape (k) is

varied down the rows, while the number of animals per dose group (na) is varied across the

columns. The calibration curves, ranging from reasonably informative (top-right panel) to

essentially uninformative (bottom row of panels) and showing some disconcertingly strong

plateau e®ects, demonstrate strong sensitivity to k and na. We ¯nd comparable sensitivity to

the other contextual factors as well (results not shown).

In reality, informativeness would be even worse than appears in Fig 7. Finite sample

imprecision, likely to be of similar in extent as in Fig 5, would tend to obscure the trend (if

any) in the large-sample results.

The sensitivities displayed in Fig 7 can be explained. Increasing na across the columns
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(left to right), increases the statistical power of each bioassay, and thereby improves infor-

mativeness. The improvement arises from a reduction in measurement error (as indicated by

decreasing y-intercept) and from a tempering of the plateau e®ect (i.e., by reducing censoring).

The diminishing informativeness with increasing k is less intuitive. Given the presumed

estimation protocol, increasing k (increasing step-like shape) increases censoring by increasing

the fraction of un¯ttable datasets. The plateau e®ect ensues.

The bar-plots in Fig 7, a±rm the association between censoring and poor informativeness.

Less informative curves are characterized by higher censoring (i.e., see bottom row of panels,

where associated barplots indicate censoring ranging from 54% to 95%), whereas the most

informative curve shows the least (top-right panel indicates censoring ranging from 0.0% to

10%).

Within panels the association is not as pronounced (e.g., panel k5 n20). Further re°ection

suggests that the weak association may be attributed to the crude nature of our diagnostic.

The impact of censoring strongly depends on where (in the uncensored distribution) that

censoring occurs, a feature missed by a measure which lumps together all censoring.

The extreme censoring characterizing some panels in Fig 7 (e.g., the bottom row) raises

a question. Can panels exhibiting such high censoring have a bearing on actual practice ? It

seems implausible that testing programs would persist in the face of so much censoring. The

relevance of each panel in Fig 7 to practice, may therefore vary, even though each is a function

of plausible contextual factors.

5 Discussion and Conclusions

The ratio approach for characterizing extrapolation relationships overlooks several sources

of error which are of interest in the evaluation and improvement of methods for chemical

risk assessment. We found the informativeness of the approach to be su±ciently limited to

undermine the current practice of taking results at face-value. Future applications of the

ratio approach should attempt to quantify and adjust for bias and imprecision. We o®er a

standard approach for gauging imprecision, and suggest that more complicated techniques
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will be required to gauge bias.

Interestingly, BMD ratios do not necessarily outperform NOAEL ratios, as one might

¯rst suspect. A preliminary comparison of results for NOAEL ratios [2], and their BMD

counterparts, is equivocal [8]. Depending on the context, NOAEL ratios can be more or less

informative.

We begin this discussion by summarizing our results. We then carefully scrutinize our

model, and conclude that it is basically sound and provides a good starting point for quanti-

fying bias and imprecision. The scrutiny is revealing. It suggests several ways to improve the

ratio approach and reveals that our work has wider implications.

Our modeling results show substantial imprecision and bias in GM and GSD estimates.

Although the extent of these errors is found to vary with several factors, imprecision is con-

sistently non-negligible.

Distinct di®erences in calibration curve patterns are observed between the two (default

and enlightened) dose centering models. Only default centering exhibits plateau-e®ects. The

resulting potential for downward bias a®ects both GM and GSD estimates. In contrast, the

enlightened case has unbiased GM estimates and only upward bias in GSD estimates.

Factors beyond dose centering also have substantial e®ects on calibration properties. Fig 7

and additional analyses, reveals sensitivity to all contextual factors. These factors need to be

taken into account when interpreting BMD ratios.

Some of our calibration curves (e.g., Fig 7, upper right, i.e., k1 n50) suggest that the ratio

approach can be informative. But our results hide an additional source of uncertainty. Each

curve presumes that all contextual factors are identi¯able (known with reliable precision),

but in reality some, e.g., dose response shape (k), are poorly known. This translates into

uncertainty about which calibration curve applies, clouding the estimation of bias.

Two calibration curve features, the plateau e®ect and the propensity for an upwards GSD

bias, are explained by censoring and measurement error, respectively. Simplistically, their

impacts can be described as subtracting and adding variation, respectively, and thus have a

predictable in°uence on imprecision as well. Censoring plays a more in°uential role under

default centering, while measurement error plays a roughly comparable role under both cen-
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tering models. Owing to our drop-protocol, censoring is a direct result of unsuitable datasets,

and thus increases with poor centering. Intuitively, measurement error varies inversely with

statistical power.

The relevance of our results is contingent on how faithfully we have captured the true

DGP. E®orts have been made to use only plausible assumptions, however, some are di±cult

to verify.

In most cases of ambiguity, we have made assumptions with the intention of favoring

informativeness. For example, we assumed that mouse and rat dose response curves are

parallel and that the true and ¯tted dose response relationships are compatible (both Weibull).

Although, reality is likely to deviate from these assumptions, it is likely to do so in a way

that worsens informativeness. Not all of our assumptions necessarily favor informativeness.

Two, including the drop-protocol, and our implicit neglect of multi-comparisons, deserve closer

consideration.

The drop-protocol, which automatically censors each unsuitable dataset, seems like a

worse-case assumption. How can one do worse than outright censoring? Yet using an alterna-

tive protocol, such as reporting the NOAEL (where obtainable) for each unsuitable dataset,

would not necessarily improve informativeness. A NOAEL imputation protocol has its own

errors [2], and does not work for all datasets. Thus censoring and the attendant plateau e®ect

is likely to exist even if wiser protocols are practiced.

Our analysis has overlooked the issue of multi-comparisons. It implicitly assumes that

ratios are formed between speci¯c e®ect endpoints in the mouse and rat bioassays, and not,

as is common, between the most sensitive (or pivotal) endpoints. This added stipulation for

\most sensitive" would require additional steps in our model of the DGP. Informativeness may

or may not improve, depending on dose centering and how the dose response relationships are

related across endpoints. This will be the subject of future research.

In Section 4.3.2 we questioned how much censoring could go unchecked in practice. Some

clues can be obtained from past studies. For example, Faustman et al. [13] reported that

among 2; 000 reproductive bioassay endpoints (not all independent), 43 % precluded the iden-

ti¯cation of a Lowest Observable Adverse E®ect Level (LOAEL). Indicative of the prevalence
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of the nonsigni¯cant class of unsuitable datasets, this suggests that censoring on the order of

50% is conceivable (provided drop-protocol applies). Un¯ttable datasets, would only add to

this percentage. Future work will explore this issue in more detail.

The ratio approach can be improved in several ways. Some actions can improve inferences

from pre-existing ratio datasets, while others can assure that more complete information is

recorded, or minimize the errors a®ecting the approach.

The bias and imprecision in GM and GSD estimates must be estimated. A simple solution

exists for gauging imprecision: namely bootstrap techniques can be applied to the raw ratio

data in much the same way as we did in our simulation. Bias, on the other-hand must be

predicted.

Our results demonstrate that bias depends on several factors. Addressing these depen-

dencies requires more information about each of the contributing bioassays. At the very least

each BMD should be accompanied by its raw dose response data. This facilitates wiser and/or

more consistent BMD estimation protocols. Additional information should be collected to ac-

count for in°uential co-factors. Information is: most readily available for experimental design

factors (e.g., na, nd, s); discernible, but with poor precision, for dose response factors; and,

generally unavailable for dose centering and BMD estimation protocols.

Predicting bias is complicated. The problem simpli¯es under enlightened dose centering

where only bias in the GSD is of concern (GM estimates are unbiased). In this case, the GSD

bias can be determined with the aide of Eq 6, after estimating GSDu (using either simulation,

see Section 3.3, or, if certain asymptotic conditions hold, the delta-method [27]).

Accounting for bias will be more di±cult in practice. Imperfect dose centering will compli-

cate matters with the plateau e®ect. Moreover, the patchwork of contextual factors expected

in practice will necessitate averaging calibration properties across the patchwork. New meth-

ods, perhaps building upon ours, will be required. Notably, some occasions, namely hypothesis

testing, require more detail than simply the imprecision and bias of the estimate. The preci-

sion and bias under the null must also be known (or estimated). Detail of this kind requires

modeling the DGP and producing a calibration curve or some simplifying assumptions.

Not all recommendations revolve around better characterizing imprecision and bias. Steps
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aimed at a more strategic design of future bioassays can mitigate the errors. Measurement-

error can be reduced by increasing the statistical power of the bioassays (e.g., increasing

na, or nd). This has the added bene¯t of reducing the number of non-signi¯cant datasets

and thereby mitigating censoring. Relaxing the signi¯cance criteria (p-value) could have a

similar e®ect. But, perhaps the most e®ective way to mitigate censoring is to aspire towards

enlightened dose centering. The feasibility of these recommendations varies. In the case of

increasing statistical power, opportunity costs can be prohibitive, while assuring enlightened

dose centering, possibly requiring expensive dose ranging studies or sequential designs6, has,

in addition, its practical limits [8].

Although we examined the hypothetical case of mouse to rat extrapolation, our analysis

has wider implications. The range of input values and assumptions explored is compatible with

most chronic, sub-chronic, and (arguably) acute bioassays. Thus the general assertion, that

imprecision and bias can not be overlooked, holds for essentially any application of the ratio

approach to quantal data (e.g., to explore route to route, endpoint to endpoint, subchronic

to chronic, and other extrapolations). Indeed, the roots of the problem (measurement error

and censoring) are fundamental and likely to have broader implications. They are likely

to a®ect most other empirical extrapolation approaches, including `non-linear' analyses of

ratios [38], regression studies extending beyond pair-wise comparisons [39, 40], and other

studies exploring relationships between alternative toxicity estimates [41, 42, 43, 44, 45]. They

also have implications for studies of optimal design and studies comparing the relative merits

of alternative toxicity measures (e.g., BMD versus NOAEL). Such studies need to allow for

the inherent unreliability of dose centering and specify what is to be done with unsuitable

(e.g., insigni¯cant) outcomes.

Generalize-ability to toxicity estimates drawn from continuous or categorical data is a

topic of future research. Our analysis only dealt with quantal data, which may accentuate

censoring.

Slob and co-workers [46, 47] have independently pointed out the potential for upwardly

6Sequential designs allow progressive re-testing, where each re-test's design doses are enlightened by the

responses found in the last iteration [34, 35, 36, 37].
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biased GSD estimates and ¯nite sample error, while Faustman (reported in [21]) has expressed

other qualitative concerns. Our analysis takes a more quantitative tact, demonstrating that

the errors are non-negligible and revealing the key in°uence of dose centering, unsuitable

datasets, and the estimation protocol.

We are not the ¯rst to examine the in°uence of dose selection on extrapolation studies.

Several papers have debated whether the correlation observed between mouse and rat cancer

potency's, is merely an artifact of a coordinated choice of test doses [48, 49, 50, 38, 51, 52, 53].

The artifact argument is explainable by the plateau e®ect and thus compatible with our

default case. Our approach may help in better establishing the informativeness of the observed

correlations.

Understanding the DGP and using a calibration construct to explore its implications has

proven useful in this work. The same approach could be applied to other steps in regulatory

toxicology, where an actual calibration is often impossible or prohibitive, and where an analyst

may be prone to a±rming the consequent. Considering the DGP suggests the distribution of

observations to be expected under rival hypotheses | not just the one presupposed | and in

this way supports more appropriate inference. We hope to apply this same general approach

in future research.
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Figure 1: A scatter plot of 50 hypothetical rat ÊDq measurements plotted against their

mouse counterparts (on log-log scale) is shown in (A), the histogram of the log-transformed

ratios taken from these same data is shown in (B). Under the ratio approach the central

tendency (dashed line) of this distribution is thought to be indicative of the systematic di®er-

ence between mice and rats, while the spread is interpreted as indicative of the interchemical

heterogeneity in that di®erence.

Figure 2: A schematic representation of three calibration curves, illustrating di®erent degrees

of informativeness. In each panel `bell-curves,' depicting large sample distributions, are plot-

ted against their associated standards (truths). Dotted lines mark the one-to-one line, while

solid lines track the central trend of the observations. Panel A exempli¯es an informative

measurement device, exhibiting tight centering around the one-to-one line (precise and unbi-

ased). Panel B exempli¯es the net result of a complicated DGP, leading to a dependency

between the attributes of bias and precision and the truth; the plateau-e®ect displayed by the

trend (solid) line undermines informativeness. Panel C exempli¯es an entirely uninformative

device (observations are unrelated to the truth of interest); note apparent precision can be

misleading. An implicit assumption of panel A, often goes unchecked.

Figure 3: A GM calibration-curve is plotted for the case of enlightened dose centering. Large-

sample GMµ's (Obs), obtained via simulation, are plotted against their associated calibration

standards, GM£ (crosses, +). Triangles denote 95% con¯dence intervals for GMµ, calculated

assuming 50 ratios. GMµ refers to the geometric mean of ÊDq ratios taken between mice

and rats. An unbiased calibration curve would fall on the one-to-one line (dotted line). The

closed-form expression for the large sample GMµ (Eq 5) corresponds to the one-to-one line.

Plot based on the following contextual factors: s =
p

10, n = 20, k = 2, ® = 0:05 and

GSD£ = 2:5.
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Figure 4: A GSD calibration-curve is plotted for the case of enlightened dose centering.

Large-sample GSDµ's (Obs), obtained via simulation, are plotted (crosses, +) against their

associated calibration standards, GSD£ (True). GSDµ refers to the geometric standard devia-

tion of ratios taken between mice and rats. The closed-form expression for large sample GSDµ

(Eq 6), plotted as the solid line, a±rms the simulation results (+s). See Fig 3's caption for an

explanation of plotting symbols and contextual factors which are the same except GM£ = 1

while GSD varies.

Figure 5: A GSD calibration-curve is plotted for the case of default dose centering. All results

are based on simulation. Large-sample GSDµ's (Obs) are plotted (crosses, +) against their

associated calibration standards, GSD£ (True). Upper barplot shows the fraction of datasets

censored (fraction of bar darkened) for each standard. See Fig 3's caption for an explanation

of plotting symbols and contextual factors which are the same except GM£ = 1 while GSD

varies.

Figure 6: Re-examines the results shown in Fig 5. Using histograms it plots the sample

distribution of observed ratios (on log-scale) corresponding to each of the (+) plotting points

shown in Fig 5. A Gaussian distribution, representing the relevant standard, is superimposed

on each histogram. The true GSD increases from (A) to (E), as evident in the increasing

spread. Discrepancies between the histogram and its counterpart truth (Gaussian distribution)

indicate censoring, and account for the plateau-e®ect seen in Fig 5.

Figure 7: Nine simulated calibrations illustrate the dependence of curves on contextual factors.

Dose-response shape k is varied down the rows (k = 1; 2; 5), while na is varied across the

columns (na = 10; 20; 50). Each calibration curve plots Observed GSDµ's versus their (True)

calibration standards, GSD£ (shown with crosses +'s). All 9 plots based on the following

contextual factors: s =
p

10, ® = 0:01 and GM£ = 1. See Fig 3's caption for an explanation

of plotting symbols.
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