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Chapter 1

INTRODUCTION

1.1 Model uncertainty

Statistical modeling is an integral part of many applied data analysis problems. If re-

searchers have a scienti�c question they wish to answer, and the data to do so, many steps

are taken throughout the analysis to create a \�nal" model, and to make inferences or

predictions from this model. One must choose a response variable, or one of several possi-

ble transformations. A speci�c model is selected to describe the relationship between this

response and predictors of interest, or their transformations. Potential confounding vari-

ables and precision variables may be included or excluded, and again their form must be

determined. After this stage of modeling, one usually uses diagnostic techniques to assess

the appropriateness and usefulness of the model. Countless decisions must be made by the

investigator in this modeling process, such as which link function to use, the form each vari-

able should take, and deciding whether or not to keep unusual observations. Furthermore,

each decision is subjective and only lightly governed by arbitrary rules of thumb, such as

keeping variables whose coeÆcients have p-values of less than 0.05.

Often more than one model is considered, and so the researcher must also choose the

\best" model, perhaps using a method such as stepwise regression, as well as what aspects

of this model will be used to answer the question(s) of interest. This selective reporting

of models and results usually ignores the uncertainty resulting from the decisions made

by the investigator in building and choosing a model. This can then a�ect the validity of

the p-values and con�dence intervals for inferences and predictions made from this model.

Selecting a single model and making all subsequent inferences based on this can also lead to

policy decisions that are riskier than one may think ([11],[20]). Further discussion of these
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and other issues of model selection procedures can be found in [26].

As a speci�c example, we will consider epidemiological studies designed to assess the

association between adverse health events and airborne ambient particulate matter (PM).

These studies have received great attention in recent years as they help provide a basis for

national policy decisions regarding acceptable pollution levels. New standards for levels of

PM were proposed by the Environmental Protection Agency (EPA) in 1997, in spite of the

remaining high degree of uncertainty regarding the e�ects of �ne and, to a lesser extent,

coarse PM on human health.

Most of the PM health-e�ect studies, current and historical, use model selection methods

subject to the criticisms presented above. In this paper we will present and implement an

alternative to model selection methods, Bayesian model averaging (BMA). The use of BMA

for these particulate matter analyses has been suggested as a possible solution for problems

encountered with model selection and exploration ([8], [3]). This method has been presented

in detail in [3], [15], [26] and [27] and has been used in the analyses of PM health e�ects

in at least two cities: Birmingham, Alabama and Phoenix, Arizona ([4], [5]). We describe

a modi�ed version of the Phoenix, Arizona analysis here, and also use BMA to assess the

association between PM and elderly non-accidental mortality in Seattle, Washington. This

work can be seen as a continuation of work presented in [3].

1.2 Particulate matter measurements and standards

Before we present the analyses and their motivation, it may be helpful to the reader if

we describe the various PM measurements. Regulations set by the EPA concerning PM

levels are typically based on the concentration measurement taken at collection sites. Total

suspended particulates (TSP) are collected by a device which detects ambient airborne

particles with a maximum size of 30 �m ([8]). PM10 measurements are made from a device

for which 50% of the particles at 10 �m are collected. Therefore, PM10 measurements

mostly include particles smaller than 10 �m, but also include particles larger than 10 �m

([8]). Similarly, PM2:5 measurements are made from a device for which 50% of the particles

at 2.5 �m are collected. Other particulate matter variables referred to in this paper are
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nephelometry, black smoke and British smoke. Nephelometry is a measure of light scattering

and is a good measure of particles larger than 0.2 �m and smaller than 0.9 �m ([6]). Black

smoke is measured by the amount of blackening on monitor �lters. British smoke is measured

by the amount of light reectance from dark particles on monitor �lters ([32]).

The most recent particulate matter standards set by the EPA are described in the

National Ambient Air Quality Standards (NAAQS) document published in 1997 ([1]). This

document states that the annual standard level (based on a three-year average of yearly

averages) of PM2:5 should not exceed 15 �g/m3 and sets the three-year average of the

yearly 98th percentile 24-hour level of PM2:5 at 65 �g/m
3 ([1]). Also in this publication, the

annual standard level (based on a three-year average of yearly averages) of PM10 is retained

at 50 �g/m3, while the three-year average of the yearly 99th percentile 24-hour level of

PM10 also remains at 150 �g/m3. It should be noted that the standards for PM10 have

been declared invalid by the Federal Appeals Court in Washington, D.C., on the grounds

that the EPA should set separate standards for �ne and coarse particles, and PM10 measures

both �ne and coarse particles. The percentiles are calculated nonparametrically, as dictated

by the EPA in the NAAQS document, but these could also be estimated parametrically.

Appendix A contains an example and comparison of these two methods.
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Chapter 2

BAYESIAN MODEL AVERAGING

Bayesian model averaging (BMA) has been suggested by many authors ([3], [15], [26],

[27]) as one alternative to the classical model selection process. Model uncertainty is ac-

counted for in BMA, unlike other model selection methods such as stepwise regression or

backward/forward elimination, in which it is ignored. This method averages over the best

models in the model space to yield useful summary measures, such as the posterior proba-

bility of a particular model, the posterior probability that a coeÆcient is equal to zero and

average posterior expected value and variance of parameters ([15]).

2.1 Overview of Bayesian model averaging

Bayesian model averaging provides a coherent alternative for combining inferences from

di�erent models and addressing model selection in subsequent inferences ([3], [15], [26], [27]).

Under BMA, each model contributes proportionally based on the support it receives from

the data, as measured by the posterior probability of each model. Potential models using

all possible combinations of covariates are obtained using the leaps and bounds algorithm

to �nd the best models of each size. To provide a baseline reference analysis, we use the

Bayes Information Criterion (BIC) or Schwarz Criterion ([29]) for determining posterior

model probabilities, where BIC for model M is

BIC(M) = deviance(M) + dim(M)log(n):

The quantity deviance(M) is the deviance statistic for model M (-2 log likelihood),

dim(M) is the number of variables in model M , and n is the number of observations. This
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imposes a heavy penalty on models that contain a large number of parameters and so tends

to favor simpler models ([26],[17]).

Suppose we are interested in the posterior probability of a speci�c model, M , being the

correct model out of m = 1; :::;K possible models, Pr(M jData). We can �nd this using

Bayes' theorem:

Pr(M jData) =
Pr(DatajM)Pr(M)

PK
m=1 Pr(DatajMm)Pr(Mm)

:

Now assume all models are equally likely a priori, so Pr(M) = 1=K. We can use a BIC

approximation result given in [26] to write

Pr(M jData) =
e�BIC(M)=2

PK
m=1 e

�BIC(m)=2

where the sum in the denominator is again over all models m;m = 1; :::;K. For some

quantity of interest, say �, we can then �nd the posterior expected value and variance of �,

incorporating information from all models considered as

E(�jData) =
KX

m=1

E(�jData;m)Pr(mjData);

and

Var(�jData) =
KX

m=1

Var(�jData;m)Pr(mjData) +

KX

m=1

fE(�jData;m)� E(�jData)g2Pr(mjData):

BMA using BIC has led to improved predictive performance in many situations ([15],

[3]), and provides objective probabilities of models. It also has been suggested to be useful



6

when one is interested in the relationship between two variables and there are several other

possible covariates that may or may not be necessary to include in the model ([17]). As

discussed in chapter 1, this uncertainty about which variables to include in a reported set

of models should be accounted for and BMA provides a method for doing this.

2.2 The use of Bayesian model averaging in particulate matter studies

The situation described above is found in several studies, such as [34], [22], and [10], which

have failed to account for model uncertainty when trying to assess the relationship between

particulate matter and adverse health e�ects. These studies have used responses such as

mortality, asthma cases, and emergency hospital visits, and typically have a small number of

predictors of interest. Not all studies have yielded the same results, even among analyses of

the same response in the same city (see [19] for many examples). Part of these discrepancies

could be due to the model selection process.

Oftentimes, models used in particulate matter analyses include 30 or more variables.

This is clearly enough to result in some variables being labeled \statistically signi�cant",

using the common p < 0:05 criterion, even if they are not truly associated with the response.

Also, many models seem to have been explored before a �nal model is chosen and reported.

This concern, that the positive associations between health outcomes and particulate matter

are a result of multiple testing and uncertainty inherent in model selection, was raised in

the 1998 National Research Council report on \Research Priorities for Airborne Particulate

Matter" ([7]). In many studies, results from multiple models may be presented, but no

consistent method has been used to combine multiple inferences for the same set of data.

One common reason for the high number of variables included in PM models is the

apparent uncertainty in the lag structure of the data. Most PM studies include not only

the PM variables of interest, but also selected meteorological variables, other pollutants,

variable(s) to account for the baseline trend in mortality, and perhaps an indicator of the day

of the week. For the meteorological and PM variables, it is unclear whether today's values

a�ect today's mortality or if the weather and/or PM on some previous day, or an average of

several previous days, has a greater e�ect. Therefore, most studies include these variables
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for the current day and several previous days, or perhaps a moving average, and then use

an automatic model selection procedure to determine which are most signi�cant. Which

lags are chosen seems to have a great e�ect on the outcome. This has been acknowledged

as a problem in PM studies by many authors ([16], [18], [36], [12], [19]). See Table 2.1 for

examples of several studies in which modeling mortality with various PM lags yields varying

results.

Table 2.1: Examples of varying results by lag structure selection in PM studies. Particulate
matter measurement de�nitions are given in section 1.2.

Reference PM variables Lag(s) PM variable with highest

reported signi�cance

[24] TSP and PM10 0-2 days TSP lags 1 and 2,

PM10 lag 1

[16] PM10 5 day mean mixed, depending on city,

monitors and exclusions

[25] Black smoke 0 and 1 days, mixed, depending on lag,

and PM10 and 3 day mean PM10 with 3 day mean

[2] TSP and PM10 many explored lag 0

[14] Black smoke 0-2 days TSP lag 1 and BS lag 2

[35] PM10 and 0-2 days lag 0 and 2-4 day mean

nephelometer

[37] PM10 0-3 days and lag 0 and lag 1

3 day mean

[23] �ne particles means for up to lag 0 best for summers

4 day lag

[31] PM2:5 and 2 day mean 2 day mean

PM10�PM2:5 signi�cant for both

[10] PM2:5 and 0 days lag 0

PM10 and PM15 signi�cant for all

[30] TSP 0 days lag 0

[32] British Smoke 15 hours signi�cant
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In the analyses presented in this report, we consider model uncertainty regarding which

meteorological variables should be included, whether there is a coarse or �ne particulate

matter e�ect, and which lags of the variables should be included. We calculate the posterior

distribution of the relative risk of an increase in non-accidental elderly mortality under BMA

associated with simultaneous one interquartile range (IQR) changes in all lags of �ne and

coarse particulate matter variables included in the models. The use of IQR for calculating

relative risk changes is fairly common in PM studies (eg. [34] and [22]). The posterior

distribution (approximate) for the relative risk given a model which includes any of the PM

variables is a log normal distribution, where the log relative risk has a normal distribution

centered at the maximum likelihood estimate of the relative risk under that model and

with variance derived from the inverse Fisher information matrix for that model (see [3]

for more details on using BMA with Poisson regression models). For models that exclude

all PM variables (�ne, coarse, or any lags), the relative risk is identically 1. The posterior

probability that there is no PM e�ect is obtained by summing the posterior probabilities of

all models that exclude PM.
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Chapter 3

PARTICULATE MATTER AND MORTALITY IN PHOENIX,

ARIZONA

3.1 Data

Mortality data were obtained from the Arizona Department of Health Services for May 6,

1995�March 30, 1998 and matched to particulate matter and meteorological data for the

same time period. Because of concerns about the e�ect of spatial heterogeneity and potential

bias, we constructed four mortality response variables (Figure 3.1). Three, PHXMORT,

U2.5MORT and U10MORT, are each a daily count of non-accidental deaths for people age

65 and over in three geographical regions. PHXMORT includes deaths which occurred in

the Phoenix metropolitan area using the region de�ned as Phoenix Division, Arizona by the

United States Census Bureau. The second variable, U2.5MORT, includes deaths in a smaller

subset of zip codes which are thought to have spatially similar levels of �ne particles or PM2:5

throughout the region (personal communication Jane Koenig, University of Washington).

The third geographical region, is smaller yet and is thought to have fairly homogeneous PM10

levels, and therefore spatially homogeneous levels of coarse particles; the corresponding

response variable is U10MORT. Zip codes within Phoenix that determine deaths included in

U10MORT are 85004, 85006-85009, 85012-85020, 85028-85029, 85031, 85033-85035, 85043,

85051. U2.5MORT is de�ned using the above zip codes for Phoenix in the U10MORT region

plus the following zip codes within Scottsdale, Mesa, Glendale and Tempe: 85201-85205,

85207-85208, 85212-85213, 85234, 85236, 85251, 85253, 85256-85258, 85281-85284, 85296.

The fourth response variable, ACCMORT includes all non-traÆc related accidental deaths

for all age groups which occurred in the Phoenix metropolitan region. See Figure 3.2 for a

map of the various study regions. As there is little reason to believe that particulate matter

should be associated with non-traÆc related accidental mortality, this provides a sensitivity
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Figure 3.1: Time series of the four mortality responses, coarse PM and �ne PM for Phoenix,
Arizona from May 6, 1995 to March 30, 1998.

check on the methodology. Because early 1995 was a very mild u year in contrast to the

following years, we have chosen to model mortality using a start date of May 6, 1995.

In light of the upcoming review of the National Ambient Air Quality Standards, our

analysis focuses on estimating health e�ects of �ne particles PM2:5 and coarse particles

(PMC), de�ned as PM10 � PM2:5. Daily particulate matter readings (Figure 3.1) from a

TEOM monitor (Tapered Element Oscillating Microbalance) were obtained from the EPA's

National Exposure Research Laboratory for both PM10 and PM2:5. In Phoenix, particle

mass is typically dominated by the coarse fraction. Table 3.1 gives summaries for PM
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Figure 3.2: Map of Phoenix analysis regions.
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variables used in this analysis. The correlation between �ne and coarse particle daily levels

is 0.65. Over the 3 year period, roughly 13% of the coarse particle data are missing, while

approximately 8% of the PM2:5 observations are missing. Interquartile ranges used to

calculate the relative risk of death are 1.28 and 1.13 for the centered and scaled �ne and

coarse PM, respectively. Models are based on cases with complete data only (741 days).

Table 3.2 shows the 98th (99th) percentile and yearly averages for PM2:5 (PM10) for

comparison with the EPA standards outlined in section 1.2. Although it appears that the

PM measures did not violate EPA regulations, it should be noted that the EPA standard is

based on imputed data (when applicable) for all sites for complete years. The summaries

presented in Table 3.2 are based on only one monitor in the Phoenix area, exclude missing

observations, and �gures for 1995 and 1998 are based only on partial years.

Table 3.1: Summaries of Phoenix particulate matter variables. All measurements are in
�g/m3.

Variable Mean Median Standard Maximum Percent IQR

deviation missing

PMC 33.28 31.16 15.20 158.6 12.8 17.19

PM2:5 13.79 12.14 7.16 40.95 8.3 9.17

Additional daily meteorological data were obtained from the U.S. National Climatic

Data Center (NCDC) in Ashville, NC, and include minimum and maximum daily temper-

atures (TMIN and TMAX). Speci�c humidity (SH) was derived from the NCDC data. To

allow for nonlinear e�ects of temperature and humidity on mortality, we considered squared

components of each (TMAXSQ, TMINSQ, and SHSQ). As discussed in chapter 1, there is

no consistent agreement on which lags of PM and confounding variables to include. There-

fore, we allow for potentially any lag from the present day (lag 0) up to a lag of 3 days (lag

3) to be included.
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Table 3.2: Yearly summaries of PM10 and PM2:5 measurements for the Phoenix site for
comparison with EPA standards given in section 1.2. All measurements are in �g/m3.
aAverages and percentiles for 1990 are based on measurements for May 6, 1995 through
December 31, 1995. bAverages and percentiles for 1998 are based on measurements for
January 1, 1998 through March 30, 1998.

Year PM10 PM2:5

99 %ile average 98 %ile average

1995a 101.7 49.0 31.4 15.3

1996 110.1 50.6 34.2 14.8

1997 106.9 45.5 27.1 12.5

1998b 74.4 33.2 26.5 11.0

3.2 Methods

For each of the four response variables, we model mortality using a Poisson regression model.

This model is commonly used for response variables consisting of counts. We assume the

mean of the daily mortality counts, E(Y ) = �, is related to the covariates, X, by

g(�) = X�;

where the link function g(�) is de�ned as

g(�) = log(�):

We also assume the variance function

V (�) = ��

with � estimated within the model, rather than taken to be one. So, we assume that the log

of expected mortality has a linear relationship to the predictor variables. Further details

about Poisson regression models can be found in Chapter 2 of [21]. There are 70 days with

no non-traÆc related accidental deaths, so we used log(x + 1) as the response variable for

the sensitivity analysis, where x is the daily non-traÆc related death count.
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We use wavelet trend decomposition with LA(8) wavelet �lter ([9], Chapter 6) to esti-

mate the baseline time trend in log(mortality). The trend estimate is based on 6 levels,

corresponding to averages 64 days, or roughly two months, apart. Periods of one month or

greater have been suggested as the time scale choice when accounting for long-term varia-

tion ([3]). This baseline was estimated separately for each of the four response variables and

included in all subsequent analyses. We also adjust for the potential confounding meteoro-

logical variables discussed above. We consider particle size (�ne and coarse) as well as the

lag of the e�ect (0, 1, 2, or 3 days). With the nonlinear BASELINE, there are 29 variables

under consideration. All predictor variables were centered and scaled by their mean and

standard deviation.

3.3 Results

We will examine several outputs from model averaging to explore the possible association

between elderly mortality and particulate matter in Phoenix. Table 3.3 contains the proba-

bility the relative risk is one given the data, the posterior mean of the relative risk, and the

95% probability interval for the relative risk estimate for all four analyses. The quantity in

column two of this table is calculated as

Pr(RR = 1jData) =
JX

m=1

Pr(MmjData);

summing over only the J � K models which do not contain at least one PM variable. Focus-

ing on these values we see that the data seem to be marginally in support of an association

between elderly mortality and particulate matter for the analyses using U2.5MORT and

PHXMORT. The probabilities that the relative risk is greater than one given the data are

0.85 and 0.86, respectively, for the two areas. As with most of the output of these analyses,

there is no clear-cut rule for what is \large enough" to be considered important, but should

be determined by those making decisions based on the data. All four analyses yield rela-

tive risk posterior means slightly greater than one and all 95% probability intervals include

one, indicating that if any association does indeed exist, the e�ect is small. Note that the

evidence for an association between PM and ACCMORT is very small, as expected.
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Table 3.3: Summaries from Bayesian model averaging for the four analyses.

Response Variable Probability relative Posterior mean 95% Probability

risk is one given data relative risk Interval

U10MORT 0.32 1.02 [1, 1.05)

U2.5MORT 0.15 1.02 [1, 1.04)

PHXMORT 0.14 1.02 [1, 1.04)

ACCMORT 0.83 1.00 (0.99, 1.02)

Figure 3.3 shows, for each analysis, the posterior probability that the coeÆcient for each

particulate matter variable is not equal to zero, given the data. Notably, the posterior

probability (in percentage) that the coeÆcient for lag 1 coarse PM is not equal to zero is

75% for the U2.5MORT analysis, and that for lag 2 coarse PM is 68% in the PHXMORT

analysis and 0.41 in the U10MORT analysis. All other coeÆcients in all analyses had

posterior probabilities of not being equal to zero of less than 20%.

Figure 3.4 shows the distribution of relative risks based on the simultaneous change in

both coarse and �ne PM for each of the four response variables. All plots have a spike at

1.0 reecting the number of models which do not include any PM variables. In the distri-

bution for ACCMORT, most of the support is on relative risks equal to one, as anticipated.

The distributions for the other three responses are more concentrated. As we saw above,

there appears to be weak support for a PM association in the U2.5MORT and PHXMORT

analyses. The histograms for both have a fair amount of weight dispersed among values

greater than one.

Figures 3.5 and 3.6 contain model space plots and 95% probability intervals for rela-

tive risks for the top 25 models considered in the analysis for U2.5MORT and that for

PHXMORT. The models have been ranked by their log(Bayes Factor) for comparing each

model to the worst model. The log(Bayes Factor) does not di�er much among these top

models, however the conclusions one might draw from each vary widely. First consider the

left panel of Figure 3.5, the model space plot for the U2.5MORT analysis. A black square
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given the data, for each of four analyses.

above a variable indicates that it is included in that model. The lag 1 coarse PM variable is

present in 20 of the top 25 models. However, only one of the top models contains a PM2:5

variable (lag 3 �ne PM is included in the 23rd model). It is interesting to note that the best

model contains lag 1 coarse PM and the baseline variable only, and the second best model

includes only the baseline variable. The maximum and minimum temperature variables

appear in many of the top models suggesting an association between extreme temperatures

and non-accidental elderly mortality in the U2.5MORT region.

The right panel of Figure 3.5 shows the 95% probability intervals for the relative risk

for the top 25 models. Most of the intervals do not include one, suggesting that perhaps

increases in coarse PM are associated with a higher relative risk of elderly mortality in the

U2.5MORT region. However, the probability interval for the relative risk corresponding to
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indicate the range of the distribution.

the only model with the PM2:5 variable includes one providing evidence against an associ-

ation between non-accidental elderly mortality and �ne PM for the U2.5MORT region of

Phoenix.

Now consider the model space plot for the PHXMORT analysis, shown in Figure 3.6.

Now we see that lag 2 coarse PM is present in most (84%) of the top 25 models. Fine PM

variables are included in only two of these. In this region, the top model includes only the

baseline and the lag 2 coarse PM variable, but the third model contains these two plus the
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Figure 3.5: The top 25 models ranked by posterior model probabilities and associated 95%
probability intervals for the relative risk under each model using elderly mortality for the
region with uniform PM2:5. Rows in the left �gure correspond to models and columns
correspond to variables, with black squares indicating that the variable for that column is
included for that row. The y-axis for the model space plot is the log(Bayes Factor) for
comparing that model to the lowest probability model and is proportional to �BIC. Points
in the probability intervals are the maximum likelihood estimates of relative risk under that
model.

lag 2 �ne PM variable. However, the 95% probability interval for the relative risk for this

model includes one (see the left panel of Figure 3.6). Most of the other intervals do not

include one, again suggesting an association between coarse PM, but not necessarily �ne

PM, and elderly mortality in the PHXMORT region.
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Figure 3.6: The top 25 models ranked by posterior model probabilities and associated 95%
probability intervals for the relative risk under each model using elderly mortality for the
Phoenix metropolitan area.

3.4 Discussion

For this analysis of the association between non-accidental elderly mortality and particulate

matter levels in Phoenix, Arizona, we attempt to take account of some of the uncertainty

inherent in model selection methods by using Bayesian model averaging. We used three

response variables, based on distinct geographic areas, and found relative risk estimates for

each based on simultaneous increases in �ne (PM2:5) and coarse (PM10�PM2:5) particulate

matter. We found some suggestion of an association in the area thought to have uniform

PM2.5 levels (U2.5MORT) and the Phoenix metropolitan region (PHXMORT). Both had

relative risk estimates of 1.02, suggesting a weak e�ect, if any. This association appears

to be due to the coarse fraction PM, as indicated by the posterior probabilities for each
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coeÆcient being not equal to zero, and the frequency of inclusion of coarse and �ne PM

variables in the top 25 models (Figures 3.3, 3.5 and 3.6). We found no association between

non-traÆc related accidental mortality and particulate matter measurements, as expected.

One important �nding from this analysis is that the study region used for the response

variable can make a di�erence in one's �ndings. How this is typically chosen is not clear

in most papers, and can be added as another source of model uncertainty which is not

taken account of. Perhaps this area should be chosen based on prior knowledge of the

spatial homogeneity of particulate matter levels, as we attempted to do here, rather than

population boundaries. If this analysis were to be expanded to include other monitors in

the area and spatial variation of PM, then a study region based on population groups might

be more appropriate.

There are many modi�cations that could be made in this analysis to improve the models

considered. We have not used all of the information we have about PM and mortality in

Phoenix since we ignored days with missing observations. We could attempt to impute this

data using a Bayesian approach and account for the uncertainty in the imputing process.

This would certainly be a more eÆcient analysis and may change the results of our study.

We also have assumed that the data are missing completely at random which may or may

not be reasonable. We have no information about the missingness, and assuming otherwise

may change our results and conclusions.

One common issue with Bayesian analyses is the choice of a prior distribution. Here we

have used at priors. However, non-at priors on variables and lags could be incorporated

based on the results of previous studies. One possible problem with using other analyses is

that it appears that PM associations and lag structures may vary by city and time-period,

so choosing \appropriate" priors would be tricky. In these initial studies of PM using BMA,

at priors may provide the best method for exploring the top models for each data set.

In many PM studies measurements from other pollutants, such as SO2, CO, NO2 and

O3, are included as potential confounding variables or variables of interest. If any or all

of these pollutants are associated with elderly non-accidental mortality in Phoenix, our

relative risk estimates for each model could be biased.

As mentioned in chapter 1, deciding if a variable should be transformed or not is a source
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of model uncertainty. Here we have assumed a simple log-linear relationship between elderly

non-accidental mortality and all particulate matter variables. Exploratory techniques did

not reveal a need for more complex relationships, however these could be considered further

and included in a BMA process. It has been noted ([3], [8]) that the choice of time scale

used to remove long-term variation may inuence the results of PM studies. We have chosen

our scale here based on a suggestion in [3], but have not explored how changing the scale

may change our conclusions. This could certainly be done within the BMA framework and

methods for doing so are currently being re�ned.



22

Chapter 4

PARTICULATE MATTER AND MORTALITY IN SEATTLE,

WASHINGTON

4.1 Previous analyses of particulate matter and adverse health e�ects in Seat-

tle

We present one recent analysis of PM and mortality in Seattle, Washington for a comparison

to that done here. This study done by Samet et al. ([28]) included analyses of the association

between PM and elderly mortality and morbidity for the 20 and 90 largest cities in the

United States using hierarchical models. For Seattle, results were presented for response

variables of total elderly mortality, elderly mortality with cardiorespiratory causes, and

elderly mortality caused by other diseases for 1987�1994. The most relevant analysis used

a log-linear model for mortality and included a smooth function of time to account for long-

term variation, smooth functions for average and dewpoint temperature, smooth functions

for the average and dewpoint temperature for the previous three days and an indicator for

day of the week. Models included estimates of an overdispersion parameter and excluded

days with any missing observations. Pollution variables of interest were PM10, CO, and O3.

Daily measurements were averages of those from up to 8 monitors in the Seattle area. Initial

models included only PM10, O3, or CO. The two and three pollution variable combinations

were also included and evaluated. The increase in mortality (in percent) was calculated for

a 10 �g/m3 increase in PM10. Lags 0�2 were primarily explored.

The main analyses from the Samet et al. study reported no signi�cant association be-

tween elderly mortality and PM10 in Seattle, Washington for any response variable with or

without adjustment for other pollution variables. However, another study presented in Ap-

pendix B of Samet et al. did �nd some evidence of an association between PM10 and elderly

mortality in Seattle, but the focus of the analysis was primarily on exploring the lag struc-
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ture. The time period studied was 1986�1993. The model used included smooth functions

of temperature, humidity, barometric pressure, day of the week and seasonal patterns. The

analyses included four di�erent lag models and results varied by which lag structure was

used. The estimated percentage of increase in daily deaths in Seattle, and their associated

standard errors, for a 10 �g/m3 increase in PM10 were 0.70(0.23), 0.65(0.31), 1.46(0.31) and

1.46(0.34) for the four lag structures considered. This suggests a possible small association

between PM10 increases and elderly mortality in Seattle.

We also review two recent studies of asthma hospital admissions and particulate mat-

ter levels in the Seattle area. The �rst, reported by Norris et al. in 1999 ([22]), examines

daily emergency department visits for asthma by children aged 18 and younger at Seattle

hospitals. The admissions counts were broken into two regions, high and low utilization,

based on the number of visits. The data covered the period from September 1, 1995 through

December 31, 1996. The two main particulate matter variables of interest were PM10 and

nephelometer data. Pollution variables SO2, NO2, CO and O3 were also included. Meteo-

rological variables adjusted for were average daily temperature and dewpoint temperature.

These two variables, as well as a time-trend, were included as smooth functions estimated by

smoothing splines. The smoothing spline chosen for time-trend is approximately equivalent

to two-month moving averages. Degrees of freedom for smooth functions of temperature

and dewpoint were chosen by minimizing the deviance, adjusted for degrees of freedom.

These three smooth functions, and a day-of-week factor variable, were included in a base-

line semiparametric Poisson regression model. Pollution variables (lags 0�4) were then

added individually to the model and relative rates based on IQR increases (11.6 �g/m3 for

PM10 and 0.3 m�1/10�4 for nephelometer data) were calculated.

Norris et al. ([22]) found a signi�cant increase in the relative rate of children's emergency

department asthma visits for both nephelometer data and PM10 for the low utilization study

region and the pooled study region. Only nephelometer reading increases were associated

with higher relative rates for the high utilization region. Point estimates for these signi�-

cant relative rates range from 1.13 to 1.16. Although it is not entirely clear from the article,

it seems that these are based on the daily averages (lag 0) of the PM variables only. A

few multi-pollutant models were also examined, which contained either PM10 or the light
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scattering variable, and NO2 and SO2. Again, the relative rates of childhood asthma emer-

gency department visits for an IQR increase in PM10 or nephelometer measurement were

signi�cant. In this study the authors also converted the light-scattering IQR to \represent

PM2:5 gravimetric mass based on colocated nephelometer and PM2:5 monitors at the south-

ernmost PM monitoring site" ([22], p. 492), and suggest that an increase of approximately

9.5 �g/m3 in PM2:5 would also be signi�cantly associated with an increase in emergency

department visits for asthma by children.

The second study reviewed here, presented by Sheppard et al. in 1999, focuses on hos-

pital asthma admissions of patients younger than 65 years, in 23 Seattle area hospitals for

the period January 1, 1987 through December 31, 1994 ([34]). Primary particulate matter

variables of interest were PM10, PM2:5, nephelometry data and coarse PM (PM10� PM2:5).

Lags 1�3 were the primary focus, but lag 0 and longer lags were also explored for some

variables. Other variables included in the model were daily average temperature, SO2, CO

and O3. The �rst stage of the analysis included multiple imputation of PM2:5 (72 � 81%

missing depending on site), PM10 (4 � 40% missing), and SO2 (6% missing). Semiparamet-

ric Poisson regression modeling was used in the second stage to create a base model with

a day-of-week factor variable and nonparametric smooth functions of time (64-df smooth-

ing spline) and temperature (4-df smoothing spline). The degrees of freedom for the time

trend corresponds to about a 46-day moving average �lter. These smooth functions were

chosen based on \conceptual simplicity, small Akaike Information Criteria (AIC), and lit-

tle evidence of over- or under�tting in the residual autocorrelation function" ([34], p.26).

Pollution variables were added one at a time and their statistical signi�cance evaluated by

Wald statistics and AIC. Relative rate estimates were calculated for a one IQR increase in

a pollutant. All variables with a relative rate interval estimate entirely above one were then

included in a multi-pollutant model.

In the single pollutant models PM10, PM2:5, and coarse PM, all lagged one day, showed

signi�cant associations with asthma admissions (relative rate point estimates (RR): 1.05,

1.04, 1.04, respectively; IQR: 19 �g/m3, 11.8 �g/m3, 9.3 �g/m3, respectively). PM10 and

PM2:5, lag 0, also had signi�cant e�ects (RR: 1.03, 1.03). The multi-pollutant model (in-

cluding PM10, PM2:5 and coarse PM) also showed a signi�cant association between PM
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increases and asthma admissions ([34]).

4.2 Data

We obtained daily counts of non-accidental deaths for people age 65 and over for a selec-

tion of zip codes in King County, Washington from the Washington state death certi�cate

database for January 16, 1990 through December 31, 1995. The study area chosen con-

tains the following King County residential zip codes: 98004-98008, 98011, 98031-98034,

98038, 98040, 98042, 98052, 98055-98056, 98058-98059, 98101-98109, 98112, 98115-98119,

98121-98122, 98125, 98126, 98133-98136, 98144, 98146, 98148, 98155, 98158, 98166, 98168,

98177-98178, 98188 and 98198-98199. We selected this region in part to compare our results

with those from the Sheppard et al. study described above ([34]). As a sensitivity analysis

we ran the same set of �ve analyses using daily hospital admissions for appendicitis as the

response variable. Since there is no evidence to suggest that PM levels should be associated

with appendicitis, this should be a suitable control group. The top panels of Figure 4.1

show these two response variables.

Of the twelve EPA particulate matter monitoring sites in the Puget Sound region, only

three sites collect PM2:5 data: Kent, Duwamish and Lake Forest Park. None of the sites

collect the PM2:5 data daily so all have a great number of days with missing measurements.

We chose to use data from the Duwamish site as it had the least amount of missing PM2:5

values, although the percentage missing is still very high (75.9%). We also obtained PM10

data (0% missing), nephelometer data (0.6% missing) and SO2 measurements (2.2% missing)

from this site. Figure 4.1 shows time series plots for each PM variable. Relative risk

estimates for analyses which contain PM10 and PM2:5 variables are based on a simultaneous

interquartile range (IQR) increase in centered and scaled PM10 (1.07) and centered and

scaled PM2:5 (1.21).

Table 4.3 gives the 98th percentile and average mean for PM2:5 and the 99th percentile

and average mean for PM10 for each of the study years. It should be noted that although

it appears that the PM2:5 three-year average levels exceed the NAAQS standard given in

section 1.2, the EPA standards are based on all study sites when more than one is present.
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Figure 4.1: Time series of the two response variables, PM10, PM2:5 and nephelometer data
for Seattle, WA from January 16, 1990 to December 31, 1995.
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Table 4.1: Summaries of Seattle pollution variables. All measurements are in �g/m3.

Variable Mean Median Standard Maximum Percent IQR

deviation missing

PM10 39.16 36 18.62 107 0 20

PM2:5 17.44 15 10.12 74 75.9 12.25

Nephelometer 0.53 0.4 0.40 3.07 0.6 0.38

SO2 0.009 0.004 0.008 0.029 2.2 0.004

Table 4.2: Correlation coeÆcients for Seattle pollution variables, based on days for which
both measurements are complete.

PM10 PM2:5 Nephelometer SO2

PM10 1.0 0.61 0.53 0.32

PM2:5 1.0 0.91 0.40

Nephelometer 1.0 0.34

Also, the EPA uses an imputation formula for missing data. Since we do not have data for

the other monitors in the Seattle region, have not attempted to impute data for missing

observations, and only use partial data for 1990, we cannot conclude if any EPA regulations

were indeed violated.

We expect di�erent particulate matter levels depending on whether it is a weekend or

weekday because of dissimilar traÆc and industrial pollution levels during those periods.

Indeed, the average PM10 measurement on weekends is 34.2 �g/m3, while that on weekdays

is 41.7 �g/m3, and that of PM2:5 is 15.5 �g/m3 on weekends and 18.2 �g/m3 on week-

days. Therefore, we also included an indicator variable for weekends. It should be noted

that in [34] a factor variable for day of the week was included. However, since we chose

not to impute any PM2:5 data and most of these measurements were made on Tuesdays

(28.6%) Thursdays (29.4%) or Saturdays (26.0%), an indicator variable for weekend was
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deemed more appropriate. Daily temperature and dewpoint temperature data at Sea-Tac

airport are also included as these types of meteorological variables are typically included in

epidemiological PM studies using model selection procedures. See Table 4.1 for summary

measures of a selected group of these variables. A centered and scaled version of average

daily temperature lag 0�3, average dewpoint temperature lag 0�3 and SO2 lag 0�3 is in-

cluded in the model averaging process, along with the weekend indicator and particulate

matter variables.

Table 4.3: Yearly summaries of PM10 and PM2:5 measurements for the Duwamish site
for comparison with EPA standards given in section 1.2. All measurements are in �g/m3.
aAverages and percentiles for 1990 are based on measurements for January 16, 1990 through
December 31, 1990.

Year PM10 PM2:5

99 %ile average 98 %ile average

1990a 88.0 41.2 51.6 18.9

1991 96.4 42.0 40.6 19.4

1992 101.4 42.5 50.6 20.0

1993 98.4 39.7 43.7 20.5

1994 100.0 34.8 37.0 15.2

1995 97.4 34.8 32.6 14.1

4.3 Methods

We again model the mean of the daily death count (E(Y ) = �) using Poisson regression

assuming

g(�) = X�;

and

g(�) = log(�):
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As we have varying degrees of overdispersion in these models, we use the variance function

V (�) = ��

where � is estimated, rather than assumed to be one. There are 39 days with no hospital

appendicitis admissions, so we used log(x + 1) as the response variable for the sensitivity

analyses, where x is the daily hospital appendicitis admissions count.

As discussed earlier, long-term trends in mortality must be taken account of in these

epidemiological studies. For this analysis we use wavelet trend decomposition with LA(8)

wavelet �lter to estimate the baseline time trend in log(mortality) ([9], Chapter 6). The

trend estimate is again based on 6 levels, corresponding to averages 64 days, or roughly

two months, apart. This is consistent with degrees of freedom choices made in the studies

reviewed above ([28], [22], [34]). This baseline is included in all subsequent analyses.

The Seattle hospital asthma admissions study mentioned above ([34]) included multiple

imputation to �ll in the missing values for PM2:5 from this monitoring site based on the high

correlation between PM2:5 and other pollutants. However, we have a correlation of only 0.61

between PM2:5 and PM10 on available days (see Table 4.2). We do not feel this correlation

is high enough, nor do we have enough available data, to justify �lling in over 75% of the

PM2:5 data. Because of this limitation, if we include PM2:5 and lags 1�3, we have no days

with complete data. Therefore, we did one model-averaging procedure excluding PM2:5 and

one including PM2:5 for each of the lags 0�3. Ideally we would have used PMC = PM10�

PM2:5 as our measure of coarse particulate matter, but we would have again been greatly

hampered by the amount of missing PM2:5 data.

Because of the high correlation between the nephelometer data and PM2:5, for days

with complete data, we also did one analysis including PM10 and the nephelometer data.

We then calculated the relative risk of non-accidental elderly mortality for a simultaneous

increase of one IQR in PM10 and nephelometer measurements. This provided a way to try

to quantify the association between mortality and �ne PM using more of the available data.

All analyses only include days for which all data is complete.
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4.4 Results

Table 4.4 gives the posterior probability that the relative risk of non-accidental elderly

mortality is equal to one given the data, the posterior mean relative risk and the 95%

probability intervals for the �ve analyses. All con�dence intervals include one, suggesting

that the relative risk does not signi�cantly change given an interquartile range increase

in particulate matter concentration. The posterior probabilities that the relative risk is

equal to one range from 0.48 to 0.81, giving very little evidence for an association between

particulate matter and elderly mortality.

Table 4.4: Summaries from Bayesian model averaging for six analyses. Each uses elderly
non-accidental mortality as the response variable and includes di�ering measures of �ne
particulate matter.

PM variables which Probability relative Posterior mean 95% Probability

RR is based on risk is one given data relative risk interval

PM10 lags 0-3 0.81 1.00 [1, 1.01)

PM10 lags 0-3 and PM2:5 lag 0 0.69 1.00 [1, 1.02)

PM10 lags 0-3 and PM2:5 lag 1 0.78 1.00 (0.99, 1.01)

PM10 lags 0-3 and PM2:5 lag 2 0.79 1.00 (0.99, 1.01)

PM10 lags 0-3 and PM2:5 lag 3 0.48 1.01 [1, 1.04)

PM10 lags 0-3 and Neph. lags 0-3 0.73 1.00 [1, 1.01)

Figure 4.2 shows, for each analysis, the posterior probability (in percentage) that the

coeÆcient for each pollution variable is not equal to zero, given the data. All but two

of these posterior probabilities are below 20%. One, the PM10 lag 0 coeÆcient from the

analysis including PM2:5 lag 3 variable, is almost 40%. The probability that the coeÆcient

for SO2 in the analysis including the PM2:5 lag 1 variable is not equal to zero is about 60%.

Although these probabilities are much higher than the others presented in this plot, they

are still too low to be considered very important.
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Figure 4.3 shows the relative risk distribution for each of the four analyses. The points

indicate the range of the distribution. We can see that because of the small amount of

usable data, the range is quite large. The spike at one in each graph is due to the number

of models that do not include any PM variables. Most of the weight of the distribution is

contained in this point-mass at one, again supporting a conclusion of no association between

PM and elderly mortality in Seattle.

Figures 4.4, 4.5, 4.6, 4.7 and 4.8 show the top 25 models by posterior model probability. It

is interesting that no variable appears to be consistently in the top models except the baseline

variable in any of these plots, with the exception of the SO2 variable in the plot for the

analysis including PM2:5 lag 1 (Figure 4.6). Since temperature and dewpoint temperature

are typically included in all PM studies, we may have expected them to be in more of the
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top models.

Most of the top models for the analyses including PM2:5 lag 1 or lag 2 are relatively

simple and do not include any PM variable, with some even suggesting a possible protective

e�ect of PM increases. The BMA process which included PM2:5 lag 0 shows 12 of the top

25 models including a PM variable, however all but one of the 95% probability intervals

for the relative risk estimates in these models include one (Figure 4.5). Now consider the

case where PM10 lags 0-3 and PM2:5 lag 3 are included (Figure 4.8). In that analysis,
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ten of the top 25 models include a PM10 variable and one includes PM2:5 lag 3. Seven of

the 95% probability intervals for the relative risk do not include one, all of which are for

models without PM2:5 lag 3. Although this plot seems a bit more interesting than those

from the other four analyses, it is consistent with our results above, namely that there is

little evidence of an association between mortality and PM in this data set.

As mentioned in section 4.3 we calculated the relative risk of non-accidental elderly

mortality for a simultaneous increase of one IQR in PM10 and nephelometer data. Table

4.4 contains the results of these calculations. We see that there still appears to be no

association between mortality and PM, even though we were able to use almost all of the

available data. No signi�cant PM association was found in any of the analyses in which

we used hospital appendicitis admissions as our response variable. Since this was done

primarily as a sensitivity analysis, speci�c results are not given here.

4.5 Discussion

In this study we explored the association between non-accidental elderly mortality and

particulate matter levels in Seattle, Washington. We used Bayesian model averaging to

take account of some of the model uncertainty inherent in model selection processes. All

output from this analysis indicated that there is no association between the variables of

interest. We found no increase in the estimated relative risk of death for most models, and

an estimate slightly above one (1.01) for the analysis including PM2:5 lag 3. We also saw no

consistent inclusion of variables typically included in PM studies, such as daily temperature

and dewpoint temperature. The only variable with a clear relationship to non-accidental

elderly mortality is the baseline variable estimated by wavelet trend decomposition.

The conclusions we have drawn for elderly mortality and PM10 are consistent with those

from the Samet et al. study ([28]). Recall that the main analysis used a model very similar

to that presented here and found no signi�cant association between the two. The study

done in Appendix B of the same paper included relative humidity and barometric pressure

and did not include dewpoint temperature. Results varied by lag structure used, but all

signi�cant associations suggested only a small increase in elderly mortality.
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Figure 4.4: The top 25 models ranked by posterior model probabilities and associated
95% probability intervals for the relative risk under each model using elderly mortality and
including no PM2:5 variables. Relative risk estimates are based on an increase of one IQR
in PM10.

Our results are not consistent with those found by Norris et al. ([22]) or Sheppard et

al. ([34]). Both of these studies found an increased relative risk of adverse health e�ects

associated with an increase in PM levels. Of course, the comparison between this analysis

and those in [22] and [34] is not ideal since we used a di�erent response variable, time period

and baseline estimation method. This suggests a few possible explanations for the di�ering

results. Perhaps PM in Seattle is truly associated with asthma-related hospital visits but not

with mortality, or at least not during the time period we studied. The baseline estimation

method may also be a factor.

It has been noted in [8] that the technique for estimating the long-term variation probably

will not make a di�erence in the results of PM studies, but the time scale may matter. We
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Figure 4.5: The top 25 models ranked by posterior model probabilities and associated
95% probability intervals for the relative risk of elderly mortality, based on a simultaneous
increase of one IQR in PM10 and PM2:5 lag 0.

used a window of 64 days here which is consistent with suggested time scales and with those

used in [28],[22], and [34], but we did not explore the e�ects of changing this baseline. The

fact that no other variable except the baseline was consistently in the top models suggests

that perhaps the baseline estimate is picking up too much of the small-scale variation.

Choosing a higher level, so that we are using averages over a longer time periods, might

be appropriate. In this study, we did not incorporate any means to take account of the

uncertainty in this baseline, but this could be included in future work.

Besides exploring the e�ect of the baseline estimation, there are other alterations that

could be made to this study which may change the above results and conclusions. One

large problem with this data set is the amount of missing data. The data that were readily

available from the Seattle monitoring sites was through December 31, 1995. One can see in
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Figure 4.6: The top 25 models ranked by posterior model probabilities and associated
95% probability intervals for the relative risk of elderly mortality, based on a simultaneous
increase of one IQR in PM10 and PM2:5 lag 1.

Figure 4.1 that after about March, 1993 the PM2:5 data was collected much more frequently,

although still about only every third day. A future analysis may be able to use more

data after this date to conduct a more eÆcient study. However, the nephelometer analysis

suggests that the amount of missing PM2:5 data did not prevent us from detecting an

association between �ne PM and mortality. We also treated these data as being missing

completely at random. This may be reasonable since most is missing because PM2:5 was

not measured in the summers of 1990�1993, and because measurements seem to have been

taken every three days. If we assume the data are not missing at random, our results and

conclusions may change.

We had access to data for a wind stagnation variable measured from the Duwamish

site. This variable is de�ned as the number of hours each day that the wind speed at the
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Figure 4.7: The top 25 models ranked by posterior model probabilities and associated
95% probability intervals for the relative risk of elderly mortality, based on a simultaneous
increase of one IQR in PM10 and PM2:5 lag 2.

monitoring site was below the 25th percentile for all hourly wind speed measurements from

that monitor. Initial models included this variable as a possible confounder. However, upon

closer inspection we decided that there was no scienti�c basis for an association between

mortality and wind stagnation so we chose not to include it. Also, it is not present in the

other analyses used for comparison. It should be noted that inclusion of this variable did

not change the conclusions of our study.

As in the analysis of the Phoenix, Arizona elderly mortality data, we have used at

priors and assumed a simple log-linear relationship between our response and all predictor

variables. With more external information, we could attempt to redo this analysis using

appropriate non-at priors. The analysis could also be extended to include smooth functions

of temperature and dewpoint temperature, or other variables, as was done in other studies
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Figure 4.8: The top 25 models ranked by posterior model probabilities and associated
95% probability intervals for the relative risk of elderly mortality, based on a simultaneous
increase of one IQR in PM10 and PM2:5 lag 3.

([28], [22], [34]).
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Chapter 5

DISCUSSION

5.1 Using Bayesian model averaging in particulate matter studies

The use of Bayesian model averaging in particulate matter studies provides a methodological

advance by accounting for both parameter uncertainty and model uncertainty in relative risk

point estimates and probability interval estimates. Unlike traditional p-values, the Bayesian

approach provides posterior probabilities of whether there is a PM e�ect which incorporate

model selection uncertainty. This reduces concerns about �nding associations between PM

and adverse health e�ects that do not truly exist, due to model selection methods.

Bayesian model averaging also allows the researcher to look at all the top models, as

determined by their posterior probability given the data, in one plot (eg. Figure 3.5). These

plots may help readers gain a deeper understanding of the relationships between variables

in a dataset than they can by examining the results of only one or two models. Rather than

giving one p-value and one con�dence interval, they show which variables are consistently in

the top models, and therefore which may be important predictors of the response variable.

This method may also be used to learn more about the lag structure of the particulate

matter variables in PM studies. If we again consider Figures 3.5 and 3.6 from section 3.3 we

see that coarse PM lagged one day is the primary PM variable included in the top models for

the smaller region for which PM2:5 is thought to be spatially homogeneous (U2.5MORT).

However in the larger region, PHXMORT, coarse PM lagged two days is the primary PM

variable included in the top models. While we will not attempt to pose any epidemiological

or atmospheric hypotheses here, we will suggest that the ability to compare which lags are

consistently included in top models may provide evidence to form such hypotheses in the

future.

As with any method, Bayesian model averaging does have some drawbacks. First of all,
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in order to obtain useful results from the method one must start with a good \full" model

by including all variables which should be adjusted for. However, there will always be some

degree of uncertainty in deciding what to include, and in which form. Of course, this is an

issue with traditional model selection methods as well.

There are many potential latent variables in PM mortality studies, such as the presence

of u epidemics and personal particulate matter exposure (indoor and outdoor), which we

attempt to estimate with a baseline variable. However, by not accounting for the uncertainty

in the baseline estimate, we do not take full advantage of the capabilities of the method.

As mentioned in chapter 3, a technique to do this is currently being developed.

We also mentioned in chapters 3 and 4 that we have assumed a simple log-linear relation-

ship between our response and most predictors. We could extend these analyses to include

smooth functions of temperature and dewpoint temperature, as in Norris et al. ([22]), or

any other variable, and account for the uncertainty in the degrees of freedom using BMA.

Another source of uncertainty in model building mentioned in chapter 1 is the inclu-

sion/exclusion of unusual observations. Unusual or inuential observations can be a concern

in PM studies as holidays tend to have di�erent PM levels than other days. For example,

Norris et al. consider models with and without the observations on December 24 and 25, 1995

because of their unusually high PM measurements. This could easily be accommodated in

BMA by adding an indicator variable for these potentially \unusual" or \inuential" points.

5.2 Particulate matter and mortality

We have used Bayesian model averaging to analyze data from two cities with vastly di�erent

weather patterns and particulate matter composition, Phoenix, Arizona and Seattle, Wash-

ington, to attempt to estimate the association between non-accidental elderly mortality and

particulate matter concentration measurements. We considered three di�erent regions of

mortality for our response variable in Phoenix. For two of these responses, U2.5MORT

and PHXMORT, we found some evidence of an association between non-accidental elderly

mortality and coarse, but not necessarily �ne, particulate matter. At least 80% of the top

models for each analysis included some coarse PM variable and 80% of the relative risk
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probability intervals did not include one. However, some of the top models do not include

any PM variables. Also, the point estimates for the relative risk are 1.02, suggesting a weak

e�ect, if any.

Because of the amount of missing PM2:5 data for the Seattle area, we considered several

di�erent BMA processes. The evidence for any association between non-accidental elderly

mortality and coarse or �ne PM was underwhelming, even in analyses using most of the

data. Relative risk point estimates were not larger than 1.01 and no variable seemed to be

clearly related to the response, besides the estimate of long-term variation. These results are

consistent with another study which examined PM and mortality in Seattle. However, other

studies have found an association between PM and asthma-related morbidity in Seattle.

Several problems and possible improvements with the models considered have been pre-

sented in chapters 3, 4 and 5. One other issue with this study, as with most particulate

matter studies, is that we looked at acute, rather than chronic, health e�ects of PM. Al-

though the latter may be a more important response to explore, it would be very diÆcult to

do without long-term data and personal indoor/outdoor particulate matter exposure levels.
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Appendix A

PARAMETRIC VS. NON-PARAMETRIC CALCULATION OF EPA

STANDARDS

According to the NAAQS document ([1]), the yearly percentiles for PM variables are

calculated nonparametrically by the formula

Pq;y = X[i+1];

where Pq;y is the qth percentile for year y, X[i+1] is the (i + 1)th number in the ordered

series of measurements, and i is the integer part of the product of q and the number of

measurements for that year. One could also estimate the qth percentile for the particulate

matter measurements using a parametric method. First, if our variable of interest does not

seem to be normally distributed, �nd a suitable transformation to normality. For example,

assume log(x) is normally distributed with mean � and standard deviation �. Then we can

estimate the 98th or 99th percentile for x by calculating

y0:98 = �+ z0:98 � �

or

y0:99 = �+ z0:99 � �

where z0:98 is the 98th percentile of the standard normal distribution (z0:98 = 2.05, z0:99 =

2.33). Then, by raising e to the powers y0:98 and y0:99, we have parametric estimates of the

98th and 99th percentiles of x.

We apply the parametric and nonparametric methods of percentile calculations in this

subsection to provide a comparison between the two. We use PM10 and PM2:5 data from

Seattle, Washington which is described in detail in chapter 4. Using visual comparisons of

q-q normal plots and histograms, we decided to calculate the parametric percentile estimates

based on both a square-root transformation and a log transformation for PM10 and PM2:5.
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Tables A.1 and A.2 contain the resulting estimates from the two methods for each trans-

formation. Using a square-root transformation results in parametric percentile estimates

similar to those from the nonparametric method. The numbers are fairly similar for PM2:5.

The 99th percentile for PM10 for years 1994 and 1995 are much lower using the parametric

method. In Table A.2 we see that using a log transformation results in numbers that are

very di�erent between parametric and nonparametric methods. The estimates for PM2:5

are quite a bit higher using the parametric method, and those for PM10 are astronomical. It

should be noted that visual assessment deemed the square-root transformation to be more

appropriate for PM10 and the log transformation to be more appropriate for PM2:5.

The results of these calculations suggest that a nonparametric approach may be more

suitable than a parametric method for calculating percentiles for EPA particulate matter

standards. First of all, the choice of a transformation is subjective and would be diÆcult to

govern by the EPA. Secondly, the \best" transformation to normality seems to be governed

by each set of measurements and estimates can be wildly di�erent depending on the choice.

Table A.1: Yearly percentile estimates for PM10 and PM2:5 measurements from the
Duwamish site using parametric and nonparametric methods. The parametric estimates
are based on a square-root transformation of the PM variables. All measurements are in
�g/m3. aAverages and percentiles for 1990 are based on measurements for January 16, 1990
through December 31, 1990.

Year 99th percentile of PM10 98th percentile of PM2:5

Nonparametric Parametric Nonparametric Parametric

1990a 88.0 92.3 51.6 52.6

1991 96.4 89.3 40.6 45.2

1992 101.4 94.4 50.6 52.7

1993 98.4 92.4 43.7 46.9

1994 100.0 80.8 37.0 35.4

1995 97.4 78.7 32.6 34.4
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Table A.2: Yearly percentile estimates for PM10 and PM2:5 measurements from the
Duwamish site using parametric and nonparametric methods. The parametric estimates
are based on a log transformation of the PM variables. All measurements are in �g/m3.
aAverages and percentiles for 1990 are based on measurements for January 16, 1990 through
December 31, 1990.

Year 99th percentile of PM10 98th percentile of PM2:5

Nonparametric Parametric Nonparametric Parametric

1990a 88.0 193.1 51.6 70.6

1991 96.4 157.1 40.6 54.0

1992 101.4 184.0 50.6 66.7

1993 98.4 192.2 43.7 54.6

1994 100.0 166.9 37.0 40.4

1995 97.4 145.8 32.6 39.2


