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Tilmann Gneiting1, Zolt�an Sasv�ari2, and Martin Schlather3

Abstract

Variograms and covariance functions are key tools in geostatistics.
However, various properties, characterizations, and decomposition the-
orems have been established for covariance functions only. We present
analogous results for variograms and explore the connections to covari-
ance functions. Our �ndings include criteria for covariance functions on
intervals, and we apply them to exponential models, fractional Brownian
motion, and locally polynomial covariances. In particular, we characterize
isotropic locally polynomial covariance functions of degree 3.

1 Introduction

Geostatistical techniques model spatial data as the realizations of random func-
tions. Most analyses rely on a (possibly implicit) assumption of stationarity for
the random process Z = fZ(x) : x 2 R

dg, where Z(x) is the scalar variable
associated with the location x.

The process Z is said to be second-order stationary, or simply station-
ary, if second moments exist and the expectation EZ(x) and the covariance
Cov(Z(x); Z(x+ h)) do not depend on x 2 Rd. We may then de�ne the covari-
ance function

C(h) = Cov
�
Z(x); Z(x + h)

�
; h 2 Rd: (1)

Stationarity is a standard assumption in many applications, such as atmospheric
data assimilation. Classical geostatistical theory (Matheron 1973, Chil�es and
Del�ner 1999) relies on a weaker assumption, the intrinsic hypothesis. The
random function Z is called intrinsically stationary if the increment process
Ih = fZ(x)� Z(x+ h) : x 2 Rdg is stationary for all lag vectors h 2 R

d. Then
E(Z(x)�Z(x+ h)) and E(Z(x)�Z(x+ h))2 do not depend on x, and we may
de�ne the variogram

(h) =
1

2
E
�
Z(x)� Z(x+ h)

�2
; h 2 Rd: (2)

Any stationary process is intrinsically stationary, but the converse is not true.
For example, Brownian motion is an intrinsically stationary but not a stationary
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process. Thus, variograms are more general than covariance functions. How-
ever, covariance functions are better understood theoretically and many impor-
tant properties, characterizations, and decomposition theorems have been estab-
lished for covariance functions only. In this paper we present analogous results
for variograms, and we explore the relationships between covariance functions
and variograms.

In Section 2 we recall the de�nition of centered and non-centered variograms,
review some fundamental characterization and decomposition theorems, and
prove for variograms analogues of recent results for covariance functions. Section
3 is concerned with locally equivalent stationary covariances. If the variogram 
of an intrinsically stationary process Z is bounded, then there exists a stationary
process Y with covariance function C such that

(h) = C(0)� C(h); h 2 Rd: (3)

If  is unbounded, there is no covariance C for which the correspondence (3)
holds. However, a stationary process Y with covariance function C might exist
such that the relation holds locally,

(h) = C(0)� C(h); h 2 Rd; jhj � r; (4)

for some positive r. Then C is said to be a locally equivalent stationary covari-
ance; and under suitable conditions Y is a locally stationary representation of
Z, as de�ned by Matheron (1973, 1974) and Chil�es and Del�ner (1999, pp. 267{
270). Locally equivalent covariances have both theoretical and computational
interest, because they allow for optimal prediction and fast simulation with
genuinely positive de�nite matrices (Chil�es and Del�ner 1999, Stein 2000). We
present various criteria for the existence of locally equivalent stationary covari-
ances. Theorem 8 is a generalization of P�olya's criterion, and Theorems 9 and
10 give necessary and suÆcient conditions which are based on functional ana-
lytic results of Krein and Langer (1985). The paper closes with applications to
exponential variogram models, fractional Brownian motion, and locally polyno-
mial covariances in Section 4. In particular, we characterize isotropic locally
polynomial covariance functions of degree 3.

2 Variograms

Our starting point here is the observation that (almost) all major properties of
covariance functions carry over to variograms. One of the exceptions is bound-
edness: it is well known that jC(h)j � C(0) for a covariance function C, whereas
variograms need not be bounded. We begin by reviewing the de�nition of the
variogram, proceed with characterization and decomposition theorems, and give
sharper results in the isotropic case. Sections 2.1 and 2.2 are largely expository.

2.1 Centered and non-centered variogram

De�nition (2) of the variogram may appear clear-cut but calls for comments.
The factor 1

2 has led to the notion of a semi-variogram, and some authors
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distinguish variogram (de�ned without the factor) and semi-variogram (de�ned
with the factor). We retain the de�nition with the factor and nevertheless talk
of the variogram. However, we distinguish non-centered variograms, or simply
variograms, and centered variograms.

De�nition 1 Suppose that Z is an intrinsically stationary process in Rd. Then
Z has non-centered variogram or variogram

(h) =
1

2
E
�
Z(x)� Z(x+ h)

�2
; h 2 Rd; (5)

and centered variogram

e(h) = 1

2
Var
�
Z(x)� Z(x+ h)

�
; h 2 Rd: (6)

It follows readily that for a given process Z,

(h) = Q(h) + e(h); h 2 Rd; (7)

where Q is a nonnegative quadratic form. Conversely, if e is a centered vari-
ogram and Q is a nonnegative quadratic form, then (7) is a noncentered vari-
ogram. The de�nitions coincide in the standard case when E(Z(x)�Z(x+h)) =
0.

2.2 Characterization and decomposition theorems

We �rst review a fundamental characterization theorem for variograms. Recall
that a function  : Rd ! R is said to be conditionally negative de�nite if the
inequality

nX
i=1

nX
j=1

aiaj (xi � xj) � 0

holds for all �nite systems of points x1; : : : ; xn 2 R
d and coeÆcients a1; : : : ; an

for which
Pn

i=1 ai = 0.

Theorem 1 If  is a real function in R
d satisfying (0) = 0, the following

properties are equivalent.

(a) There exists an intrinsically stationary Gaussian random function Z with
variogram ( � ).

(b) The function ( � ) is conditionally negative de�nite.

(c) For all t > 0, exp(�t( � )) is a covariance function.

This result is known, and the equivalence of (a) and (b) mimics the character-
ization of covariances as positive de�nite functions. However, in the statistical
literature Theorem 1 has been known under the additional assumption of con-
tinuity of  only (cf. Cressie 1993, p. 87, Chil�es and Del�ner 1999, pp. 66{67).
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This excludes many practically important variogram models which are obtained
by adding a nugget e�ect,

0(h) =

�
0; h = 0;
�; otherwise;

� > 0;

to a continuous variogram. The general result presented here is immediate from
Theorem (6.1.9) of Sasv�ari (1994).

The equivalence of (a) and (c) in Theorem 1 allows to establish interesting
and useful analogies between covariance functions and variograms, that is, be-
tween stationary and intrinsically stationary random �elds. For instance, Davies
and Hall (1999) show that if a stationary process in R2 satis�es the usual one-
dimensional scaling laws, then the fractal dimensions of its line transect pro-
cesses are the same in all directions, except possibly one, whose dimension may
be less than in all others. By Theorem 1, the result carries over to intrinsically
stationary processes in R2. We omit the technical statement and proof.

Any measurable covariance function C admits the decomposition C = Cc +
C0 where Cc is a continuous covariance and C0 is a covariance function which
vanishes Lebesgue-almost everywhere (see, for example, Crum 1956 and pp. 92{
93 of Sasv�ari 1994). This result and the equivalence of (a) and (c) in Theorem
1 suggest an analogue for variograms. Indeed, if  is a measurable variogram
on Rd we can write exp(�( � )) = Cc( � ) + C0( � ) where Cc( � ) > 0. Then the
decomposition

(h) = c(h) + 0(h) (8)

= log
Cc(0)

Cc(h)
+ log

�
1

Cc(0)

Cc(h)

Cc(h) + C0(h)

�
; h 2 Rd;

holds where c is continuous and 0 is constant almost everywhere. The fol-
lowing result, which is an immediate consequence of Theorem (5.3.6) of Sasv�ari
(1994), shows that both c and 0 are variograms.

Theorem 2 If  is a measurable variogram, the decomposition (8) holds where
c is a continuous variogram. The function 0 is also a variogram and Lebesgue-
almost everywhere constant.

The theorem justi�es that from now on we restrict our attention to contin-
uous variograms. Any practically relevant discontinuous variogram is the sum
of a continuous variogram and a nugget e�ect.

In analogy to Bochner's theorem for covariance functions, continuous vari-
ograms have a well-known spectral characterization (Cressie 1993, pp. 84 and
87, Chil�es and Del�ner 1999, pp. 64 and 66{67).

Theorem 3 Let  be a real continuous function in R
d with (0) = 0.

(a) ( � ) is a variogram if and only if the representation

(h) = Q(h) +

Z
1� cos(u0h)

juj2
dF (u); h 2 Rd;
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holds where Q is a nonnegative quadratic form and F is a nonnegative
measure on R

d with no point mass at the origin and satisfying
R
(1 +

juj2)�1 dF (u) <1.

(b) ( � ) is a centered variogram if and only if it is a non-centered variogram
and the quadratic form Q in the spectral representation vanishes.

Any variogram  satis�es an inequality of the form (h) � ajhj2 + b for
convenient constants a; b � 0. Furthermore, (h)=jhj2 ! 0 as jhj ! 1 if and
only if  is a centered variogram. See, for example, Matheron (1973) or Chil�es
and Del�ner (1999, p. 260).

2.3 Isotropic functions

Here we give sharper results under the assumption that  is a spherically sym-
metric or isotropic function, that is, (h1) = (h2) whenever jh1j = jh2j. This
is the type of variogram model most often �tted in geostatistical practice. The
spectral representation then reduces to a well-known Bessel integral for which
we refer to Cressie (1993, p. 88).

First, we strengthen Theorem 2. For isotropic variograms in R
d, d � 2,

the discontinuous part in the decomposition (8) is necessarily a nugget e�ect.
The result follows readily from the analogous property for covariance functions
(for example, Gneiting and Sasv�ari 1999) and the equivalence of (a) and (c) in
Theorem 1.

Theorem 4 If  is a measurable isotropic variogram in R
d, d � 2, the decom-

position  = c+0 holds where c is a continuous variogram and 0 is a nugget
e�ect.

The next theorem follows analogously from the corresponding result for co-
variance functions (Gneiting 1999b). We denote by [r] the integer part of a real
number r and omit the straightforward proof.

Theorem 5 Let  be an isotropic variogram in Rd, and let k be a nonnegative
integer. If  is di�erentiable of order 2k at 0, then  is di�erentiable of order
2k + [d�1

2 ] on R
d n f0g.

In spatial data analysis, the approach of Sampson and Guttorp (1992) de-
forms the geographic coordinate space so that stationary and isotropic variogram
models can be �tted to very general classes of random functions. Perrin and
Meiring (1999) discuss identi�ability questions in this context. Theorem 5 shows
that their assumption (B2) is redundant if d � 3.

3 Locally equivalent stationary covariances

In this section, we explore the relationships between variograms and covariance
functions through the correspondences (3) and (4). Our �ndings can be ex-
pressed equivalently in terms of locally stationary representations of intrinsic
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processes, as introduced by Matheron (1973, 1974) and recently reviewed by
Chil�es and Del�ner (1999, pp. 267{270). Other notions of local stationarity
exist, in particular in the time series literature, and we note recent work by
Mallat et al. (1998) and Keich (2000). Perrin and Senoussi (1999, 2000) discuss
relationships between non-stationary and stationary processes in the aforemen-
tioned deformation approach of Sampson and Guttorp (1992).

3.1 Motivation

To begin with, we recall from (1) and (2) that if C is a covariance function in
R
d, then

(h) = C(0)� C(h); h 2 Rd; (9)

is a centered variogram. Conversely, if  is a bounded variogram then it is of the
form (9) for some covariance function C (Matheron 1973, Chil�es and Del�ner
1999, p. 32). However, relation (9) determines the covariance function only
up to an additive constant. It is therefore not clear in general which values
C(0) the covariance function may attain at the origin. In Matheron's (1973,
1974) terminology, the smallest possible value for the variance of a stationary
representation remains to be determined. The following theorem provides a
simple necessary and suÆcient condition on the variance. If  has a sill, we
recover the well-known result that C(0) � limjhj!1 (h).

Theorem 6 The function C in the representation (9) for a bounded variogram
 in R

d is a covariance function if and only if

C(0) � lim
u!1

(2u)�d
Z
[�u;u]d

(h) dh:

Proof. We already know that the representation (9) holds if C(0) is suÆ-
ciently large. By Bochner's theorem, C(h) = C(0)�(h) then admits a spectral
measure in Rd, F say, and by Theorem (1.3.7) of Bisgaard and Sasv�ari (2000),
F has point mass

F (f0g) = C(0)� lim
u!1

(2u)�d
Z
[�u;u]d

(h) dh

at the origin. The latter quantity must be nonnegative, and the assertion of the
theorem follows.

We note that Theorem (1.3.7) of Bisgaard and Sasv�ari concerns the case
d = 1. The generalization to spectral measures in Rd, d � 1, is straightforward.

3.2 Locally equivalent stationary covariances

If  is unbounded, a relationship of the form (9) with a covariance function
C cannot hold. However, a covariance function C might exist such that the
correspondence holds locally,

(h) = C(0)� C(h); h 2 Rd; jhj � r; (10)
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for some positive r. Then C is said to be a locally equivalent stationary covari-
ance. Locally equivalent covariances have both theoretical and computational
interest, because they allow for optimal prediction with genuinely positive de�-
nite matrices. We refer to Section 6 of Matheron (1973), a technical report by
Matheron (1974), and Section 4.6.2 of Chil�es and Del�ner (1999, pp. 267{270)
for a discussion of the associated random functions, that is, the locally stationary
representations of intrinsic processes.

As Matheron (1973, p. 466) and Chil�es and Del�ner (1999, p. 291) point
out, there exist variograms which do not admit locally equivalent stationary
covariances. For instance, (h) = h2 is a non-centered variogram on R, but there
is no real number C(0) such that C(h) = C(0) � (h) is a covariance function
de�ned on a neighborhood of h = 0. Indeed, C is an analytic function, and
any analytic covariance function de�ned on a neighborhood of the origin admits
a unique extension to an analytic covariance function de�ned in R (Bisgaard
and Sasv�ari 2000, Section 1.13). However, the unique analytic extension of
C is unbounded and therefore not a covariance function. In particular, the
locally quadratic decay (QD) model proposed by Worsley et al. (1991) is not a
permissible covariance model.

To give an explicit example of a centered variogram which does not admit a
locally equivalent stationary covariance, we �rst prove a result of independent
interest.

Theorem 7 Let  be a real even, twice continuously di�erentiable function in R
with (0) = 0. Then  is a variogram if and only if 00 is a covariance function.

Proof. If  is a variogram, Exercise (6.1.7) of Sasv�ari (1994) implies that
00 is a covariance function (see also Eq. (4.22) of Chil�es and Del�ner 1999).
Conversely, if 00 is a covariance function then Bochner's theorem applies. The
arguments in the proof of Theorem 6 show that we can write

00(s) = 2c+

Z 1

�1

cos(us) dF (u); s 2 R; (11)

with a constant c � 0 and a �nite nonnegative measure F on R with no point
mass at the origin. Since (0) = 0, we have

(h) = ch2 +

Z h

0

(h� s) 00(s) ds

= ch2 +

Z h

0

(h� s)

Z 1

�1

cos(us) dF (u) ds

= ch2 +

Z 1

�1

Z h

0

(h� s) cos(us) ds dF (u)

= ch2 +

Z 1

�1

1� cos(uh)

u2
dF (u); h 2 R:

By part (a) of Theorem 3,  is a variogram. The proof is complete.
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Consider the function

(h) =
1

2

1X
j=0

(�1)jh2j+2

(j + 1)(2j + 1)j!
; h 2 R;

for which (0) = 0 and 00(h) = exp(�h2) is a continuous covariance. Theorem
7 applies, and we note that  is an analytic variogram. Since (h) = O(h)
as h ! 1, the remarks at the end of Section 2.2 show that  is a centered
variogram. The argument in the example prior to the theorem (see also Chil�es
and Del�ner 1999, p. 291) then implies that there is no real number C(0) such
that C(h) = C(0)� (h) is a covariance function de�ned in a neighborhood of
h = 0.

In this light, two key questions emerge: when does a locally equivalent sta-
tionary covariance exist; and if it does, what is the smallest attainable value at
zero? As in the case of globally stationary representations, the second problem
corresponds to the question for locally stationary representations with minimal
variance. Hereinafter, we present a number of criteria which address these prob-
lems. We focus on the one-dimensional case and then without loss of generality
on continuous functions C(t) de�ned for t 2 [�1; 1]. Then C is said to be a
covariance function if it can be extended to a covariance function in R (com-
pare Gneiting and Sasv�ari 1999 and the references therein). The turning bands
operator allows for analogous results for isotropic functions de�ned on balls in
R
d (see Gneiting 1999a).

3.3 Criteria of P�olya type

It is almost immediate from P�olya's theorem (Cressie 1993, p. 86, Chil�es and
Del�ner 1999, p. 68) that a variogram  in R admits a locally equivalent station-
ary covariance if  is concave on [0; 1]. The following criterion gives a sharper
result.

Theorem 8 Let C be an even continuous function de�ned on [�1; 1]. If C

is convex and decreasing on [0; 1] and
R 1
0
C(t) dt � 0, then C is a covariance

function.

To prove the criterion it suÆces to note that the extension of C to a function
of period 2 in R is a covariance function, by Theorem 1 of Gneiting (1998). We
have not succeeded in verifying related claims by Romanov (1982). For instance,
Romanov's criterion (1.7) with l = 1 implies that C(t) = A� jtj is a covariance
function on [�1; 1] whenever A � 1, which is clearly not true. Gneiting (2001)
gives criteria of P�olya type for isotropic functions in R

d which apply in the
present context, too. See Section 4.2 for an example.

3.4 Criteria based on Krein-Langer theory

Here we present results which derive from the functional analytic work of Krein
and Langer (1985).
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De�nition 2 An even continuous function C, de�ned on [�1; 1], is said to have
an accelerant H if

(i) H(t) = �C 00(t) exists for t 2 [�1; 1], t 6= 0,

(ii) H 2 L1[�1; 1], and

(iii) C 0(0+) < 0.

With the function H we associate the operator H in L2[0; 1], de�ned by

(H') (t) =

Z 1

0

H(t� s)'(s) ds; 0 � t � 1: (12)

Then H is a selfadjoint and compact operator, and

kHkL2[0;1] � 2

Z 1

0

jH(s)j ds (13)

by results in Section 1 of Krein and Langer (1985). The following theorem is an
immediate consequence of (4Æ) in Section 2 of Krein and Langer (1985, p. 324).
The symbol I denotes the identity operator and ( � ; � )L2[0;1] the scalar product
in L2[0; 1].

Theorem 9 Let C be a real even function on [�1; 1] with accelerant H and
C 0(0+) = � 1

2 . If �1 is not an eigenvalue of H then C is a covariance function
if and only if

(i) the operator I+H in L2[0; 1] has no negative eigenvalues, and

(ii) C(0) �
�
(I+H)�1C 0; C 0

�
L2[0;1]

.

The lower bound on the right hand side of the inequality can be computed
as follows. First we determine the resolvent kernel � corresponding to H, that
is, the unique solution of the equation

�(t; s) +

Z 1

0

H(t� u) �(u; s) du = H(t� s); 0 � s; t � 1: (14)

With � we associate the operator � in L2[0; 1], de�ned by

(�') (t) =

Z 1

0

�(t; s)'(s) ds; 0 � t � 1: (15)

Then �
(I+H)�1C 0; C 0

�
L2[0;1]

=
�
(I� �)C 0; C 0

�
L2[0;1]

: (16)

We close the section with the following, very general criterion. Additional in-
formation related to our approach is found in Sections 1.4 and 2.3 of Krein and
Langer (1985).
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Theorem 10 If a real even function C on [�1; 1] has an accelerant andZ 1

0

jC 00(t)j dt < �C 0(0+); (17)

then C + r is a covariance function whenever r 2 R is suÆciently large.

Proof. Without loss of generality we may assume that �C 0(0+) = 1
2 . Then

kHkL2[0;1] < 1 in view of (17) and (13). Hence, the operator I +H is positive
and the assertion follows from Theorem 9.

4 Examples and applications

In this �nal section, we illustrate our �ndings with examples and applications.
The �rst two examples are concerned with exponential variogram models and
fractional Brownian motion, respectively. Then we turn to isotropic covariance
functions of locally polynomial type, C(h) =

Pn
k=0 akjhj

k for h 2 R
d, jhj � 1.

Covariance models of this form have been �tted frequently; see Mitchell et
al. (1990), Currin et al. (1991), Wiencek and Stoyan (1993), Onn et al. (1994),
and the references in Gneiting (1999a). Section 4.3 discusses the quadratic case,
and Section 4.4 characterizes locally cubic covariances. Our results complement
previous work by Matheron (1974) and Mitchell et al. (1990).

4.1 Exponential variogram model

Perhaps the most often used variogram in geostatistics is the exponential model,

(h) = �2
�
1� e��jhj

�
; h 2 Rd;

where �2 and � are positive parameters. It is well known that e��jhj is a
covariance function for h 2 Rd. Thus,

C(t) = �2
�
e��jtj + r

�
; �1 � t � 1; (18)

is a covariance function whenever r � 0. We proceed to �nd the locally equiva-
lent stationary covariance with the smallest attainable value of r. From Theorem
8 it is immediate that (18) is a covariance function whenever

r � p� = �
1� e��

�
:

To apply Theorem 9, we put �2 = (2�)�1 such that H(t) = ��
2 e
��jtj for t 6= 0

and C 0(0+) = � 1
2 . The unique solution of the integral equation (14) for the

resolvent kernel � is

�(s; t) = �
�

�+ 2

�
1 +min(s; t)

� �
1 + � (1�max(s; t))

�
; 0 � s; t � 1:
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The covariance model (18) satis�es inequality (17) and therefore condition (i)
of Theorem 9. Using (16) and condition (ii), we �nd that (18) is a covariance
function if and only if

r � r� = �
2

�+ 2
:

It is interesting to observe that p�=r� ! 1 as � # 0 and p�=r� !
1
2 as �!1.

4.2 Locally stationary representations of fractional Brow-

nian motion

Fractional Brownian motion with index � 2 (0; 2) is the intrinsic Gaussian
random function Z(x), x 2 Rd, with centered variogram

(h) = jhj�; h 2 Rd:

Matheron (1974) studied the locally stationary representations of fractional
Brownian motion. In a tour de force, he proved that

C(t) = A� jtj�; �1 � t � 1; (19)

is a covariance function if and only if

A �
1

2��1=2
�

�
1 + �

2

�
�

�
1�

�

2

�
: (20)

Theorem 8 shows that if � 2 (0; 1] then (19) is a covariance function whenever
A � (1 + �)�1. Taking k = 0 and l = 1 in Theorem 1.1 of Gneiting (2001), we
see that if � 2 (0; 2) then

C(t) =

8>><>>:
(3��)(4��)
3(2��)2 � jtj�; jtj � 1;

�(2��)2

48

�
4��
2�� + 3jtj

��
4��
2�� � jtj

�3
; 1 � jtj � 4��

2�� ;

0; jtj � 4��
2�� ;

is a covariance function in R. Thus locally stationary representations of frac-
tional Brownian motion exist, and (19) is a covariance function if

A �
(3� �)(4� �)

3(2� �)2
:

While our approach does not yield Matheron's necessary and suÆcient condition
(20), it provides straightforward existence proofs for locally equivalent station-
ary covariances. As mentioned before, the turning bands operator allows for an
immediate generalization to d-variate fractional Brownian motion. We refer to
Section 2 of Gneiting (2000) for further discussion.
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Figure 1: The admissible region (22) for the locally quadratic model (21), left,
and the admissible region (38) for the di�erentiable locally cubic model (37),
right.

4.3 Locally quadratic covariance functions

As a prelude to the following example, we consider the quadratic function

C(t) = �2
�
1� b1jtj+ b2t

2
�
; �1 � t � 1: (21)

In view of our discussion in Section 3.2 we may assume that b1 > 0, and in
order to apply Theorem 9 we put �2 = (2b1)

�1. The associated accelerant is
H(t) = �b2=b1 for t 6= 0, and the unique eigenvalue of H is �b2=b1. It follows
from condition (i) of the theorem that b2 � b1 is a necessary condition on (21)
to be a covariance. Finally, � = b2=(b2 � b1) is constant if b2 < b1. Using (16),
we �nd from condition (ii) and a continuity argument that (21) is a covariance
function on [�1; 1] if and only if

3

2
b1 �

1

2

�
3b1(8� b1)

�1=2
� b2 � b1: (22)

This recovers condition (3�1) of Matheron (1974) which is quoted by Chil�es
and Del�ner (1999, p. 268). Figure 1 illustrates the permissible region for the
parameter values in the (b1; b2) plane.

4.4 Locally cubic covariance functions

We turn to the more general case of the cubic function

C(t) = r �
1

2
jtj+ a2t

2 + "
a23
12
jtj3; �1 � t � 1; (23)

where a3 � 0 and " is either 1 or �1. Using Theorem 9, we characterize
covariance functions of the form (23). This leads to the di�erential equations
solved below, and to conditions (29) and (34) for " = 1 and (35) and (36) for " =
�1, respectively. In view of the turning bands operator, the result generalizes
immediately to isotropic functions de�ned on balls in Rd. See Matheron (1973),
Section 7.4.2 of Chil�es and Del�ner (1999), and Gneiting (1999a) for details.
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The characterization of locally cubic covariance functions is also one of the
main topics in the aforementioned report of Matheron (1974). The techniques
used there di�er from ours.

Di�erential equations

In view of Theorem 9 and (16), C is a covariance function if and only if the
operator I+H has no negative eigenvalues and

r �
�
(I� �)C 0; C 0

�
L2[0;1]

; (24)

where H and � are de�ned by (12) and (15), respectively. If ��2 is a negative
eigenvalue of I+H, then there exists an eigenfunction V such that

�2V (t) +

Z 1

0

H(t� u)V (u) du = 0; 0 � t � 1: (25)

The equation implies that V is twice di�erentiable on [0; 1] and

�2V 00(t)� "a23V (t) = 0; 0 � t � 1: (26)

To compute the right hand side of (24) we determine the resolvent kernel �(t; s),
that is, the solution of the integral equation (14). The latter can be rewritten
as

�(t; s) +

Z t

0

�
�2a2 � "

a23
2
(t� u)

�
�(u; s) du

+

Z 1

t

�
�2a2 � "

a23
2
(u� t)

�
�(u; s) du+ 2a2 + "

a23
2
jt� sj = 0: (27)

If t 6= s then �(t; s) is twice di�erentiable and

@2�(t; s)

@t2
� "a23 �(t; s) = 0: (28)

Characterization for " = 1

We �rst consider the eigenvalues of H. The general solution of (26) is V (t) =
c1e

�a3t=� + c2e
a3t=�. From (25) in both its original and di�erentiated form, we

�nd that c1 = c2e
a3=� and 8a2+a23�2a3� coth(

a3
2� ) = 0. Thus, H has eigenvalue

�1 if and only if a2 = � 1
8a

2
3 +

1
4a3 coth(

a3
2 ). Since � ! � coth(��1) is isotone,

the operator I+H has no negative eigenvalues if and only if

a2 � �
1

8
a23 +

1

4
a3 coth

�a3
2

�
: (29)

The equations (27) and (28) for the resolvent kernel can be solved by standard
techniques. We �nd that

�(t; s) = f(a2; a3)
�
�1(t; s) + �2(t; s)

�
; 0 � s; t � 1; (30)
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where

�1(t; s) =
�
8a2 + a23

� �
cosh(a3(1� js� tj)) + cosh(a3(1� s� t))

�
; (31)

�2(t; s) = 2a3
�
sinh(a3(js� tj � 1)) + sinh(a3js� tj)

�
; (32)

and
a3
2

1

f(a2; a3)
=
�
8a2 + a23

�
sinh a3 � 4a3 cosh

2 a3
2
: (33)

Inequality (24) then yields

r �
1

4
+

1

2
a2 + 4

a22
a23

+
1

48
a23 �

(a23 + 8a2)
2

8a23
tanh

�a3
2

�
: (34)

We summarize that if " = 1 then (23) is a covariance function if and only if (29)
and (34) hold. This result is due to Matheron (1974) whose condition (3�3) is
equivalent to (29) and (34). Note that Theorem 9 does not apply when equality
holds in (29). However, in this case the suÆciency of (34) is obvious, because
limits of covariance functions are covariance functions. The necessity of the
condition is shown below.

Characterization for " = �1

The general solution of the di�erential equation (26) is now V (t) = c1 sin(a3t=�)+
c2 cos(a3t=�). Arguments as before show that �1 is an eigenvalue of H unless
a3 < � and a2 < 1

8a
2
3 +

1
4a3 cot(

a3
2 ). We conclude that I +H has no negative

eigenvalues if and only if a3 � � and

a2 �
1

8
a23 +

1

4
a3 cot

�a3
2

�
: (35)

It is then not diÆcult to check that the solution � to (27) and (28) is obtained
from (30), (31), (32), and (33) if we replace each occurence of a3 by ia3. Simi-
larly, the condition on r for " = �1,

r �
1

4
+

1

2
a2 � 4

a22
a23

�
1

48
a23 +

(a23 � 8a2)
2

8a23
tan
�a3
2

�
; (36)

is obtained from (34) if we replace a3 by ia3. The characterization is valid when
equality holds in (35).

We note a discrepancy to Matheron's (1974) condition (3�6) which may
result from a sign error in his report. To give an explicit example,

C(t) =
1

4
�

5

384
�2 �

1

2
jtj+

�2

16
t2 �

�2

48
jtj3

=
�2

384

�
1� 2jtj

��5 + c

2
� 2jtj

��
5� c

2
� 2jtj

�
; �1 � t � 1;

where c2 = (45�2 � 384)=�2, is obviously a covariance function because it is a
product of three covariance functions. The parameter values satisfy (35) and
(36) but not Matheron's condition (3�6).
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Di�erentiable, locally cubic covariance functions

Theorem 9 does not apply to functions C which are di�erentiable at zero. How-
ever, if we return to the case " = 1 in (23) and adopt Matheron's parameter-
ization, � = a3 > 0, A = 2r=a23, and B = 4a2=a

2
3, we obtain di�erentiable

functions in the limit as �!1. In terms of a more natural parameterization,

C(t) = �2
�
1� b2 t

2 + b3 jtj
3
�
; �1 � t � 1; (37)

we �nd that (37) is a covariance function if

2 + b2 �
1

3

�
36 + 36b2 � 3b22

�1=2
� b3 �

2

3
b2: (38)

The associated region in the (b2; b3) plane is illustrated in Figure 1. Fur-
thermore, it is easy to see that the upper bound is sharp, because �C 00(t) =
2b2�6b3jtjmust be a covariance on [�1; 1] too. In fact, (3�2) of Matheron (1974)
shows that (38) characterizes covariance functions of the form (37). Mitchell
et al. (1991) discuss locally cubic covariances too, but omit the upper bound
in the characterization. The condition cited in a subsequent paper (Currin et
al. 1991) is equivalent to (38) and complete.

Finally, we prove that (34) is sharp when equality holds in (29). Denote
by r(a2; a3) the smallest admissible value of r in (23), and let (a02; a

0
3) be such

that equality holds in (29). Put r0 = r(a02; a
0
3). Since the class of covariance

functions forms a convex cone,

C(t) =

 
r0 �

1

2
jtj+ a02t

2 +
a03

2

12
jtj3

!
+ �2

�
1� b2 t

2 + b3jtj
3
�
; �1 � t � 1;

is a covariance function whenever �2 � 0 and b2; b3 satisfy (38). Thus, we can
�nd a sequence (ak2 ; a

k
3) ! (a02; a

0
3) with strict inequality in (29) for all k. We

conclude that r(a02; a
0
3) � limk!1 r(ak2 ; a

k
3), and the limit is just the right hand

side of (34) evaluated at (a02; a
0
3). The proof in the case " = �1 is analogous.
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