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Abstract

Estimation of the number of major pollution sources, the source composition profiles, and

the source contributions is the main interest in multivariate receptor modeling.  Due to lack

of identifiability of the receptor model, however, the estimation cannot be done without some

additional assumptions.

A common approach to this problem is to estimate the number of sources, q, at the

first stage, and then estimate source profiles and contributions at the second stage, given

additional constraints (identifiability conditions) to prevent source rotation/transformation

and the assumption that the q-source-model is correct.  These assumptions on the

parameters (the number of sources and identifiability conditions) are the main source of

model uncertainty in multivariate receptor modeling.  

In this paper, we suggest a Bayesian approach to deal with model uncertainties in

multivariate receptor models by using Markov chain Monte Carlo (MCMC) schemes.

Specifically, we suggest a method which can simultaneously estimate parameters

(compositions and contributions), parameter uncertainties, and model uncertainties (number

of sources and identifiability conditions).  Simulation results and an application to air

pollution data are presented.

Key words: Latent variable models; Factor analysis models; Model uncertainty; Model

identifiability;  Number of sources; Posterior Model Probability; Marginal likelihood.
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1. INTRODUCTION

Multivariate receptor modeling aims to identify the pollution sources and assess the

amounts of pollution by resolving the measured mixture of chemical species into the

contributions from the individual source types.  Its basic physical model comes from the

laws of chemistry (the principles of mass conservation and chemical mass balance, Hopke

1991).  Let p be the number of chemical species (measured variables) and q be the number

of sources.  Based on the chemical mass balance equation and the assumption that the

relative amounts of the chemical species remain approximately the same as particles/gases

travel from sources to the receptor, a multivariate receptor model takes the form of 

 
y P t nt tk

k

q

k t= + =
=

∑α ε
1

1, , ,L . (1.1)

Here, yt = ( yt1, yt2, ... ,ytp ) is the tth observation at the receptor, Pk = ( pk1, pk2, ... , pkp) is the

kth source composition profile consisting of the fractional amount of each chemical species

in the emissions from the kth source, α tk is the contribution from the kth source in time t,

and εt= ( εt1, εt2, ... , εtp) is the measurement error in the tth observation.  In a vector form,

model (1.1) can be equivalently written as

yt =α tP +ε t (1.2)

where   α t = α t1,α t2 ,L, α tq( ) and P is a q×p source composition matrix of which rows are

the source composition profiles.  

Statistically, model (1.2) can be considered as a latent variable model (see, e.g.,

Bartholomew and Knott 1999), specifically, as a factor analysis model in that y is a set of p

variables that can be directly observed (manifest variables), α  is a set of q variables that are

unobservable (latent variables or factors), P is the unknown q×p factor loading matrix, and q

is the unknown number of factors.  The goal of latent variable models (multivariate receptor
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models) is to make inferences on q (the number of major sources), P (source composition

profiles), and α  (source contributions) based on y (data).  As a matter of fact, this goal

cannot be achieved without additional assumptions on the model.

The unknown number of factors (sources) q, is the first obstacle that we encounter

since P and α  explicitly depend on q in model (1.2).  Traditionally, q has been first

estimated based on the sample correlation matrix or sample covariance matrix without

necessarily using model (1.2).   See Henry, Park, and Spiegelman (1999), Park, Henry, and

Spiegelman (2000) and references therein for practical methods of estimating the number of

factors in a non-Bayesian context.  Except for Bartlett’s modification to the likelihood ratio

test, most of commonly used methods such as Percent trace (choosing enough eigenvalues

to account for a suitable proportion, say 90%, of the trace of the sample correlation matrix

or the sample covariance matrix), Rule-of-one (choosing only eigenvalues of the sample

correlation matrix which are greater than one), or Scree plot (choosing q at the 'knee' in the

curve of the plot of sample eigenvalues) are ad-hoc in nature.  Even Bartlett’s test is not

strictly valid as a sequential test procedure because it does not control the overall

significance level.  Other methods mostly used in chemometrics such as Malinowski's

indicator function (see, e.g., Malinowski, 1980), cross-validation (Wold, 1978), and the

NUMFACT (Henry et al. 1999) approach also lack a full theoretical justification in the

sense that they do not provide standard errors for the estimates.  Once q is estimated,

inferences on P and α are usually made conditionally on the q-source-model.  Note that this

approach ignores the uncertainty involved in q, which can be a big part of overall

uncertainty.  

Secondly, the parameters in model (1.2) are not uniquely defined even under the

assumption that q is known, i.e., there are other parameterizations that produce the same data

(rotational indeterminacy of factors plays a major role).  This is nonidentifiability in latent

variable models/multivariate receptor models, and additional restrictions on the parameters

are required to remove it.  These assumptions on the parameters are called “identifiability
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conditions”.  Park, Spiegelman, and Henry (2000) discussed a range of identifiability

conditions for multivariate receptor models from a statistical point of view when the number

of sources q is assumed to be known.  Just like the number of sources q, these

identifiability conditions are chosen in advance, and the estimation of P and α  is carried out

conditionally on that.  This again ignores the uncertainty involved in the selection of

identifiability conditions.

Each possible combination of q and identifiability conditions defines a different

model.  The previous approaches in multivariate receptor modeling select a single model and

make inference conditionally on that model without taking account of the model uncertainty.

In this paper we adopt a Bayesian approach to provide the estimates of the model

uncertainties as well as the estimates for the parameters and their uncertainties within each

model.  

Practical model selection procedures often consist of two stages: choose a class of

reasonable models and then select the best model within the class.  For the number of

sources q, there is an upper bound such that q < p  (as a matter of fact, it is often much less

than p, see Anderson 1984).  For the set of identifiability conditions, however, there is no

such bound, and there could be, in principle, infinitely many different identifiability

conditions.  For this reason, we restrict the type of identifiability conditions to be compared

to those that are often used in a receptor modeling context.  One such type of identifiability

conditions is prespecification of zero elements in the source composition matrix:

C1.  There are at least q −1 zero elements in each row of P,

C2. The rank of P(k) is q −1, where P(k) is the matrix composed of the columns

containing the assigned 0’s in the kth row with those assigned 0’s deleted.

These conditions imply that some pollutants are not contributed by a particular

source type.  If the investigator does not have a priori information on the position of zeros,

then one may start with several candidate positions for zeros and select the one giving the



4

highest posterior probability.  Alternatively, we may consider preassigning zeros in the

source contribution matrix (the matrix of α's), which implies that each source is missing on

some days (Park et al. 2000).

Although it has not been introduced in the receptor modeling literature, the Schwarz

criterion (also known as the Bayesian Information Criterion or BIC) has been a popular

choice for model selection in other contexts (including latent variable models).  By

penalizing the likelihood by a function of the number of parameters and the sample size, it

obtains a trade-off between the bias introduced by fitting the wrong number of parameters

and the precision with which the parameters are estimated.  The BIC is, however, ad-hoc in

nature because it is a rough approximation to twice the logarithm of the Bayes factor (Kass

and Raftery 1995), and the choice of the sample size and the number of parameters in BIC

is often non-trivial.  

We calculate the posterior probabilities of the competing models, which follow

easily from the marginal likelihoods.  The marginal likelihood is a key quantity for a

Bayesian model comparison and accounting for model uncertainty (Kass and Raftery 1995;

Raftery 1996).  Regardless of its theoretical justification and ease of interpretataion, the

marginal likelihood has not been widely used due to its computational difficulties.  Recently,

Markov chain Monte Carlo (MCMC) has proven to be useful in many statistical

applications.  In particular, Chen (1994) and Oh (1999) proposed simple methods for

estimating marginal likehoods and hence the posterior probabilities by using the MCMC

output.

The remaining part of the paper is organized as follows.  In Section 2, we restate the

model from a statistical point of view.  Section 3 contains estimation of parameters using

MCMC within a model.  Model comparison is discussed in Section 4.  Section 5 presents a

simulation study.  In Section 6, our method is applied to air pollution data consisting of
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ambient measurements on PM10 (particulate matter with median aerodynamic diameter less

than 10µm) in the Seattle area.  Finally, concluding remarks are made in Section 7.

2. THE MODEL

Suppose, as in Section 1, that y is a p-dimensional vector of observed variables and

α is a q-dimensional vector of latent variables.  Though there could be two different types of

models depending on whether α  is treated as random or fixed (structural model and

functional model, respectively) from a frequentist perspective, it is not essential to

differentiate these two models from the Bayesian standpoint, since all the parameters are

viewed as random variables.  A latent variable model consists of two parts, the prior

distribution (the terminology is due to Bartholomew and Knott, 1999) of the latent variables

and the conditional distribution of the observed variables given the latent variables (which

depends on the distribution of the errors).  The purpose of the latent variable models is to

explain the correlations among the observed variables by a set of q (< p) latent variables α .

This implies that εtj  and εt ′ j  are independent for j j≠ ′  in model (1.2) if all the major

sources are accounted for.  We assume that in model (1.2) the errors εt  follow a

multivariate normal distribution with a mean vector 0 and the diagonal covariance matrix

  
Σ = ( )diag pσ σ σ1

2
2
2 2, , ,L , i.e.,

ε t ~ N p 0,Σ( ) ,  t =1,L ,n . (2.1)

This specifies the conditional distribution of the observed variables given the latent variables

as y N Pt t p tα α~ ,Σ( ).  

We now need to specify the prior distribution of the α’s.  As noted in Bartholomew

and Knott (1999), the form of the prior distribution of the latent variables is essentially

arbitrary and largely a matter of convention.  A Gaussian distribution is commonly chosen
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for the distribution of α ’s.  We assume that the α ’s have mean vector ξ  and covariance

matrix Φ,

α ξt qN~ ,Φ( ).  (2.2)

Let γ =α −ξ  and µ = ξP .  Then (1.2) can be reparameterized using the centered latent

variables γ as

y Pt t t= + +µ γ ε   t n= 1, ,L , (2.3)

Since any change in scale of γ can also be absorbed into P, without loss of generality, the

γ’s may be assumed to have unit standard deviations†.  If the factors (source contributions

in receptor models) are primarily assumed to be uncorrelated, Φ can be taken to be an

identity matrix, i.e.,

γ ~ Nq 0,I( ) . (2.4)

Equivalently, the model may be written in terms of probability distributions as

yγ ~ Np µ +γP, Σ( )  (2.5)

and

γ ~ Nq 0, I( ) .

This defines a standard factor analysis model.  Note that the model depends on the number

of factors (sources) q, which is unknown.  Moreover, the model is not identified even for

known q, i.e., there are other models (parameterizations) which lead to exactly the same joint

distribution for the observed variables y.  Translation invariance (Geweke and Singleton,

1980) and rotation (see Bartholomew and Knott 1999) are the major sources of

nonidentifiability.  To remove translation invariance, P is assumed to be of full row rank.  In

this paper, we do not consider the case where P is rank-deficient, which corresponds to a

                                                
† This is just a way of eliminating scale invariance of factors by a constant multiplication.
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collinearity problem in receptor modeling.  We leave that problem as one of the model

limitations (both in latent variable models and multivariate receptor models) rather than as

model uncertainties.

Rotational indeterminacy of the model can be removed by imposing one of many

different types identifiability conditions (see Anderson 1984).  The question is whether

those conditions are realistic in the given context.  We consider the type of identifiability

conditions given in Section 1, C1-C2, which are often reasonable assumptions in receptor

modeling context.  Even within this scheme there could be several different choices (when

there is no certain prior information on zeros) for positions of zeros in P.  Note that each

possible combination of q and positions of zeros in P defines a different model.

3. ESTIMATION WITHIN A MODEL

In this section our inferences are made conditionally on the model resulted from a particular

choice of q and the set of zeros in P.  It follows from (2.4) and (2.5) that

( )Σ+′PPNy p ,~ µ . (3.1)

This is an integrated likelihood, which is used when fitting the model by maximum

likelihood (with the restrictions on the parameters).  Although the maximum likelihood

estimate (MLE) of µ  can be easily shown to be x , there is no explicit formula for the

MLEs of P and Σ .  A numerical maximization needs to be used.   

Bayesian inference is based on the posterior distribution, which is proportional to

the product of the likelihood and the priors for the parameters.  The term ‘likelihood’ is

ambiguous (it could mean either an integrated likelihood or a conditional likelihood) in the

present context.  We use the conditional likelihood of  Y = yt , t = 1,L , n{ }  given the latent

variables   Γ = ={ }γ t t n, , ,1L ,

f Y tr y P y P
n

t t t t
t

n

L( ) = − − −( )′ − −( )







− −

=
∑2 2 1

2
1

1

π µ γ µ γΣ Σexp , (3.2)
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for the ‘likelihood’ where ‘  L ’ denotes conditioning on all other variables.  At any rate, it

does not make any difference in the posterior distribution whether to include the distribution

of the latent variables as a part of the likelihood or as a part of the priors.  

We assume independent priors p µ, P,Σ, Γ( ) = p µ( )p P( )p Σ( )p Γ( ) .  The prior

distribution of  Γ = γ t , t = 1,L ,n{ }  was specified in Section 2.1 as

 p tr
n

t t
t

n

Γ( ) = −







−

=
∑2 2 1

2
1

π γ γexp ' . (3.3)

For µ, we take a p-variate normal prior

( ) ( )00 ,~ MmNp pµ (3.4)

with a p p×  diagonal covariance matrix M0.  

For the prior distribution for P, we assume a point mass at zero for the q q× −( )1

pre-selected elements (for identifiability).  Let vecP0  denote the q q2 1−( ) ×  vector of these

elements, and let vecP∗  denote the ( )pq q q− − ×2 1 vector of the remaining elements of P

stacked columnwise.  We use a truncated normal distribution for vecP∗  to incorporate

nonnegativity of the source compositions,

vecP N c C vecP
pq q q

∗
− −

∗( ) ≥( )~ ,2 0 0 0I , (3.5)

where c0  is a ( )pq q q− −2 -dimensional vector and C0  is a ( ) ( )pq q q pq q q− − × − −2 2 -

dimensional diagonal matrix.  

For the diagonal elements of Σ , we assume a common inverse gamma prior,

σ α βj Gamma− ( )2
0 0~ , ,    j =1,L , p , (3.6)

with the parameterization in which the mean and variance are α 0 β0  and α 0 β0
2 ,

respectively.  

From (3.2)-(3.6), the joint posterior distribution for µ, , ,P Σ Γ( ), is given by

π µ, , ,P YΣ Γ( ) ∝ ( ) ( )f Y p PL µ, , ,Σ Γ
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= − − −( )′ − −( )







−







− −

=

−

=
∑ ∑2 22 21

2
1

1

1
2

1

π µ γ µ γ π γ γΣ Σ
n n

tr y P y P trt t t t
t

n

t t
t

n

exp exp '

× − −( ) −( )′







− −2 0
1
2 0 0

1
0

1
2π µ µM m M mexp

× − −( )′ −( )







≥( ) =( )− ∗ − ∗ ∗2 0 00
1
2 0 0

1
0

0
1
2πC vecP c C vecP c vecP vecPexp I I

× ( )






−






=

+

∏ β
α σ

β
σ

α α

0

01
2

1

0
2

0
0

1
Γj

p

j j

exp . (3.7)

Posterior inferences on the parameters require high-dimensional integration of the

joint posterior density.  Obviously, the integrals are analytically intractable in this case, and a

direct simulation from this density is not possible either due to complexity of (3.7).  We

therefore employ a Markov chain Monte Carlo (MCMC) approach (see, e.g., Tierney 1994;

Gilks, Richardson, and Spiegelhalter 1996).  In particular, we use the Gibbs sampling

algorithm by Gelfand and Smith (1990) since all of the full conditional distributions can be

easily obtained.   In our Gibbs sampling algorithm, one sweep consists of four updating

procedures: (a) updating µ ,  (b) updating P,  (c) updating Σ , (d) updating γ .  Now we give

details of each updating procedure.

(a) Updating µµµµ

The full conditional posterior distribution of µ is given by

  
µL ~ Np m, M( )

where M n M= +( )− − −
Σ 1

0
1 1

 and m n y P m M M= −( ) +{ }− −γ Σ 1
0 0

1 .  Sample generation from

the distribution is straightforward.

(b) Updating P

Under the truncated normal prior (3.5), the full conditional posterior distribution

π vecP∗( )L  is again a truncated normal distribution.  Due to high-dimensionality of vecP∗ ,
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it is much more efficient to sample a sub-vector of vecP∗  that corresponds to each column

of P (after deleting zero elements) rather than sampling the entire vector vecP∗ .  Let Pj
∗  be

the jth sub-vector of vecP∗  that corresponds to the jth column of P (after deleting zero

elements if there is any).  For the columns of P  with no zero elements, we have

  
P N c C P k qj q j j kj

∗ ( ) ⋅ ≥ =( )L L~ , , , ,I 0 1

where

c C Y C cj j j j j n j j= ′ −( ) +{ }− −σ µ2
0

1
01Γ , C Cj j j= ′ +( )− − −

σ 2
0

1 1
Γ Γ , c j0  is a q-dimensional prior

mean vector of Pj
∗ , C j0  is a corresponding submatrix of C0 , and Yj  is the jth column of Y.

For the columns of P containing zero elements, let q∗  be the number of nonzero elements

for that column.  Then

P N c C P k qj q j j kj
∗ ∗ ∗

∗ ( ) ⋅ ≥ =( )L L~ , , , ,I 0 1

where

C Cj j j j j
∗ − ∗ ∗ ∗−

−

= ′ +



σ 2

0
1

1

Γ Γ , c C Y C cj j j j j j j n j j
∗ ∗ ∗ − ∗ ∗− ∗= ′ ′ −( ) +








Γ Γσ µ2
0

1
01 , c j0

∗  is a q∗ -

dimensional prior mean vector of Pj
∗ , C j0

∗  is a corresponding submatrix of C0 , and Γ j
∗

consists of the columns of Γ  corresponding to nonzero elements of the jth column of P.

Sample generation from the truncated multivariate normal distribution can be done by

rejection sampling or Metropolis-Hastings algorithm (see Tierney, 1994) or by applying the

Gibbs sampler for each element of Pj
∗ .

 (c) Updating Σ

The full conditional posterior distribution of the jth diagonal element σ j
2  of Σ  is given by

σ α βj jGamma n d− + +( )2
0

1
2 0

1
2L ~ ,
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where dj is the jth diagonal element of d Y P Y Pn n= − ⊗ −( )′ − ⊗ −( )1 1µ µΓ Γ , and sample

generation is easy.

 (d) Updating Γ

It can easily be shown that the full conditional posterior distribution of the tth row γt of Γ  is

given by

 γ t q tN b BL ~ ,( )

where B P P Ik= ′ +( )− −
Σ 1 1

, b y P Bt t= −( ) ′−µ Σ 1 .  Again sample generation is

straightforward.

4. MODEL COMPARISON

Assume that there are G candidate models.  Under the gth model,

Mg: y Pg g g= + +µ γ ε,   ε ~ ,Np g0 Σ( ),    g = 1,L ,G .

Here, each model comes from different combination of the number of sources q and

identifiability conditions.   When there are G competing models, a typical Bayesian model

selection procedure computes the posterior model probability, P M Yg( ), of model Mg  given

the data Y, for each  g = 1,L ,G , and then selects the model with the highest posterior model

probability.  From a basic probability law, the posterior model probability P M Yg( ) is given

by

P M Y l Y M p Mg g g( ) ∝ ( ) ( ) ,

where p Mg( ) is the prior probability of model Mg .  The prior p Mg( ) is often chosen to be

uniform so as not to favor one model over another a priori.  Under the indifference model

prior probabilities, the posterior model probability is proportional to l Y Mg( ) .  The quantity
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l Y Mg( )  is called the marginal likelihood or integrated likelihood of model Mg  which is

given by, again from the basic probability law,

l Y M l Y M p M dg g g g g g( ) = ( ) ( )∫ θ θ θ, , (4.1)

where θg  is the vector of unknown parameters in model Mg , l Y Mg gθ ,( ) is the likelihood of

θg  under model Mg , and p Mg gθ( )  is the prior of θg  under model Mg .

In latent variable models (multivariate receptor models), however, the equation (4.1)

is not given in a closed form and a numerical approximation is necessary.  Among many

methods for approximating the marginal likelihood, the method proposed by Oh (1999) can

be easily implemented here.  From the relation

π θ
θ θ

g g

g g g g

g

Y M
l Y M p M

l Y M
,

,( ) =
( ) ( )

( )
one can estimate the marginal likelihood of model Mg  by

ˆ
, ,

ˆ , ,
l Y M

l Y M p M

Y M
g

g g g k

g g

( ) =
( ) ( )

( )
∗ ∗

∗

θ θ

π θ
(4.2)

where θg
∗  is a point of θg  and ˆ ,π θg gY M( ) is the estimated posterior density function of θg

given Y under model Mg .  Thus, one only needs to obtain ˆ , ,π θg gY M∗( ), for each

g G= 1, ,L .

Now we give brief description of Oh’s method for ˆ ,π θg gY M( ).  For simplicity, we

suppress the index g for the rest of the section.  Let   θ θ θ= ( )1, ,L m  where θi  is the ith block

of θ  which can be an element or a vector of elements.  Oh(1999) showed that

  
π θ π θ θ θ π θ θ θ θ π θ θ θ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−( ) = ( ) ( ) ( )[ ]Y M E m m m, , , , , , , ,1 2 2 1 3 3 1 1L L L L (4.3)
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where the expectation is with respect to the joint distribution of θ  under model M, and

hence it can be estimated by the sample average of the product of the full conditional

posterior density functions, using the posterior sample of θ  under model M.  Great

advantages of the method are that estimation of π θ∗ Y,M( ) can be done during the routine

MCMC simulation without generating additional samples, and that it can be very easily

implemented when all the full conditional posterior density functions are known.  In theory,

the point θ∗  can be arbitrary.  For efficiency, however, θ∗  should be chosen from the region

with high posterior density.  An approximate mode of θ  which can be obtained from a

preliminary MCMC run would be a reasonable choice for θ∗ .

For the standard factor analysis models with restrictions on P, we can apply the

method with µ , Γ , Σ , and each nonzero element of P as blocks of θ .  Note that the full

conditional posterior distribution of µ , Γ , and the diagonal elements of Σ  are multivariate

normal, multivariate normal, and Inverse Gamma, respectively, and that of any nonzero

element of P is a univariate truncated normal distribution.  Thus, all the necessary full

conditional posterior density functions for (4.3) are given and estimation of

π µ∗ ∗ ∗ ∗( ), , , ,Γ ΣP Y M  is straightforward.  

5. Simulation

5.1 Application to simulated data

The first data sets are generated as follows: the sample size n is taken to be 100, the number

of variables p is 9, and the true number of sources q0 is 3.  The true model has the factor

loading matrix (source composition matrix),

P =
















. . . . . . .

. . . . . . .

. . . . . . .

10 0 0 99 25 05 05 05 50

0 35 0 05 05 95 60 05 50

70 0 50 0 50 05 90 90 30
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and the overall mean µ = ⋅5 1p  where 1p  is a p-dimensional row vector of 1’s.  The factors

are generated randomly and independently from γ t N~ 0,I3( ),  t n= 1, ,L  and the errors are

generated randomly and independently from εt N~ 0,Σ( ) ,   t n= 1, ,L  where

Σ = ( )diag 0 03 0 02 0 03 0 02 0 01 0 04 0 02 0 03 0 03. , . , . , . , . , . , . , . , . ,

which results in approximately 13%~34% of the error standard deviations to the model

standard deviations.  Then the y’s are obtained using the equation (2.3),

y Pt t t= + +µ γ ε   t n= 1, ,L .

In our simulation, the candidate models may be defined by varying the number of

factors (q) and the identifiability conditions (the position of zeros).  Recall that under the

indifference prior model probabilities, the posterior probability, P M Yg( ), of model Mg  is

proportional to the marginal likelihood, l Y Mg( ) , of model Mg .  Thus, we only need to

calculate the marginal likelihood of each model for model comparison.  For simplicity of

presentation, we first change the number of factors (q = 1, 2, 3, 4, 5) with the most plausible

identifiability conditions for each q-factor model.  Note that there may possibly be

confounding effects between the number of factors and the identifiability conditions on the

marginal likelihoods.  For the purpose of model selection, it does not matter as our interest

is to see whether the estimated marginal likelihood is the highest for the true model.  

The simulation is repeated 50 times.  Throughout the simulation, the values for P,

µ , Γ , and Σ  remain the same as given above, and only the errors are regenerated to obtain

the observations at each simulation.  The following hyperparameter values are used for

generating MCMC samples:α 0 = 2 , β0 = 1  for Σ, m0 5= ⋅1p , M0 100= ⋅Ip  for µ , and

c0 0 5= . , C0 10=  for nonzero elements of P, which yield vague priors.   The estimated

marginal likelihoods for each q-factor model are reported in Table 1 on a log scale (only ten

cases are shown due to limited space).  Recall that, with indifference prior for competing

models, the posterior model probability is proportional to the marginal likelihood.
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We also calculate BIC for each model.  The BIC is defined as

BIC likelihood N= − ⋅ ( ) + ( )2 log max log (number of parameters). (5.1)

For max likelihood in (5.1), we use the integrated likelihood (3.1) with MLE for ( µ , P, Σ )

plugged in.  It is well known that the MLE for ( µ , P, γ , Σ ) based on the conditional

likelihood (3.2) do not exist (see, e.g., Anderson 1984), and as mentioned in Section 3.1,

even the MLE based on the integrated likelihood requires the use of some sort of an iterative

procedure or an EM algorithm.  Here we can easily obtain the approximate MLE for ( µ , P,

Σ ) by directly evaluating the integrated likelihood function using the posterior samples

generated from MCMC.  Note, however, that the number of observations N and the number

of parameters in (5.1) are often not clearly defined.  We use N n= , and

(number of parameters) = )1()2()1( −−+=−−++ qqqpqqpppq

which is the number of free parameters in the integrated likelihood.  The calculated BIC for

each model is also reported in Table 1.

Table 2 summarizes the performance of each method.  The method based on the

marginal likelihood chooses q having the maximum logMD (log of marginal likelihood)

and BIC chooses q having the minimum BIC.  Both methods select the true model for all of

50 simulations.

Tables 1-2

Secondly, we consider the case where the true number of factors (q0) is 5.  The

factor loading matrix is given as follows:

P =























. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

10 0 0 99 25 0 0 05 50

0 35 0 0 0 95 60 05 50

70 0 50 0 0 0 90 90 30

10 0 80 10 20 0 0 0 90

10 05 05 0 0 70 0 0 40

For µ  and Σ, the same values as in 3-factor model case are used, i.e., µ = ⋅5 1p  and

Σ = ( )diag 0 01 0 05 0 03 0 01 0 01 0 08 0 06 0 08 0 08. , . , . , . , . , . , . , . , . .  We use the
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following hyperparamenter values in generating MCMC samples: α 0 2= ,  β0 05= .  for Σ,

m0 5= ⋅1p , M0 100= ⋅Ip  for µ , and c0 0 5= . , C0 2=  for nonzero elements of P, which

yield vague priors.  The marginal likelihood and BIC of each model with the number of

factors (q = 3, 4, 5, 6) are reported in Table 3.  Both methods perform well in choosing the

true model as can be seen in Table 4.

Tables 3-4

5.2 Sensitivity Analysis and Robustness

It is known that the marginal likelihoods might be sensitive to the priors.  To make sure that

our analysis results do not change with prior specification, a sensitivity analysis is carried

out with a range of different priors.  The data are generated from the 3-factor model given in

Section 5.1.  We try ten different sets of hyperparameter values given in Table 5.  The log

of marginal likelihoods for each set of hyperparameters are shown in Table 6.  Although the

values change with hyperparameter specification, the overall pattern of them is consistent

(showing the maximum at q=3), and so our decision is not affected.  Also, estimates for µ ,

P, and Σ under chosen model (3-factor model) show only negligible changes.

It was mentioned in Section 2 that the form of prior distribution of γ  is largely a

matter of convention.  To ascertain that the method is robust to misspecification of the prior

distribution of γ , we first simulate n=100 observations from the q=3 factor model with the

same values for µ , P, and Σ as in Section 5.1 but different distributions for γ : truncated

normal distribution and lognormal distribution.  The simulation is repeated 10 times for

each case.  Our method (with a standard normal prior on γ ) chooses the correct model in

all simulations (and parameter estimates under the selected model are all close to the true

values).  

The method is also applied to the data generated using correlated factors.  We

simulate n=200 observations from a q=3 factor model defined by parameters:
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P =
















. . . . . . .

. . . . . . .

. . . . . . .

90 0 0 99 25 05 05 05 50

0 90 0 05 05 95 60 05 50

70 0 90 0 50 05 90 90 30

,

µ = ⋅5 1p , Σ = ( )diag 0 015 0 01 0 015 0 01 0 005 0 02 0 01 0 015 0 015. , . , . , . , . , . , . , . , . ,

and γ ~ ,N 0 Φ( )  where

Φ =
















1 0 7 0 7

0 7 1 0 7

0 7 0 7 1

. .

. .

. .

.

Simulation is repeated 10 times, and again our method (with a standard normal prior on γ )

chooses the correct model 100% of time and the estimated parameters under the chosen

model are all close to the true values.  The sample correlation matrix of the estimated Γ  is

given as

RΓ =
















1 0 69 0 67

0 69 1 0 72

0 67 0 72 1

. .

. .

. .

,

which resembles the true Φ.  Note that maximum likelihood estimation, based on the

integrated likelihood (3.1), would not be able to find this correlated factor structure because

Γ  is integrated out using the assumption that γ ~ Nq 0,I( ).  From a Bayesian standpoint, Φ

can be viewed as a hyperparameter of the prior distribution for factors rather than the

underlying assumption in the model.  Although Φ = I  is misspecified for these data, the

correlation structure in γ  may be uncovered by estimated γ 's.  Finally, we look at the case

when γ  is generated from the lognormal distribution with correlated factors, i.e.,

log ~γ Nq 0,Φ( ).  Again, the method shows robustness to violations of both assumptions

(the distributional form and the correlation structure in γ ).  
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6. Analysis of Seattle PM10 data

We apply our methods to PM10 data obtained from 10 monitoring sites in Seattle area

during 1992–1996.  The monitoring sites are from north to south (see the map in Figure 1):

Marysville, Everett, Lake Forest Park, Harbor Island, Duwamish, South Park, Kent, two sites

in Tacoma (one from a residential area, Tacoma-R, and the other from an industrial area,

Tacoma-I), and Puyallup.  At most of monitoring sites, PM10 was measured only every 6

days (as 24-hour average concentrations), so we use those 6 day measurements for the

analysis.  The goal is to identify major sources (source regions) of PM10.  Here, the 10

monitoring sites play the role of different variables in our basic multivariate receptor model.

The source profile, consisting of the relative amounts of PM10 that are conveyed to the 10

monitoring sites in this case, represents the spatial pattern of underlying PM10 concentration

from each source.  These source profiles (spatial profiles) were used in Park, Spiegelman,

and Henry (2000) to locate the major source regions in the Grand Canyon.  The underlying

assumptions for this approach are:

A1.   There are a few underlying spatial patterns (P), and they do not vary with time.

A2.   The environmental factors such as wind do not interact with P, i.e., the overall spatial

wind flow patterns (on which the spatial source patterns depend) are approximately

constant.

It is suspected that in Seattle there might be some change in the source regions

between the dry season (July to September, referred to as 'Summer' hereafter) and the wet

season (October to March, referred to as 'Winter' hereafter).  The PM10 level is higher on

average during Winter than during Summer (the difference is as big as 10 ug/m3 for some

sites such as Marysville, Lake Forest Park, Duwamish, and Tacoma-I, see Table 7).  Table 7

also shows that there is a big variation in the PM10 level during Winter.  It is of interest to

determine if there is an additional (major) source, during Winter in Seattle.  

We analyze the data separately for Summer and Winter to deal with seasonal

variation.  For each season, the assumption A1 seems to be justified.  Also, it is unlikely that
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there is a significant change in the major source regions within each season during the five

years of observation (no big point source was added to or removed from this area during

that period, Larson 2000).  The methods can be extended to account for violation of A1 by

using dynamically varying mean µt and source profiles Pt, but this is beyond the scope of

this paper.  

Analyzing the data separately for each season also has an advantage of coping with

the dependence of the regional pattern of PM10 concentration on shifting wind patterns.  It

is known that the main variability of regional wind pattern is between seasons, and it is fairly

constant in any given season of the year.  For Seattle the prevailing wind direction is

southerly in Winter and northerly in Summer, which is almost aligned with the monitoring

sites.  This also justifies A2.

After deletion of missing values, 66 observations are retained for Summer, and 129

for Winter.  For q, we try the values q = 1, 2, 3, 4, for each season.  As noted in Section 2,

each possible combination of q and positions of zeros in the source composition matrix P

yields a different model.  For candidate positions of zeros in P, we use the results from

UNMIX (Henry, 2000) rather than going through an infinitive number of possible

combinations.  For each q (q = 1, 2, 3, 4), we first obtain UNMIX source composition

matrix PUNMIX, and try the elements giving the low proportions in PUNMIX  as the candidate

zeros (q-1 zeros for each row).  Note that UNMIX profiles are used only to find out the

plausible sets of identifiability conditions under each q-source model.  Other than that, the

candidate models do not depend on the UNMIX analysis.  It is possible to try different sets

of zeros within each q.  For Summer we come up with a total of 11 candidate models, and

15 candidate models for Winter (see Tables 8 and 9).

Our MCMC analysis, conducted separately for Summer and Winter, uses the

following hyperparameters for the prior distributions.  For µ, m0 20= ⋅1p  for Summer and

m0 30= ⋅1p  for Winter are used since it is a priori expected that the mean concentration of
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PM10 would be much higher in Winter than in Summer.  For Σ, β0 10=  for Summer and

β0 20=  for Winter due to the similar reason as before.  For all other hyperparameters, we

use the same values for Summer and for Winter: c0 5= , C0 100=  for nonzero elements of

P, α 0 2= , and M0 100= ⋅Ip  for all models compared.  For each model, an approximate

posterior mode is obtained from a preliminary MCMC run, and this is used for

θ µ∗ ∗ ∗ ∗ ∗= ( ), , ,P Σ Γ  at which the marginal likelihood is calculated.  For the preliminary

MCMC run, the iterations are started from Y  for µ , a uniform random matrix with zeros

preassigned for P, and 
  
diag s sp1

2 2 20, ,L( )  where sj
2  is the sample variance of the jth

column of Y for Σ.  An approximate posterior mode is obtained by evaluating the joint

posterior density for 20,000 iterations after the first 10,000 draws are discarded.  A main

MCMC is then started from θ µ∗ ∗ ∗ ∗ ∗= ( ), , ,P Σ Γ , and the samples are collected for 30,000

iterations without additional burn-in.  The marginal likelihood for each model is calculated

in sample generation without storing the samples.  

Tables 8 and 9 contain the estimated marginal likelihood (in log) and BIC for each

model for Summer and Winter, respectively.  The posterior probability of each model under

the indifference prior is also given in the parenthesis at the bottom of estimated marginal

likelihood.  For Summer, both the marginal likelihood criterion and BIC select Model 1

which corresponds to 1-source model.  For Winter, Model 6 corresponding to 3-source

model is selected as the best model based on both criteria.  This is consistent with our

expectation that there would be additional pollution source/sources during Winter.  

We report some of the posterior summaries for parameters µ , P, and Σ, in Table

10-11 for the best model selected for each season.  Posterior intervals and simultaneous

posterior regions for the parameters can also be easily constructed based on the posterior

samples though we do not report those results here due to limited space (see, e.g., Besag,
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Green, Higdon, and Mengersen 1995).  From Tables 10-11, it can be seen that the source

profiles (spatial profiles) for each season show different pattern.  During Winter the major

source regions seem to be near (Marysville, Lake Forest Park, Puyallup), (Tacoma-I,

Puyallup), and (Harbor Island, Duwamish, South Park), and during Summer the source

profile is fairly spread out over the regions Harbor Island, Duwamish, South Park, Kent,

and Tacoma.  One of the source regions in Winter, (Marysville, Lake Forest Park, Puyallup)

coincides with a high wood smoke area, which does not appear in Summer.  This supports

that wood smoke is an additional source of PM10 in Winter.  Figure 2 contains the

histogram (based on 30,000 posterior samples) for each element of P for Summer, and

Figure 3 contains the histogram for each element of Source profile 1 for Winter (that seems

to correspond to wood smoke spatial profile).

For illustrative purposes, we also apply some other commonly used methods for

determining the number of factors (see Section 1) to these data.  For Summer data, the 90

percent trace method gives 1 (based on the covariance matrix) or 3 (based on the correlation

matrix), Rule-of-one gives 1, Bartlett’s test gives 9 (based on the covariance matrix) or 5

(based on the correlation matrix), Malinowski's indicator function gives 2, Wold's cross-

validation approach gives 1, NUMFACT gives 3, and modified NUMFACT gives 2.  

For Winter data, the 90 percent trace method gives 1 (based on the covariance

matrix) or 3 (based on the correlation matrix), Rule-of-one gives 1, Bartlett’s test gives 7

(based on the covariance matrix) or 6 (based on the correlation matrix), ), Malinowski's

indicator function gives 1, Wold's cross-validation approach gives 1, NUMFACT gives 3

(based on the covariance matrix) or 4 (based on the correlation matrix), and modified

NUMFACT gives 2 (based on the covariance matrix) or 3 (based on the correlation matrix).

There seems to be a fairly large uncertainty in the number of factors for these data, which is

why it is important to report model uncertainty estimates (as in Table 9 and 10).
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7. DISCUSSIONS

In this article we have developed a general approach for assessing model uncertainty

in multivariate receptor models (and standard factor analysis models). In earlier multivariate

receptor modeling, the number of sources and identifiability conditions were determined

first, and the inferences of the remaining model parameters were made conditionally on that.

This approach ignores the uncertainty involved in the number of sources and selection of

identifiability conditions.  We approached the problem using the marginal likelihood.  The

marginal likelihood of each model can easily be converted to the posterior probability of the

model, which may well serve as an uncertainty estimate of the model.  Although marginal

likelihoods used to be computationally intractable, recent developments in MCMC

methodology make accurate estimation of them possible.  The methods using MCMC (for

calculating the marginal likelihoods) have not yet been applied in many statistical problems.

The main advantage of the MCMC approach introduced here is that the marginal likelihood

of each model can be calculated based on the same posterior sample that is used to make

inferences on the parameters (without requiring any additional sampling).  Thus, using a

single posterior sample for each model, we can simultaneously obtain the model uncertainty

estimate, the estimates for the parameters and their uncertainties.  Although we confined

ourselves, for brevity of presentation, to one type of identifiability conditions (zeros in the

source composition matrix P), the method can be applied to other types of identifiability

conditions (e.g., zeros in the source contribution matrix A) with a slight modification in

MCMC algorithm.

Throughout this article we have assumed that the errors are normally distributed,

which makes all the full conditionals available in closed forms. When a non-normal

distribution for errors is assumed, some of the full conditionals might be difficult to

determine.  In that case, the general methodology in Section 4 can be extended using the

importance-weighted method of Chen (1994) and Oh (1999) for the unknown conditionals,
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replacing each of them by an arbitrary (weighting) conditional density times the ratio of the

posterior kernels.  Choosing a good weighting conditional density can be a challenging

problem due to high dimensionality of each block of parameters in multivariate receptor

models.

Another assumption we have made (in the priors) is that the factors (the source

contributions) are uncorrelated.  Although our method is shown to be robust to violation of

this assumption through a simulation study, a further extension of the model (and the

method) would be to treat Φ as an additional parameter in the model, with its own prior.

This brings the model into the form of a Bayesian hierarchical model (the prior distribution

of factors depends on the unknown hyperparameter Φ).  In addition to the identifiability

conditions (C1-C2) to remove rotational indeterminacy, q additional linearly independent

restrictions on the parameters such that Φ is a correlation matrix or one of the nonzero

elements in each row of P is known, are needed to cope with indeterminacy of factors by a

constant multiplication.  Inter-comparisons of models, when Φ is assumed known and

when it is unknown, using marginal likelihoods are still under investigation.
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Table 1.  Log of Marginal likelihood of q (within an additive constant) and BIC for q=1, 2, 3, 4, 5 (q0 = 3).
n=100, p=9

Data
set

Number of Factors (q)

Methods 1 2 3 4 5 Selected number
of factors

LogMD 1
2
3
4
5
6
7
8
9
10

-773.26
-757.36
-763.48
-788.20
-764.11
-777.91
-770.69
-778.43
-757.52
-774.98

-598.95
-606.81
-604.69
-773.84
-598.38
-769.70
-607.16
-604.55
-589.23
-605.71

-541.01
-538.85
-550.82
-564.68
-540.38
-553.47
-548.04
-539.08
-536.48
-553.10

-615.21
-616.58
-626.49
-641.31
-612.81
-621.07
-638.96
-605.47
-612.77
-641.27

-655.05
-653.20
-672.71
-671.84
-663.31
-664.61
-674.52
-662.29
-642.69
-656.85

3
3
3
3
3
3
3
3
3
3

BIC 1
2
3
4
5
6
7
8
9
10

1427.85
1395.07
1401.83
1464.57
1408.79
1437.50
1418.25
1433.06
1390.03
1434.51

911.93
935.40
932.98
1339.75
907.77
1323.34
913.23
928.37
895.20
931.58

711.35
683.13
709.26
752.60
685.75
725.21
731.88
696.14
669.03
725.75

891.45
901.21
932.55
962.42
882.71
919.26
948.16
885.26
890.62
939.91

1028.76
1013.56
1051.33
1064.17
1005.87
1054.64
1045.54
1012.51
993.47
1053.72

3
3
3
3
3
3
3
3
3
3

Table 2. Comparison of model uncertainty assessment methods based on 50 simulated data sets, n=100, p=9, q0 = 3.
q

Method q=1 q=2 q=3 q=4 q=5
LogMD

BIC
0
0

0
0

50
50

0
0

0
0
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Table 3.  Log of Marginal likelihood of q (within an additive constant) for q=3, 4, 5, 6 (q0= 5).
n=100, p=9.

Data
set

Number of Factors (q)

Methods 3 4 5 6 Selected number
of factors

LogMD 1
2
3
4
5
6
7
8
9
10

-832.48
-889.30
-826.35
-832.21
-831.22
-816.78
-826.81
-836.27
-830.81
-839.08

-751.09
-745.87
-743.81
-737.14
-733.67
-725.58
-736.83
-747.40
-731.77
-742.46

-730.51
-738.74
-732.03
-729.93
-721.69
-723.00
-733.27
-729.22
-718.95
-739.87

-788.95
-806.37
-785.78
-784.59
-772.05
-776.74
-792.06
-781.81
-783.63
-786.85

5
5
5
5
5
5
5
5
5
5

BIC 1
2
3
4
5
6
7
8
9
10

1511.62
1609.07
1504.86
1509.25
1505.54
1479.15
1487.11
1523.58
1489.98
1525.09

1279.24
1294.33
1287.04
1251.24
1251.32
1244.52
1273.86
1282.80
1241.19
1274.42

1235.38
1233.03
1216.44
1203.21
1174.42
1197.39
1205.45
1211.89
1195.51
1231.22

1393.11
1416.47
1404.25
1386.09
1370.92
1359.30
1380.78
1395.95
1364.05
1404.69

5
5
5
5
5
5
5
5
5
5

Table 4. Comparison of model uncertainty assessment methods based on 50 simulated data, n=100, p=9, q0 = 5.
q

Method q=3 q=4 q=5 q=6
LogMD

BIC
0
0

0
0

50
50

0
0
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Table 5.  Hyperparameter specifications,
m a0 = ⋅1p, M b0 = ⋅Ip , c c

pq q q0 1 2= ⋅
− −

, C d
pq q q0 2= ⋅

− −
I

α
0

β
0 a b c d

I
II
III
IV
V
VI
VII
VIII
VI
X

2
2
2
2
2
2
2
2
2
2

0.1
0.01
1
1
1
1
1
1
0.1
0.5

5
5
5
5
5
5
5
5
5
5

100
100
100
100
100
10
10
1
1
5

0.5
0.5
0.5
1
0
0
0
0
1
0.5

100
100
100
100
100
100
10
10
10
3

Table 6. logMD for each set of hyperparameters
q=1 q=2 q=3 q=4 q=5

I
II
III
IV
V
VI
VII
VIII
VI
X

-765.07
-792.71
-783.67
-784.85
-783.37
-772.00
-762.51
-752.39
-735.87
-736.35

-509.52
-536.67
-620.87
-615.78
-621.28
-604.99
-588.93
-584.65
-472.31
-698.58

-384.66
-384.74
-555.55
-557.25
-559.97
-553.19
-518.87
-515.89
-338.70
-431.93

-459.73
-505.69
-625.16
-611.85
-617.08
-623.27
-599.48
-591.27
-453.85
-486.52

-541.98
-556.59
-697.40
-662.50
-681.92
-663.01
-635.68
-625.70
-478.37
-530.44

Table 7. Sample mean and standard deviation of PM10 data for each season
Summer (n=66) Winter (n=129)

Sample mean
(in µg m 3 )

Sample
variance

Sample mean
(in µg m 3 )

Sample
variance

Marysville
Everett

Lake Forest Park
Harbor Island

Duwamish
South Park

Kent
Tacoma-R
Tacoma-I
Puyallup

19.61
19.82
17.30
26.03
27.58
22.50
26.67
25.41
25.85
22.82

52.24
46.03
26.12
86.86
104.40
97.08
97.21
152.83
104.16
154.24

28.16
21.76
30.09
33.41
36.43
28.10
28.56
25.47
36.48
27.03

367.71
148.82
283.79
246.98
320.01
253.39
274.64
283.66
412.35
324.69
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Table 8.  Candidate models, logMD, and BIC for Seattle PM10 data, Summer (7~9)

Model # q position of zeros in P logMD BIC
1 1 None -2056.15

(0.99996) 4090.11
2 2 profile 1: Marysville

profile 2: Lake Forest Park
-2070.16
(8.1910-7) 4145.50

3 2 profile 1: Everett
profile 2: Puyallup

-2068.54
(4.1310-6) 4107.30

4 2 profile 1: Marysville
profile 2: Puyallup

-2066.50
(3.1910-5) 4104.61

5 2 profile 1: Lake Forest Park
profile 2: Puyallup

-2071.12
(3.1410-7) 4108.60

6 2 profile 1: Kent
profile 2: Puyallup

-2073.85
(2.0510-8) 4111.91

7 3 profile 1: Lake Forest Park, Puyallup
profile 2: Lake Forest Park, Tacoma-R
profile 3: Tacoma-R, Puyallup

-2095.09
(1.2210-17) 4165.39

8 3 profile 1: Lake Forest Park, Puyallup
profile 2: Marysville, Everett
profile 3: Tacoma-R, Puyallup

-2072.65
(6.8210-8) 4139.74

9 3 profile 1: Maryvsille, Puyallup
profile 2: Everett, Lake Forest Park
profile 3: Marysville, Lake Forest Park

-2100.92
(3.5810-20) 4194.48

10 4 profile 1: South Park, Tacoma-R, Puyallup
profile 2: Marysville, Everett, Lake Forest Park
profile 3: Marysville, Everett, Tacoma-R
profile 4: Harbor Island, South Park, Tacoma_I

-2075.48
(4.0110-9) 4150.55

11 4 profile 1: Everett, Lake Forest Park, Puyallup
profile 2: Marysville, Everett, Tacoma-R
profile 3: Harbor Island, Duwamish, Tacoma-I
profile 4: South Park, Tacoma-R, Puyallup

-2087.20
(3.2810-14) 4138.40

Note: The posterior probability of each model under the indifference prior is given in the
parenthesis at the bottom of logMD.
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Table 9.  Candidate models, logMD and BIC for Seattle PM10 data, Winter (10~3),
Posterior model probability is given in the parenthesis.

Model # q position of zeros in P logMD BIC
1 1 None -4729.95

(1.06 ×10-17)
9436.88

2 2 profile 1: Lake Forest Park
profile 2: Tacoma-R

-4711.14
(1.56×10-9)

9440.90

3 2 profile 1: Everett
profile 2: Tacoma-R

-4728.38
(5.07×10-17)

9447.52

4 2 profile 1: Marysville
profile 2: Puyallup

-4747.12
(3.69×10-25)

9504.62

5 2 profile 1: Marysville
profile 2: Tacoma-R

-4720.32
(1.61×10-13)

9424.38

6 3 profile 1: Harbor Island, Tacoma-R
profile 2: Marysville, Everett
profile 3: Lake Forest Park, Puyallup

-4690.86
(0.99986)

9388.25

7 3 profile 1: South Park, Tacoma-R
profile 2: Marysville, Everett
profile 3: Lake Forest Park, Puyallup

-4711.07
(1.67×10-9)

9401.38

8 3 profile 1: Tacoma-R, Tacoma-I
profile 2: Marysville, Everett
profile 3: Marysville, Puyallup

-4707.11
(8.76×10-8)

9411.95

9 3 profile 1: Harbor Island, Tacoma-R
profile 2: Marysville, Everett
profile 3: Marysville, Lake Forest Park

-4699.90
(0.00012)

9405.67

10 3 profile 1: Harbor Island, Tacoma-R
profile 2: Marysville, Everett
profile 3: Marysville, Puyallup

-4701.51
(2.37×10-5)

9405.93

11 3 profile 1: South Park, Tacoma-R
profile 2: Marysville, Everett
profile 3: Marysville, Puyallup

-4709.93
(5.22×10-9)

9415.81

12 3 profile 1: South Park, Tacoma-R
profile 2: Marysville, Everett
profile 3: Marysville, Lake Forest Park

-4707.97
(3.71×10-8)

9419.13

13 4 profile 1: Harbor Island, South Park, Tacoma-R
profile 2: Marysville, Everett, Tacoma-R
profile 3: Lake Forest Park, Harbor Island, Duwamish
profile 4: Marysville, Tacoma-R, Puyallup

-4704.14
(1.71×10-6)

9443.66

14 4 profile 1: Harbor Island, Kent, Tacoma-I
profile 2: Marysville, Tacoma-R, Puyallup
profile 3: Lake Forest Park, Harbor Island, Duwamish
profile 4: Marysville, Everett, Tacoma-R

-4716.94
(4.72×10-12)

9434.19

15 4 profile 1: Kent, Tacoma-R, Tacoma-I
profile 2: Marysville, Tacoma-R, Puyallup
profile 3: Lake Forest Park, Harbor Island, Duwamish
profile 4: Marysville, Everett, Tacoma-R

-4710.43
(3.17×10-9)

9440.40

Note: The posterior probability of each model under the indifference prior is given in the
parenthesis at the bottom of logMD.
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Table 10. Posterior summary for the parameters P, µ, and Σ of Model 1, Summer
P µ Σ

 mean std  mean std mean std
Marysville
Everett  
Lake Forest Park  
Harbor Island     
Duwamish
South Park     
Kent     
Tacoma-R  
Tacoma-I
Puyallup

6.96
          6.48
          4.76
          9.20
         10.08
          9.81
          9.60
         11.48
          9.89
          8.46

0.75
          0.71
          0.54
          0.94
          1.03
          0.99
          1.01
          1.29
          1.05
          1.46

19.24
         19.47
         17.05
         25.53
         27.03
         21.97
         26.14
         24.77
         25.31
         22.35

0.83
          0.79
          0.60
          1.08
          1.18
          1.13
          1.14
          1.43
          1.17
          1.47

9.87
          9.39
          6.49
         12.66
         15.28
         12.61
         16.35
         36.20
         18.22
         89.49

1.99
          1.85
          1.22
          2.64
          3.18
          2.66
          3.33
          6.85
          3.69
         16.05

Table 11. Posterior summary for the parameters P, µ, and Σ of Model 6, Winter
Source 1 Source 2 Source 3 µ Σ

 mean std  mean std  mean std  mean std mean std
Marysville
Everett  
Lake Forest Park  
Harbor Island     
Duwamish
South Park     
Kent     
Tacoma-R  
Tacoma-I
Puyallup

15.72
      6.76
    12.13
           0
      2.27
      2.52
      3.67
           0
      4.95
      9.85

1.35
      1.00
      1.28
           0
      0.81
      0.71
      0.93
           0
      1.14
      1.36

0
           0
      5.43
      7.95
      8.31
      8.29
      9.06
      9.80
    12.56
    11.58

0
           0
      1.08
      1.26
      1.26
      1.06
      1.09
      1.43
      1.29
      1.03

6.14
      6.42
           0
    11.16
    11.70
      9.31
      7.55
      6.86
      7.71
          0

1.39
      0.98
           0
      1.15
      1.17
      0.98
      1.03
      1.45
      1.16
           0

28.16
    21.77
    30.08
    33.33
    36.34
    28.04
    28.50
    25.44
    36.38
    26.99

1.48
      0.92
      1.33
      1.22
      1.30
      1.14
      1.18
      1.37
      1.44
      1.32

8.79
    27.02
    60.17
    20.78
    26.64
    19.06
    39.31
  109.44
    42.90
    10.52

4.58
      4.03
      8.73
      4.20
      4.79
      3.41
      5.62
    14.58
      6.46
      5.21
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Figure 1.  PM10 Monitoring Sites in Greater Seattle
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FIGURE 2
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 FIGURE 3
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