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1. INTRODUCTION

Modeling of the spatial dependence structure of environmental processes is

fundamental to almost all statistical analyses of data that are sampled spa-

tially. These analyses address tasks such as spatial estimation (kriging) and

monitoring network design, as well as the basic scienti�c characterization

of the second order properties of these processes. Prior to 1990, the lack of

general models for the spatial covariance function led to almost exclusive

reliance on stationary models of the form cov(Z(x); Z(y)) = C(x�y) where

fZ(x) : x 2 Dg denotes a process de�ned over a spatial domain D � Rd.

However, it is now widely recognized that most, if not all, spatio-temporal

environmental processes (and many spatial processes without a temporal

aspect) manifest spatially nonstationary or heterogeneous covariance struc-

ture when considered over a suÆciently large spatial range.

There is a rapidly growing body of literature on methods for modeling

nonstationary spatial covariance structure. The majority of the literature

concerns methods that are semi-parametric: they are nonparametric with

respect to the way that spatial variation in covariance structure is described,

but the local covariance structure is described by conventional parametric

models. Much of this recent literature discusses Bayesian modeling strate-

gies which enable the uncertainty in the estimated spatial covariance struc-

ture to be re
ected in spatial estimation. Many of the methods discussed

here concern models assuming temporally independent replications (possi-

bly after preprocessing of space-time monitoring data). Temporal correla-

tion, and more generally space-time covariance structure, is important in
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many applications, depending on the magnitude of the time step relevant

for analysis. See Gneiting and Schlather (2001) for discussion of various sep-

arable and non-separable space-time models, mostly stationary, and Wikle

and Cressie (1999) for other approaches to dynamic modeling of spatially

varying space-time structure.

Let Z(x; t) represent a space-time random �eld modeled as

Z(x; t) = �(x; t) +E(x; t) + "(x; t); (1)

where �(x; t) represents a spatio-temporal mean �eld or trend, "(x; t) repre-

sents measurement error and small-scale spatial variability, and E(x; t) is a

mean zero space-time process which is L2-continuous in space and indepen-

dent of "(x; t). For the purposes of this article we will assume that t indexes

T temporally independent replications of the spatio-temporal �eld and our

focus is on the spatial covariances, cov(Z(x; t); Z(y; t)). In the case of direct

measurements of atmospheric processes, such as temperatures, winds, pres-

sure, and rainfall, or in the case of many atmospherically driven pollutant

processes, spatial covariances are a�ected by spatially varying features of

landscape, topography and/or circulation patterns, so that they are can-

not be expressed as simple homogeneous functions of the vector separation

x� y.

A fundamental notion underlying most of the current modeling ap-

proaches is that the spatial correlation structure of environmental processes

such as these can be considered to be approximately stationary over rel-

atively small or \local" spatial regions. This local structure is typically

anisotropic. The methods can then be considered to describe spatially

varying, locally stationary, anisotropic covariance structure. The models

should re
ect the e�ects of known explanatory environmental processes

(wind/transport, topography, point sources, etc.). Ideally we would like to

model these e�ects directly, but none of the methods reviewed here at-

tempts such explicit modeling.

Prior to 1990 the main (possibly only) approach to modeling or charac-

terizing the nonstationary spatial covariance structure of spatio-temporal

environmental monitoring data (outside of local analyses in subregions

where the process might be more nearly stationary) was based on an em-

pirical orthogonal function decomposition of the space-time data matrix, a

technique common in the atmospheric science literature. Reference to this

approach in the statistical literature dates back at least to Cohen and Jones

(1969) and Buell (1978), although perhaps the most useful elaboration of

the method for spatial analysis was provided by Obled and Creutin (1986).

A number of new modeling and inference methods were introduced in the

late 1980's and early 1990's, beginning with Guttorp and Sampson's spatial

deformation approach, �rst mentioned in print in a 1989 comment on a pa-
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per by Haslett and Raftery (1989). Shortly following were: Haas' \moving

window" spatial estimation (Haas 1990a,b, 1995), although this approach

estimates covariance structure locally without providing a global model;

Sampson and Guttorp's (1992) elaboration of their �rst approach to the

spatial deformation model based on multidimensional scaling; an empirical

Bayes shrinkage approach of Loader and Switzer (1992); and Oehlert's ker-

nel smoothing approach (1993). Guttorp and Sampson (1994) reviewed this

early literature on methods for estimating heterogeneous spatial covariance

functions with comments on further extensions of the spatial deformation

method. In the current article we focus on the developments of the late

1990s as these largely subsume the earlier proposals. At the time of this

writing, a number of the methods reviewed here are not yet published.

We review the current literature under the headings of: smoothing and

kernel methods, basis function models, process convolution models, spatial

deformation models, and conclude with brief mention of parametric models

and further discussion.

2. SMOOTHING AND KERNEL-BASED METHODS

Perhaps the simplest approaches to dealing with nonstationary spatial co-

variance structure begin either from the perspective of locally stationary

models, which are empirically smoothed over space, or from the perspective

of the smoothing and/or interpolation of empirical covariances estimated

among a �nite number of monitoring sites. Neither of these perspectives

incorporates any other explicit modeling of the spatial heterogeneity in

the spatial covariance structure. As noted above, Haas' (1990a,b, 1995)

moving window approach computes local estimates of the spatial covari-

ance structure, but does not integrate these into a global model. Oehlert's

(1993) kernel smoothing approach and Loader and Switzer's (1992) empiri-

cal Bayesian shrinkage and interpolation both aim to smoothly interpolate

empirical covariances. See Guttorp and Sampson (1994) for a brief summary

and Nott and Dunsmuir (1998) for further assessment.

2.1. SPATIALLY SMOOTHED LOCAL MODELS

Recent manuscripts by Fuentes (2000) and by Nott and Dunsmuir (1998)

propose somewhat related approaches for representing nonstationary spa-

tial covariance structure in terms of spatially-weighted combinations of

stationary spatial covariance functions assumed to represent the local co-

variance structure in di�erent regions. First consider dividing the spatial

domain D into k subregions Si, each with a suÆcient number of points

to estimate a (stationary) variogram or spatial covariance function K�i .

Fuentes (2000) represents the spatial process Z(x) as a weighted average of
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\orthogonal local stationary processes":

Z(x) =
kX
i=1

wi(x)Zi(x) (2)

where wi(x) is a chosen weight function such as inverse squared distance be-

tween x and the center of subregion Si and Zi(x) denotes a spatial process

(de�ned over the entire region) with covariance function K�i . The nonsta-

tionary spatial covariance structure is given by

cov(Z(x); Z(y)) =
Xk

i=1
wi(x)wi(y)cov(Zi(x); Zi(y))

=
Xk

i=1
wi(x)wi(y)K�i(x� y) (3)

Fuentes proposes to choose the number of subgrids, k, using a BIC criterion.

The stationary processes Zi(x) are actually \local" only in the sense that

their corresponding covariance functions, K�i(x� y), are estimated locally,

and they are \orthogonal" by assumption in order to represent the overall

nonstationary covariance simply as a weighted sum of covariances. Fuentes

estimates the parameters in the context of a complete Bayesian spatial

estimation with predictive distributions accounting for uncertainty in the

parameter estimates.

Work in progress by Fuentes and Smith proposes to extend the �nite

decomposition of Z(x) of Fuentes (2000) to a continuous convolution of

local stationary processes:

Z(x) =

Z
D
w(x� s)Z�(s)(x)ds (4)

Estimation will require that the spatial �eld of parameter vectors �(s), in-

dexing the stationary Gaussian processes, be constrained to vary smoothly.

Nott and Dunsmuir's (1998) approach, proposed as a more computa-

tionally feasible alternative to the spatial deformation model of Sampson

and Guttorp, has the stated aim of reproducing an empirical covariance

matrix at a set of monitoring sites and describing the conditional behavior

given monitoring site values with a collection of stationary processes. We

will use the same notation as that above, although for Nott and Dunsmuir,

i will index the monitoring sites rather than a smaller number of subre-

gions, and the K�i(x�y) represent local residual covariance structure after

conditioning on values at the monitoring sites. These are derived from lo-

cally �tted stationary models. In their general case, Nott and Dunsmuir's

representation of the spatial covariance structure can be written as

cov(Z(x); Z(y)) = �0(x; y) +
Xk

i=1
wi(x)wi(y)K�i(x� y) (5)
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where �0(x; y) is a function of the empirical covariance matrix at the mon-

itoring sites, S = [sij ], and the local stationary models computed so that

cov(Z(xi); Z(xj)) = sij. This exact interpolation is relaxed by replacing the

empirical covariance matrix S by the Loader and Switzer (1992) empirical

Bayes shrinkage estimator Ŝ = 
S + (1 � 
)C, where C is a covariance

matrix obtained by �tting some parametric covariance function model.

While the models introduced by Fuentes and by Nott and Dunsmuir

look similar, the details are substantially di�erent. Nott and Dunsmuir

use hypothetical conditional processes and assume an empirical covariance

matrix computed from spatio-temporal data. Fuentes' method uses uncon-

ditional processes and applies as well to purely spatial data. It involves

a complete Bayesian analysis without resort to computationally intensive

MCMC methods. Neither of these two methods has involved �tting of lo-

cally anisotropic covariance models, but doing so should not greatly com-

plicate the computations.

While convenient for accommodating nonstationary covariance struc-

ture, the underlying spatial process models of both of these approaches|

the decomposition in terms of orthogonal stationary processes with spatially

varying local covariance structure|do not seem (to us) to represent use-

fully interpretable scienti�c models. Furthermore, certain key elements of

the approach, such as the number of locally stationary component models

(for Fuentes), or the size of the neighborhoods for �tting of the local models,

and the nature of the weight or kernel must be determined by somewhat

ad hoc means.

2.2. KERNEL SMOOTHING OF EMPIRICAL COVARIANCE MATRICES

Guillot et al. (2001) have proposed a di�erent type of kernel estimator,

similar to one introduced by Oehlert (1992), although they do not refer

to this earlier work. Let D denote the spatial domain, so that the covari-

ance function S(x; y) is de�ned on D �D, and suppose that an empirical

covariance matrix S = [sij] is computed for sites fxi; i = 1; : : : ; ng. De�ne

a non-negative kernel K integrating to one on D � D and let K"(u; v) =

"�4K(u="; v=") for any real positive ". Then de�ne a partition fD1; : : : ; Dng

of D (such as the Voronoi tesselation). The nonparametric, nonstationary

estimator of S, is

Ŝ"(x; y) =
X
i;j

sij

Z
Di�Dj

K"(x� u; y � v)dudv (6)

The authors prove positive-de�niteness of the estimator for positive-

de�nite kernels, which include step functions, Gaussian, and exponential

forms. They consider various approaches to the selection of the bandwidth
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parameter ", including plug-in minimization of mean integrated squared

error in estimation of S(x; y) and two forms of cross-validation. The local

behavior of the resulting models is not discussed. They demonstrate an

application to West Africa rainfall event data where, surprisingly, kriging

with the nonstationary covariance model is outperformed by kriging with

a �tted stationary model.

3. BASIS-FUNCTION MODELS

As noted in our introduction, the earliest modeling strategy for nonsta-

tionary spatial covariance structure was based on decompositions of spatial

processes in terms of empirical orthogonal functions (EOF's). The original

methodology in this �eld, as reviewed by Guttorp and Sampson (1994),

has received renewed attention recently in the work of Nychka and col-

leagues (Nychka and Saltzman 1998, Holland et al. 1998, Nychka et al.

2000). Brie
y, using the same spatio-temporal notation as above, the n�n

empirical covariance matrix S may be written with a spectral decomposi-

tion as

S = F0�F =

nTX
k=1

�kFkF
0

k; (7)

where nT = min(n; T ). The extension of this �nite decomposition to the

continuous spatial case represents the spatial covariance function as

S(x; y) =
1X
k=1

�kFk(x)Fk(y); (8)

where the eigenfunctions Fk(x) represent solutions to the Fredholm inte-

gral equation and correspond to the Karhunen-Lo�eve decomposition of the

(mean-centered) �eld as

Z(x; t) =
1X
k=1

Ak(t)Fk(x): (9)

The modeling and computational task here is in computing a numerical

approximation to the Fredholm integral equation, or equivalently, choosing

a set of generating functions e1(x); � � � ; ep(x) that are the basis for an ex-

tension of the �nite eigenvectors Fk to eigenfunctions Fk(x). See Guttorp

and Sampson (1994), Obled and Creutin (1986), and Preisendorfer (1998,

sect 2d) for further details.

In Nychka and Saltzman (1998) and in Holland et al. (1998), the spatial

covariance function is represented as the sum of a conventional stationary

isotropic spatial covariance model and a (�nite) decomposition in terms
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of empirical orthogonal functions. This corresponds to a decomposition of

the spatial process as a sum of a stationary isotropic process and a linear

combination of M additional basis functions with random coeÆcients, the

latter sum representing the deviation of the spatial structure from station-

arity. The authors demonstrate that model-based calculations of kriging

predictive standard errors for an application to seasonally-adjusted SO2

data in the eastern U.S. were substantially smaller for this nonstationary

model than for a �tted stationary model and a �tted model with stationary

spatial correlation but spatially varying variance �eld.

Nychka, et al. (2000) introduced an alternative wavelet basis function

decomposition with a computational focus on large problems with obser-

vations discretized to the nodes of a (large) N �M grid. Their example

is an analysis of monthly precipitation �elds over a region of the Midwest

and Rocky Mountains with observations at about 1600 stations discretized

to a 128 � 128 grid. They use a \W" wavelet basis with parent forms that

are piecewise quadratic splines, which are not orthogonal or compactly

supported. These were chosen because they can approximate the shape of

common covariance models such as the exponential and Gaussian, depend-

ing on the sequence of variances of the basis functions in the decomposition.

Issues concerning the class of covariances spanned by these multiresolution

bases remain to be studied.

EOF decompositions are also being used e�ectively to provide low-

dimensional representations of the space-time structure in dynamic linear

models; see Wikle and Cressie (1999) for details.

4. PROCESS-CONVOLUTION MODELS

Higdon (1998) introduced a process-convolution approach for accommodat-

ing nonstationary spatial covariance structure. See also Higdon, Swall, and

Kern (1999). The basic idea is to consider the fact that any stationary Gaus-

sian process Z(s) with correlogram of the form �(d) =
R
R2 k(s)k(s� d)ds

can be expressed as the convolution of a Gaussian white noise process �(s)

with kernel k(s)

Z(s) =

Z
R2

k(s� u)�(u)du: (10)

A particular kernel of interest is the bivariate Gaussian density function

with 2 � 2 covariance matrix �, which results in processes with station-

ary anisotropic Gaussian correlation function with the principal axes of �

determining the directions of the anisotropic structure.

To account for nonstationarity, Higdon (1998) and Higdon et al. (1999)

let the kernel vary smoothly with spatial location. Letting ks(�) denote a

kernel centered at the point s, with a shape depending on s, the correlation
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between two points s and s0 is

�(s; s0) =

Z
2

ks(u)ks0(u)du: (11)

Higdon et al. (1999) demonstrate the particular case where the ks(�)

are bivariate Gaussian densities characterized by the shapes of ellipses

underlying the 2 � 2 covariance matrices. The kernels are constrained to

evolve smoothly in space by estimating the local ellipses under a Bayesian

paradigm that speci�es a prior distribution on the parameters of the ellipse

(the relative location of the foci) as a Gaussian random �eld with a smooth

(in fact, Gaussian) spatial covariance function. It should be noted that the

form of the kernel determines the shape of the local spatial correlation

function, with a Gaussian kernel corresponding to a Gaussian covariance

function. Other choices of kernels can lead to approximations to other com-

mon spatial correlation functions.

Figure 1, based on the presentation in Higdon et al. (1999), illustrates

the nature of a �tted model for an analysis of the spatial distribution of

dioxin concentrations in the Piazza Road pilot study area, which is part

of an U.S. EPA Superfund site in Missouri. In this purely spatial exam-

ple, dioxin was transported through a small stream channel which follows

a curving path generally following the path of greatest concentration from

top to bottom as indicated in the �gure. The solid ellipses indicate the

shape of the Gaussian kernels at sampling sites as given by the posterior

distribution of the Bayesian analysis; the long axis of the ellipse indicates

the direction of greater spatial correlation, which roughly parallels the di-

rection of the stream channel. The dotted ellipses represent the spatially

varying estimates of these local kernels on a regular grid, in accordance

with the Gaussian random �eld prior for their parameters.

5. SPATIAL DEFORMATION MODELS

The spatial deformation approach to modeling nonstationary spatial covari-

ance structure has been considered by a number of authors since the early

work presented in Sampson and Guttorp (1992) and Guttorp and Sampson

(1994). We �rst review the modeling approach as presented by Meiring et

al. (1997). We will then review some of the other work on this methodology,

focusing on recently introduced Bayesian methods.

Suppose that temporally independent samples Zit = Z (xi; t) are avail-

able at N sites xi; i = 1; : : : ; N , typically in R2 and at T points in time

t = 1; : : : ; T . X =
�
X1 X2

�
represents the matrix of geographic loca-

tions. We now write the underlying spatio-temporal process as

Z (x; t) = � (x; t) + � (x)1=2Et (x) + " (x; t) ; (12)
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Figure 1. Estimated kernels of the process-convolution model for the Piazza Road
data. Solid ellipses represent the kernels at the sampling sites and dotted ellipses the
extension to a regular grid according to the random �eld prior model. The images show
the corresponding posterior mean estimates for the dioxin concentrations. This �gure was
provided by Jenise Swall.

where � (x; t) is the mean �eld, �(x) is a smooth function representing

spatial variance, and Et (x) is a zero mean, variance one, second{order con-

tinuous spatial Gaussian process, i.e. cov (Et (x) ; Et (y)) ! 1 as x ! y.

" (x; t) represents measurement error and/or very short scale spatial struc-

ture which is assumed Gaussian and independent of Et.

The correlation structure of the spatial process is expressed as a function

of Euclidean distances between site locations after a bijective transforma-

tion of the geographic coordinate system,

cor (Et (x) ; Et (y)) = �� (kf (x)� f (y)k) ; (13)

where f (�) is the 1:1 transformation that expresses the spatial nonstation-

arity and anisotropy, and �� belongs to a parametric family with unknown

parameters �.

For mappings from R2 to R2, the geographic coordinate system has

been called the \G-plane" and the space representing the images of these
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coordinates under the mapping the \D-plane." Perrin and Meiring (1999)

prove that this spatial deformation model is identi�able for mappings from

Rk to Rk assuming only di�erentiability of the isotropic correlation function

��(). Perrin and Senoussi (1998) derive analytic forms for the mappings f (�)

under di�erentiability assumptions on the correlation structure for both

the model considered here, where ��() is considered to be a stationary and

isotropic correlation function (\stationary and isotropic reducibility"), and

for the case where this correlation function is stationary but not necessarily

isotropic (\stationary reducibility").

Mardia and Goodall (1992) were the �rst to propose likelihood estima-

tion and an extension to modeling of multivariate spatial �elds (multiple

air quality parameters) assuming a Kronecker structure for the space �

parameter covariance structure. Likelihood estimation and an alternative

radial basis function approach to representation of spatial deformations was

proposed by Richard Smith in an unpublished report in 1996.

Meiring et al. (1997) �t the spatial deformation model to the empirically

observed correlations among a set of monitoring sites by numerical opti-

mization of a weighted least squares criterion constrained by a smoothness

penalty on the deformation computed as a thin-plate spline. The problem is

formulated so that the optimization is with respect to the parameters � of

the isotropic correlation model and the coordinates of the monitoring sites,

�i = f (xi), in the deformation of the coordinate system. This is a large and

often diÆcult optimization problem. It becomes excessively taxing when

uncertainty in the estimated model is assessed by resampling methods or

cross-validation.

Iovle� and Perrin (2000) implemented a simulated annealing algorithm

for �tting the spatial deformation model by optimization, with respect to

correlation function parameters � and D-plane coordinates of the moni-

toring sites, �i = f (xi), of a least squares criterion of goodness-of-�t to

an empirical sample covariance matrix. Rather than impose an analytic

smoothness constraint on the mapping (such as the thin-plate spline-based

bending energy penalty of Meiring et al. 1997) they use a Delaunay tri-

angulation of the monitoring sites to impose constraints on the random

perturbations of the D- plane coordinates �i that guarantee that the result-

ing mapping f(xi) is indeed bijective; i.e., that it does not \fold." Using

any of the other methods discussed here, the achievement of bijective map-

pings has relied on appropriate tuning of a smoothness penalty or prior

probability model for the family of deformations.

Damian et al. (2000) and Schmidt and O'Hagan (2000) have recently,

and independently, proposed similar Bayesian modeling approaches for in-

ference about this type of spatial deformation model and for subsequent

spatial estimation accounting for uncertainty in the estimation of the spatial
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deformation model underlying the spatial covariance structure. We present

here details of the model of Damian et al. (2000).

For a Gaussian process with constant mean, � (x; t) � �, and assuming

a 
at prior for �, the likelihood for the covariance matrix� has the Wishart

form

L (fzitj�g) = j2��j�(T�1)/2 exp

�
�

T

2
tr��1S

�
(14)

where S is the sample covariance with elements,

sij =
1

T

TX
t=1

(zit � �zi) (zjt � �zj) (15)

and the true covariance matrix is parameterized as � = �(�; �i; �i), with

�ij = (�i�j)
1/2 �� (k�i � �jk), and �i = f (xi). The parameters to be esti-

mated are: f�; �i; �i; i = 1; : : : ; Ng.

The Bayesian approach requires a prior on all of these parameters. The

novel and challenging aspect of the problem concerns the prior for the

spatial con�guration of the �i. Writing the matrix � = [�1; : : : ; �N ]
0 =�

�1 �2

�
, Damian et al. (2000) use a prior of the form

� (�) / exp

�
�

1

2�2
�
(�1 �X1)

0K(�1 �X1) + (�2 �X2)
0K(�2 �X2)

��
;

(16)

where K is a function of the geographic coordinates only|the \bending

energy matrix" of a thin-plate spline (see Bookstein 1989)|and � is a scale

parameter penalizing \non-smoothness" of the transformation f . Mardia,

Kent, and Walder (1991) �rst used a prior of this form in the context of

a deformable template problem in image analysis. It should be noted that

the bending energy matrix K is of rank n� 3 and the quadratic forms in

the exponent of this prior are zero for all aÆne transformation, so that the

prior is 
at over the space of all aÆne deformations and is thus improper.

K is consistent with the generalized covariance structure of an intrinsic

random function corresponding to a thin-plate spline (Kent and Mardia,

1994).

The parameter space is high-dimensional and the posterior distribu-

tions are not of closed form. Therefore a Metropolis Hastings algorithm

was implemented to sample from the posterior. See Damian et al. (2000)

for details of the MCMC estimation scheme. Once estimates for the new

locations have been obtained, the transformation is extrapolated to the

whole area of interest using a pair of thin-plate splines.

Damian et al. (2000) present an analysis of time series of 10-day aggre-

gated rainfall data at 39 sites in the Languedoc-Roussillon region of south-

ern France, data also analyzed by Meiring et al. (1997). Figure 2 presents
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one illustration from a reanalysis of a subset of 36 monitoring sites for which

di�erences in site variances are modest, permitting a model with constant

variance, �(x) � �. The processes governing variation and covariation in

measured rainfall are presumably in
uenced by the Pyrenn�ees mountains

to the extreme south-west, the Cevennes mountain range running parallel

to the north-west boundary of the region, the Rhone valley to the east,

and the Mediterranean border to the south-east. The �gure derives from a

subsample of 250 out of 125,000 realizations from the Metropolis-Hastings

generated Markov chain (after convergence) representing the posterior dis-

tribution of D-plane coordinates �i for the monitoring sites under the model

described above. Figure 2(b) depicts the mean coordinates of this poste-

rior distribution of the �i, with a thin-plate spline interpolation used to

map the square grid drawn in Figure 2(a). The thin-plate spline provides,

in fact, the Bayes estimates of D-plane coordinates for unmonitored sites.

Circular 0.90 equal-correlation contours centered on sites 38, 59, 61, and

74 are back-transformed into the contours shown in 1(a). These illustrate

the fundamental notion of nonstationarity in spatial covariance structure

with, in this case, strong anisotropy in the northeast-southwest direction

parallel to the limit of the Cevennes mountain range, and relatively strong

spatial correlation indicated by the contraction in the region just west of

the mouth of the Rhone river.
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Figure 2. (a) Geographic map of 36 rainfall monitoring sites in the Languedoc-Roussillon
region of southern France with 0.90 correlation contours around sites numbered 38, 59,
61, and 74, respectively, according to the estimated posterior mean deformation model
depicted in 1(b). See text for explanation of geographic reference points. (b) Mean of
250 Markov chain Monte Carlo samples from the posterior distribution of the D-plane
coordinates of the 36 monitoring sites in 2(a). The deformed grid represents a thin-plate
spline interpolation mapping the square grid drawn on 2(a). The circles represent 0.90
correlation contours centered at sites 38, 59, 61, and 74, respectively.
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For evaluation purposes, the model was re�tted using only 22 of the

36 sites, the remaining 12 sites being used to assess the predictions of the

time series of 108 (log-transformed) 10-day aggregate rainfall observations.

Figure 3 illustrates performance of the method at two of the 12 sites, one in

the northeast region (3(a, c)) and one in the lower central region along the

Mediterranean coast (3(b, d)). In the northeast part of the region, where

spatial correlation is higher and the monitoring sites more dense, there is

less uncertainty in the posterior D-plane location of the monitoring site

(3(a) vs. 3(b)). The point predictions are, as expected, more accurate (3(c)

vs. 3(d)). The scatters show that the log-transformed rainfall are not truly

Gaussian and, correspondingly, there is systematic error in prediction of

zero rainfall observations.
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Figure 3. (a,b): scatters of a sample of 250 D-plane locations (relative to a Procrustes
superposition of the D-plane con�gurations on the geographic map) from the posterior
distribution for two monitoring sites not used in �tting the deformation model. The \O"
in panel (b) indicates the original G-plane location of the second site. The scatter in panel
(a) covers the original G-plane location of the �rst site. (c,d): corresponding scatter plots
of observed versus posterior mean predictions of log-rainfall observations at these two
sites.
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Schmidt and O'Hagan (2000) work with the same Gaussian likelihood,

but use a general Gaussian process prior for the deformation. The e�ect of

this is mainly to replace K with a full rank covariance matrix in the prior

�(�) for the D-plane coordinates. Schmidt and O'Hagan (2000) also di�er

from Damian et al. (2000) in their choice of parametric isotropic correlation

models and in many of the details of the MCMC estimation scheme, but

they are otherwise similarly designed methods.

6. DISCUSSION

Although this review covers a substantial literature, the recent methodolo-

gies are still not mature in that a number of questions of practical impor-

tance remain to be addressed adequately through analysis and application.

Most of the literature reviewed above addresses the application of the �tted

spatial covariance models to problems of spatial estimation such as kriging.

The Bayesian methods (Higdon et al. (1999); Fuentes (2000); Damian et

al. (2000); Schmidt and O'Hagan (2000)) all propose to account for the

uncertainty in the estimation of the spatial covariance structure, but the

practical e�ects of this uncertainty have not yet been demonstrated. The

details of the MCMC estimation are of similar computational magnitude,

the process-convolution approach putting a spatial random �eld prior on

two parameters (ellipse foci) per monitoring site, and the spatial deforma-

tion approach requiring a random �eld prior on essentially two parameters

(D-plane coordinates) per monitoring site. In principle, the spatial defor-

mation model may also be applied to purely spatial problems as was the

process-convolution model. There remains a need for further development of

diagnostic methods and experience in diagnosing the �t of these alternative

models. In particular, the nature of the nonstationarity, or equivalently, the

speci�cation or estimation of the appropriate degree of spatial smoothness

in these models expressed in prior distributions or regularization parame-

ters, needs further work. For the Bayesian methods this translates into a

need for further understanding and/or calibration of prior distributions.

This article has focused on essentially nonparametric approaches to the

modeling of nonstationary spatial covariance structure. Some parametric

models have also been introduced. These include parametric approaches

to the spatial deformation model, including Perrin and Monestiez' (1998)

parametric radial basis function approach to the representation of 2D de-

formations, and Das' (2000) development of deformation models for the

covariance structure of atmospheric processes de�ned on the sphere. In ad-

dition, parametric models appropriate for the characterization of certain

point source e�ects have been introduced by Hughes-Oliver and colleagues

(Hughes-Oliver et al. 1998, Hughes-Oliver and Gonzalez-Faria 1999).
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