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Abstract

Geostatistical approaches to spatio-temporal prediction in environmental science, climatol-

ogy, meteorology, and related �elds rely on appropriate covariance models. This paper proposes

general classes of nonseparable, stationary covariance functions for spatio-temporal random

processes. The constructions are directly in the space-time domain and do not require Fourier

inversion. The model parameters can be associated with the data's spatial and temporal struc-

tures, respectively; and a covariance model with a readily interpretable space-time interaction

parameter is �tted to wind data from Ireland.

Keywords: Completely monotone; Correlation function; Geostatistics; Kriging; Positive def-

inite; Separable; Spatio-temporal.

1 Introduction

Random process models for space-time data play increasingly important roles in various scienti�c
disciplines; among them are environmental science, agriculture, climatology, meteorology, and hy-
drology. In the statistical literature, the recent works of Handcock and Wallis (1994), S�lna and
Switzer (1996), Kyriakidis and Journel (1999), Christakos (2000), Christakos, Hristopulos, and Bo-
gaert (2000), Brown, Diggle, Lord, and Young (2001), and Chil�es, Bourgine, and Watremez (2001),
among others, point at the signi�cance of the approach. To �x the idea, we consider the random
process model

Z(s; t); (s; t) 2 Rd� R ;

for a real-valued variable observed at the space-time coordinates (s1; t1); : : : ; (sk; tk). The spatio-
temporal variable might stand for atmospheric pollutant concentrations, soil parameters, temper-
ature, or wind speed, to name but a few applications. More often than not, Z(s; t) will denote a
transformed variable or a residual �eld, rather than the original variable. We refer to Kyriakidis
and Journel (1999) for a comprehensive review and bibliography.

A statistical analysis typically aims at the optimal prediction of an unobserved part of the space-
time process. Assuming that Z(s; t) has �nite variance at all space-time coordinates (s; t) 2 Rd�R,
the mean function �(s; t) = E(Z(s; t)) and the covariance between Z(s; t) and Z(s+h; t+u) exist.
The kriging predictor of Z(s0; t0) is the linear combination

Z�(s0; t0) = �(s0; t0) +

kX
i=1

ai

�
Z(si; ti)� �(si; ti)

�
(1)

of the observations which minimizes the mean squared prediction error (Cressie 1993; Cressie and
Huang 1999). The covariance structure of the spatio-temporal process Z(s; t) determines the weights
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a1; : : : ; ak of the individual observations in the predictor. It is then frequently assumed that the
covariance structure is stationary in space and time, so that the covariance

Cov
�
Z(s; t); Z(s+ h; t+ u)

�
= C(h;u); (h;u) 2 Rd� R;

depends on the space-time lag (h;u) only. The function C(h;u) is called the covariance function of
the process, and its restrictions C(h; 0) and C(0;u) are purely spatial and purely temporal covariance
functions, respectively. The assumption of stationarity in space and time needs to be assessed from
case to case. For instance, Rodriguez-Iturbe, Marani, D'Odorico, and Rinaldo (1998, p. 3462) call
stationarity \an important but reasonable hypothesis in the case of rainfall," whereas Guttorp,
Meiring, and Sampson (1997, pp. 407{408) dispute the assumption of temporal stationarity for the
ozone-level data of Carroll et al. (1997). Spatial nonstationarity can often be dealt with by the
space deformation approach of Sampson and Guttorp (1992), and we refer to Sampson, Damian,
and Guttorp (2001) for recent developments and applications.

Under the assumption of stationarity, the kriging predictor (1) has variance

Var
�
Z�(s0; t0)

�
=

kX
i=1

kX
j=1

aiaj C(si�sj ; ti�tj) � 0: (2)

This points at a fundamental requirement for any covariance function: given any �nite system of
space-time coordinates (s1; t1); : : : ; (sk; tk) 2 R

d�R and coeÆcients a1; : : : ; ak 2 R, the double sum
in (2) must be nonnegative. The property is called positive de�niteness, and it is a necessary and
suÆcient condition for a covariance function. The celebrated theorem of Bochner (1955, p. 58) states
that a continuous function is positive de�nite if and only if it is the Fourier transform of a �nite,
nonnegative measure.

To ensure that a valid covariance model is �tted to the data, one usually considers a parametric
family whose members are known to be positive de�nite functions. Previous space-time models of
this form involve various separability assumptions with undesirable properties. For example, the
space-time covariance function might decompose into the sum or the product of a purely spatial and
a purely temporal covariance function. Functions of this type do not allow for space-time interaction.
We point to Kyriakidis and Journel (1999, pp. 664{666) or Cressie and Huang (1999, p. 1331) for a
more detailed discussion of the shortcomings of separable models. Alternatively, if k � k denotes the
Euclidean norm, models of the form

C(h;u) = '
�
a21khk

2 + a22juj
2
�

have been �tted. Here, a1 and a2 are geometric anisotropy factors between the space and time
dimensions, and the covariance function is constrained to the same form in space and time. Cressie
and Huang (1999) introduced classes of nonseparable, stationary covariance functions that allow for
space-time interaction. Their approach is novel and powerful, but depends on Fourier transform
pairs in R

d. In other words, it is restricted to a comparably small class of functions for which a
closed form solution to the d-variate Fourier integral is known.

In this paper we take up the approach of Cressie and Huang (1999), but avoid the aforementioned
limitation, and provide very general classes of valid space-time covariance models. Section 2 reviews
a necessary and suÆcient condition for positive de�niteness, and Section 3 gives a suÆcient condition
which does not rely on Fourier transforms. Speci�cally, let '(t), t � 0, be any completely monotone
function, such as those given in Table 1; let  (t), t � 0, be any positive function with a completely
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Table 1: Some completely monotone functions '(t), t � 0.

Functiona;b Parameters
'(t) = exp(�ct
) c > 0; 0 < 
 � 1
'(t) = (2��1�(�))�1 (ct1=2)�K�(ct

1=2) c > 0; � > 0
'(t) = (1 + ct
)�� c > 0; 0 < 
 � 1; � > 0
'(t) = 2�(exp(ct1=2) + exp(�ct1=2))�� c > 0; � > 0
a See Gneiting (1997) and the references therein for proofs of the complete

monotonicity. The functions have been standardized so that '(0) = 1.
b K� denotes a modi�ed Bessel function of the second kind of order �

(see Abramowitz and Stegun 1972, pp. 374 �.).

Table 2: Some positive functions  (t), t � 0, with a completely monotone derivative.

Functiona Parameters

 (t) = (at� + 1)� a > 0; 0 < � � 1; 0 � � � 1
 (t) = ln(at� + b)= ln(b) a > 0; b > 1; 0 < � � 1
 (t) = (at� + b)=(b(at� + 1)) a > 0; 0 < b � 1; 0 < � � 1

a The functions have been standardized so that  (0) = 1.

monotone derivative, such as those given in Table 2; and let �2 > 0. Then

C(h;u) =
�2

 (juj2)d=2
'

�
khk2

 (juj2)

�
; (h;u) 2 Rd� R ; (3)

is a valid space-time covariance function. For instance, if we choose the �rst entry in Table 1 and
the �rst function in Table 2, then (3) provides the family

C(h;u) =
�2

(ajuj2�+1)�d=2
exp

�
�

ckhk2


(ajuj2�+1)�


�
; (h;u) 2 Rd� R ; (4)

of space-time covariance functions, where a and c are nonnegative scaling parameters of time and
space, respectively. The smoothness parameters � and 
 take values in (0; 1], and �2 is the variance
of the spatio-temporal process. Figure 1 illustrates the covariance function (4) for various values of
� and 
, where d = 2, a = 1, c = 1, � = 1, and �2 = 1.

In Section 4 we use the Irish wind data of Haslett and Raftery (1989) in order to illustrate
strategies for physically meaningful choices of '(t) and  (t) functions in a given situation. Though
the model (3) is in general nonseparable, we can associate '(t) and  (t) with the data's spatial
structure and temporal structure, respectively. We develop a correlation model which derives from
(4) and a nugget e�ect,

C(h;u j�) =

8<:
�
0:901juj1:544 + 1

��1
; if h = 0;

0:968
�
0:901juj1:544 + 1

��1
exp

�
�

0:00134khk

(0:901juj1:544 + 1)�=2

�
; otherwise;

and depends on a readily interpretable space-time interaction parameter � 2 [0; 1]. The case � = 0
corresponds to a separable model, in which the spatial correlations at di�erent temporal lags u
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Figure 1: Contour plots of the space-time covariance function (13) versus the modulus of the spatial
lag, khk, and the temporal lag, juj. The functions attain their maximum, C(0; 0) = 1, at the origin,
and the contour lines are equidistant at 0:95; 0:9; : : : ; 0:05. Upper left: � = 1=2, 
 = 1=2. Upper
right: � = 1=2, 
 = 1. Lower left: � = 1, 
 = 1=2. Lower right: � = 1, 
 = 1.

are proportional to each other. As � increases, space-time interaction strengthens, and the spatial
correlations at nonzero temporal lags fall o� less and less rapidly. The weighted least squares estimate
�̂ = 0:61 for the Irish wind data falls well into the nonseparable range.

Section 5 returns to the theoretical discussion. We apply the criterion of Section 2 to space-time
covariance models proposed by Carroll et al. (1997) and Cressie and Huang (1999), and it will be
seen that some of these are not valid covariance functions. The paper closes with a discussion of
challenges in geostatistical space-time analysis in Section 6. We take another look at the Irish wind
data and address the modeling of covariance structures which are not fully symmetric, the latter
meaning that

C(h;u) = C(�h;u) = C(h;�u) = C(�h;�u); (h;u) 2 Rd� R: (5)

The assumption (5) of full symmetry is often violated when environmental, atmospheric, or oceano-
graphic data are in
uenced by dynamic processes such as prevailing winds or ocean currents. In
this type of situation, physically meaningful covariance models derive from the general idea of a
Lagrangian reference frame, which can be thought of as attached to and moving with the center of
an air or water mass.
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2 A Criterion for Positive De�niteness

In this section, we discuss conditions for the validity of space-time covariance functions. The terms
valid covariance model, covariance function, stationary covariance function, and positive de�nite

function will be used interchangeably. From a mathematical perspective, there is no distinction
between the space-time domain R

d� R and the purely spatial domain R
d+1. In other words, the

class of space-time covariance functions in R
d � R coincides with the class of spatial covariance

functions in R
d+1. Thus, the fundamental physical di�erence between space and time dimensions

needs to be acknowledged through our notation and through the speci�c constructions below.
The well-known theorem of Bochner (1955, p. 58) states that a continuous function C on Rd�R

is positive de�nite if and only if it is of the form

C(h;u) =

Z Z
ei!

0h+i�u dF (!; �); (h;u) 2 Rd� R ; (6)

with a spectral distribution function F . In other words, F is the distribution function of a nonneg-
ative, �nite measure on Rd� R. An immediate consequence of the representation is the inequality

jC(h;u)j � C(0; 0); (h;u) 2 Rd� R; (7)

and we will frequently return to (7) and its analogue for purely spatial or purely temporal covariance
functions,

jC(h)j � C(0); h 2 Rd: (8)

If C(h;u) is integrable, the spectral distribution function F is absolutely continuous, and Bochner's
representation (6) simpli�es to

C(h;u) =

Z Z
ei!

0h+i�u f(!; �) d! d�; (h;u) 2 Rd� R ;

where f is a continuous, nonnegative, and integrable function. The covariance function C and the
spectral density function f then form a Fourier transform pair, and

f(!; �) = (2�)�d�1
Z Z

e�ih
0

!�iu� C(h;u) dh du:

The following criterion is based on these results and Fubini's theorem. It is due to Cressie and
Huang (1999), where it is given in a slightly di�erent but equivalent form.

Criterion 1 (Cressie and Huang). A continuous, bounded, symmetric, and integrable func-
tion C(h;u), de�ned on Rd� R, is a space-time covariance function if and only if

C!(u) =

Z
e�ih

0

! C(h;u) dh; u 2 R;

is a covariance function for almost all ! 2 Rd.

The proof of a generalized version of Criterion 1 is given in the appendix. Integrability is not
an overly restrictive assumption, since a continuous, bounded, and symmetric function C(h;u) is
positive de�nite if and only if, for every a > 0 and b > 0, the integrable function exp(�akhk �
bjuj)C(h;u) is positive de�nite. If the assumption (5) of full symmetry holds, then all the functions
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C!(u) are real-valued and symmetric. The criterion remains valid for symmetric but not necessarily
fully symmetric functions, although C!(u) will be complex-valued for some, or all, ! 2 Rd.

Cressie and Huang (1999) used Criterion 1 to construct valid space-time covariance functions
through analytic Fourier inversion of C!(u) with respect to ! 2 R

d. In the following section, we
give a Fourier-free criterion which is based on their approach; and in Section 5 we use Criterion 1
to disprove the validity of previously proposed space-time models.

3 Direct Constructions in the Space-Time Domain

This section provides a simple suÆcient condition for positive de�niteness in Rd� R. The criterion
allows us to construct parametric families of spatio-temporal covariance functions directly in the
space-time domain. Any appeal to Fourier analysis is avoided.

Recall that a continuous function '(t), de�ned for t > 0 or t � 0, is said to be completely

monotone if it possesses derivatives '(n) of all orders and

(�1)n'(n)(t) � 0; (t > 0; n = 0; 1; 2; : : :) :

From Bernstein's theorem (Feller 1966, p. 439), the general form of a completely monotone function
'(t), t > 0, is

'(t) =

Z
[0;1)

exp(�rt) dF (r); t > 0; (9)

where F is nondecreasing. Isotropic covariance functions and completely monotone functions are
closely related. Speci�cally, the isotropic function

C(h) = '
�
khk2

�
; h 2 Rd;

is a spatial covariance function for all dimensions d if and only if '(t), t � 0, is completely monotone
(Schoenberg 1938; Cressie 1993, p. 86). Table 1 gives some completely monotone functions, and the
�rst two entries lead to the powered exponential class,

C(h) = �2 exp
�
�ckhk2


�
;

and the Whittle-Mat�ern family,

C(h) = �2
21��

�(�)
(ckhk)

�
K�(ckhk); (10)

of isotropic covariance functions. Here, c is a nonnegative scaling parameter, 
 2 (0; 1] and � > 0
are smoothness parameters, and �2 is the variance of the process.

We can now formulate our key result. Its proof is based on Criterion 1 and deferred to the
appendix.

Criterion 2. Let '(t), t � 0, be a completely monotone function, and let  (t), t � 0, be a
positive function with a completely monotone derivative. Then

C(h;u) =
�2

 (juj2)d=2
'

�
khk2

 (juj2)

�
; (h;u) 2 Rd� R ; (11)

is a space-time covariance function.
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All the examples of Cressie and Huang (1999) can be written in the form (11), except for the
case c < 1 in their Example 7, and their Examples 5 and 6 which are shown to be wrong in Section
5 below. Though the models are nonseparable in general, we can associate '(t) and  (t) with the
data's spatial and temporal structure, respectively. Table 1 provides a range of possible choices of
completely monotone functions '(t). Further examples and a discussion of the associated spatial
covariance functions can be found in Gneiting (1999). The entries in Table 2 are obviously positive
functions with a completely monotone derivative if � = 1. If � 2 (0; 1], the complete monotonicity
of the derivative follows from the chain rule for di�erentiation together with two criteria of Feller
(1966, p. 441).

The following examples illustrate the breadth and simplicity of our approach. Strategies for
selecting appropriate '(t) and  (t) functions in order to construct a meaningful parametric family
for a given situation will be discussed in Section 4.

Example 1. Putting '(t) = exp(�ct
) and  (t) = (at� + 1)� in (11) leads to the previ-
ously introduced parametric family (4). The product with the purely temporal covariance function
(ajuj2�+1)�Æ, u 2 R, then gives the class

C(h;u) =
�2

(ajuj2�+1)Æ+�d=2
exp

�
�

ckhk2


(ajuj2�+1)�


�
; (h;u) 2 Rd� R ; (12)

where a and c are nonnegative scaling parameters of time and space, respectively; the smoothness
parameter � and 
 take values in (0; 1]; � 2 [0; 1], Æ � 0, and �2 > 0. A separable covariance function
is obtained when � = 0. In practice, parameter values will frequently be �xed. For instance, Figure
1 illustrates members of the class

C(h;u) =
�
juj2�+1

��1
exp

�
�

khk2


(juj2�+1)


�
; (h;u) 2 R2� R ; (13)

to which the family (12) reduces when d = 2; a = 1, c = 1, � = 1, Æ = 0, and �2 = 1. The
parameters � 2 (0; 1] and 
 2 (0; 1] govern the smoothness of the purely temporal and purely
spatial covariance. Speci�cally, the spatial sections of the associated space-time process have fractal
(Hausdor�) dimension d�
, and the temporal sections have fractal dimension 1�� (see, for example,
Chapter 8 of Adler 1981).

In many instances, a reparameterization of (12) is useful. Speci�cally, replacing the exponent
Æ + �d=2 in (12) by � � �d=2 leads to the parametric family

C(h;u) =
�2

(ajuj2�+1)�
exp

�
�

ckhk2


(ajuj2�+1)�


�
; (h;u) 2 Rd� R : (14)

If we �x � � d=2, we obtain a parametric family C(h;u j�) with an easily interpretable space-time
interaction parameter � 2 [0; 1]. The purely spatial covariance function C(h; 0 j�) and the purely
temporal covariance function C(0;u j�) are independent of �. However, the case � = 0 corresponds
to a separable model, in which the spatial correlations for di�erent values of the temporal lag u are
proportional to each other. As � increases, space-time interaction strengthens, and the correlations
at nonzero temporal lags fall o� less and less rapidly, as compared to the separable model. Figure
2 illustrates the covariances structures associated with the extremal cases � = 0 and � = 1 in the
family

C(h;u j�) = (juj+ 1)
�1

exp

�
�

khk

(juj+ 1)�=2

�
; (h;u) 2 R2� R ; (15)
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Figure 2: The space-time covariance model (15) in the extremal cases � = 0 (separable case, left)
and � = 1 (right). The horizontal axis corresponds to oriented spatial distance along a line transect,
and the graphs represent C(h;u) with temporal lags u equal to 1, 2, 3, and 4 (from top to bottom).

to which (14) reduces when d = 2; a = 1, c = 1, � = 1=2, 
 = 1=2, � = 1, and �2 = 1. The e�ect of
the space-time interaction parameter � 2 [0; 1] is clearly visible.

Example 2. If we choose the second entry in Table 1 and the �rst entry in Table 2, Eq. (11)
leads to the parametric family

C(h;u) =
�2

2��1�(�) (ajuj2�+1)Æ+�d=2

�
ckhk

(ajuj2�+1)�=2

��
K�

�
ckhk

(ajuj2�+1)�=2

�
; (h;u) 2 Rd�R ;

(16)
of space-time covariance functions. Here a and c are nonnegative scaling parameters of time and
space, respectively; � 2 (0; 1] is the smoothness parameter of time, � > 0 is the smoothness param-
eter of space; � 2 [0; 1], Æ � 0, �2 > 0; and K� is the modi�ed Bessel function of the second kind of
order � (see, for example, Abramowitz and Stegun 1972, pp. 374�). The purely temporal covariance
is the corresponding limit as khk ! 0,

C(0;u) =
�2

(ajuj2�+1)Æ+�d=2
; u 2 R;

and the purely spatial covariance C(h; 0) is the Whittle-Mat�ern class (10). If � = 1=2 the space-time
covariance function (16) reduces to

C(h;u) =
�2

(ajuj2�+1)Æ+�d=2
exp

�
�

ckhk

(ajuj2�+1)�=2

�
;

which is the same as (12) with 
 = 1=2; and if � = 3=2 we get

C(h;u) =
�2

(ajuj2�+1)Æ+�d=2

�
1 +

ckhk

(ajuj2�+1)�=2

�
exp

�
�

ckhk

(ajuj2�+1)�=2

�
:

A separable covariance function is obtained when � = 0. Again, a subset of the parameters is usually
held �xed. Figure 3, for example, illustrates the e�ect of the parameters � 2 (0; 1] and � > 0 in the
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Figure 3: Contour plots of the space-time covariance function (17) versus the modulus of the spatial
lag, khk, and the temporal lag, juj. The functions attain their maximum, C(0; 0) = 1, at the origin,
and the contour lines are equidistant at 0:95; 0:9; : : : ; 0:05. Upper left: � = 1=2, � = 1=2. Upper
right: � = 1=2, � = 3=2. Lower left: � = 1, � = 1=2. Lower right: � = 1, � = 3=2.

family

C(h;u) =
1

2��1�(�) (juj2�+1)

�
khk

(juj2�+1)1=2

��
K�

�
khk

(juj2�+1)1=2

�
; (h;u) 2 R2� R ; (17)

to which the covariance model (16) reduces when d = 2; a = 1, c = 1, � = 1, Æ = 0, and �2 = 1.
Then � 2 (0; 1] is a temporal smoothness parameter, and the spatial smoothness parameter � > 0
governs the di�erentiability of the purely spatial covariance and spatial sections of the space-time
process. See Handcock and Wallis (1994) and Gneiting (1999) for further comments on the Whittle-
Mat�ern class. As in the previous example, replacing the exponent Æ+�d=2 by � � d=2 in (16) leads
to parametric covariance models with a meaningful and easily interpretable space-time interaction
parameter �.
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Table 3: The 11 synoptic meteorological stations in the Irish wind data set.

Stationa Latitudeb Longitudeb Elevationc Meand

Roche's Point 51 48' N 8 15' W 41 2.46
Valentia 51 56' N 10 15' W 14 2.26
Kilkenny 52 40' N 7 16' W 64 1.73
Shannon 52 42' N 8 55' W 20 2.25
Birr 53 05' N 7 53' W 72 1.82
Dublin 53 26' N 6 15' W 85 2.17
Mullingar 53 32' N 7 22' W 104 2.02
Claremorris 53 43' N 8 59' W 69 2.01
Clones 54 11' N 7 14' W 89 2.04
Belmullet 54 14' N 10 00' W 10 2.53
Malin Head 55 22' N 7 20' W 25 2.76

a Latitude, longitude, and elevation as posted by the Naval Atlantic Meteorology

& Oceanography Detachment at http://205.67.212.10/station.htm
b in degrees and minutes
c in meters
d mean of the square roots of daily mean wind speeds in meters per seconds

4 Irish Wind Data

This section illustrates strategies for selecting appropriate '(t) and  (t) functions in the general
model (11) in order to construct a physically meaningful, parametric family of space-time covariance
functions for a given situation.

We consider the Irish wind data of Haslett and Raftery (1989), which consist of daily averages of
wind speeds at 11 synoptic meteorological stations in Ireland during the period 1961{1978. The data
are available at Statlib, http://lib.stat.cmu.edu/datasets/. Following Haslett and Raftery (1989), we
take a square root transformation to stabilize the variance over both stations and time periods and
to make the marginal distributions approximately normal. Table 3 summarizes latitude, longitude,
elevation, and the mean of the square roots of daily average wind speeds for the 11 meteorological
stations. Generally, wind speeds decrease with distance from the coastline. Figure 4 shows time series
plots of the square roots of daily mean wind speeds at Kilkenny and Malin Head in 1961. Kilkenny
and Malin Head are the stations with the lowest and highest mean wind speeds, respectively. Spatial
and temporal dependencies are clearly recognizable. As in Haslett and Raftery (1989), we estimate
the seasonal e�ect by calculating the average of the square roots of the daily means over all years
and stations for each day of the year, and then regress the result on a set of annual harmonics.
Subtraction of the estimated seasonal e�ect and the estimated spatially varying mean, as given in
the right-hand column of Table 3, results in data hereinafter referred to as velocity measures. Haslett
and Raftery argue convincingly that a stationary model for the velocity measures is an appropriate
approximation. In their paper, the goal was estimation of the spatially varying mean at a new site,
where only a short run of data is available. This required a careful and innovative modeling of
temporal long-memory dependence, which was achieved through ARMA modelling and fractional
di�erencing.

Here, our goals in analyzing the velocity measures di�er. Long-memory e�ects are irrelevant
in short-term prediction problems, and we restrict our attention to the spatio-temporal covariance
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Figure 4: Time series plot of the square roots of daily mean wind speeds at Kilkenny (solid line)
and Malin Head (broken line) in 1961. Kilkenny and Malin Head are the stations with the lowest
and highest mean wind speeds, respectively.

structure for temporal lags up to 3 days, a range which is crucial in many environmental applications.
The correlations for the velocity measures fall o� rapidly in time, and a meaningful distinction
between separable and nonseparable covariance structures may not be feasible at higher lags. Figure
5 illustrates the empirical space-time correlations at temporal lags less than or equal to three days.
Raftery, Haslett, and McColl (1982) introduced this type of graph as a distance-time autocorrelation
plot. The upper left display shows the purely spatial correlations for the 55 pairs of meteorological
stations as a function of distance in km, along with the spatial correlation model �tted by Haslett
and Raftery (1989),

C(h; 0) =

�
1; if h = 0;
0:968 exp(�0:00134khk); otherwise;

(18)

where the usable range of spatial lags is khk � 450 km. This can be written as a convex combination
of a continuous, exponential model and a nugget e�ect,

C0(h) =

�
1; if h = 0:
0; otherwise:

The nugget e�ect allows for a discontinuity at the origin and corresponds to measurement error
and/or small scale spatial variability (see, for example, Cressie 1993, p. 58). For the Irish wind data,
either explanation is likely to apply, due to possible instrument variations and the highly irregular
nature of wind speeds.

For the purely temporal covariance structure, a continuous model with limited smoothness at
the origin is a physically reasonable compromise. On the one hand, wind speeds are highly irregular
and measurement error may be nonnegligible, suggesting the presence of a nugget e�ect. On the
other hand, the data were obtained by temporal aggregation of a continuous trace over 24 hours,
which tends to smooth out the discontinuities. Here we choose the correlation function

C(0;u) =
�
0:901juj1:544 + 1

��1
(19)

which �ts the empirical temporal correlations observed at the 11 stations well; these average to .526,
.267, and .179 at lags u equal to 1, 2, and 3 days, respectively. Evidently, a wide range of models
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Figure 5: Empirical space-time correlations for time lag 0 (upper left), 1 (upper right), 2 (lower
left), and 3 days (lower right) as a function of spatial distance in km. The solid lines illustrate the
extremal cases � = 0 (lower line) and � = 1 (upper line) for the covariance function (21).

of the form C(0;u) =
�
ajuj2� + 1

���
is physically justi�able and �ts the empirical correlations. We

choose (19) because it is easily embedded into a rich, parametric family which includes both separable
and nonseparable space-time covariance functions. Speci�cally, larger values of the parameter a in
(14) allow for stronger space-time interaction e�ects.

The product of the purely spatial correlation function (18) and the purely temporal correlation
function (19) is

C(h;u) =

( �
0:901juj1:544 + 1

��1
; if h = 0:

0:968
�
0:901juj1:544 + 1

��1
exp(�0:00134khk); otherwise:

(20)

The separable model (20) corresponds to the case � = 0 in the parametric family

C(h;u j�) =

8<:
�
0:901juj1:544 + 1

��1
; if h = 0;

0:968
�
0:901juj1:544 + 1

��1
exp

�
�

0:00134khk

(0:901juj1:544 + 1)�=2

�
; otherwise;

(21)
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where the usable range of space-time lags is given by khk � 450 km and juj � 3 days. Note that
(21) can be written as a convex combination of two permissible space-time covariance functions and
is therefore itself a permissible, positive de�nite function. The �rst component is the product of the
purely temporal covariance function (19) and a purely spatial nugget e�ect; the second component
is the continuous space-time covariance function (14) with d = 2; a = 0:901, c = 0:00134, � = 0:772,

 = 1=2, and � = 1. Evidently, (21) is a permissible covariance model in R

2 � R, although lags
larger than 450 km or 3 days will not be used in the �tting procedure and are not required in typical
prediction problems. Figure 5 illustrates the empirical spatio-temporal correlations along with the
extremal members of the family (21), corresponding to � = 0 and � = 1. The case � = 0 gives
a separable model, in which the spatial correlations for di�erent values of the temporal lag u are
proportional to each other. As � increases, correlations at nonzero temporal lags fall o� less and
less rapidly than under the separable model.

Similar to the technique proposed by Cressie (1993, p. 96) and Cressie and Huang (1999), we use
a weighted-least-squares method to estimate the space-time interaction parameter � by minimizing

W (�) =
X
i;j

3X
u=1

 bC(hij ;u)� C(hij ;u j�)

1� C(hij ;u j�)

!2
(22)

over � 2 [0; 1]. Here, hij is the spatial lag between stations i and j, bC(hij ;u) is the empirical
correlation between the velocity measures at stations i and j and temporal lag u, and the summation
is over all ordered pairs of meteorological stations. The weighted-least-squares estimate is �̂ = 0:61,
indicating a nonseparable covariance structure.

5 Previously Proposed Models

In this section, we apply Criterion 1 to covariance models proposed by Cressie and Huang (1999)
and Carroll et al. (1997).

Example 3. Cressie and Huang (1999) propose space-time covariance models of the form

C(h;u) = �2 exp
�
�aÆjujÆ � b2khk2 � cjujÆkhk2

�
(23)

where h is the spatial lag in Rd, u is the temporal lag, a and b are nonnegative scaling parameters,
c � 0 is a space-time interaction parameter, and �2 > 0. Examples 5 and 6 of Cressie and Huang
correspond to the speci�c choices Æ = 2 and Æ = 1, respectively. We consider the general case with
a positive shape parameter Æ. If c = 0, the model is separable, and it is valid if and only if Æ � 2
or a = 0. In the nonseparable case, c > 0, we proceed to prove that (23) is not a valid covariance
model for any Æ > 0. In particular, the graphs in Figure 3(b), (c), and (d) of Cressie and Huang
(1999) do not show space-time covariance functions.

We may assume that �2 = 1, and it suÆces to consider the case when h is scalar, because it
corresponds to the restriction of a space-time process in Rd� R to a space-time process in R � R.
By Criterion 1, (23) is a covariance function if and only if, for almost all ! 2 R,

C!(u) =

Z 1
�1

e�ih! C(h;u) dh

= �1=2
�
b2 + cjujÆ

��1=2
exp

�
�aÆjujÆ �

!
2

4(b2 + cjujÆ)

�
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is a covariance function. Straightforward calculations show that if c > 0 and !2 > 2b2(1+2aÆb2c�1),
then C!(u) has precisely three extremal points at u = 0 and u = �u0, where

uÆ0 =
!2 � 2b2

2c

if a = 0, and

uÆ0 =
1

4aÆc

��
c2 + 4aÆc!2

�1=2
�
�
c+ 4aÆb2

��
if a > 0. Since C!(u) is an even, continuous, and positive function with limu!�1 C!(u) = 0,
the extremal points at �u0 are maxima. Thus C!(�u0) > C!(0), contrary to inequality (8).
We conclude that (23) is not a valid space-time covariance function. The problem stems from an
erroneous claim of monotonicity and convexity for the function

�(!;u) =
c
d=2
0

(jujÆ + c0)d=2
exp

�
�

k!k2

4(jujÆ + c0)
+
k!k2

4c0

�
; u > 0;

in Cressie and Huang (1999, pp. 1333 and 1334).

Before proceeding, we note that Example 7 of Cressie and Huang (1999) involves a similar,
erroneous claim of convexity for the function

�(!;u) =
�
u2 + 1 + (u2 + c)k!k2

����d=2 �
1 + ck!k2

��+d=2
; u > 0:

However, it is easy to establish directly that if c � 0 and � > 0 then �(!;u) is a covariance function
in u 2 R, which is the desired conclusion. Thus, in this case the model proposed by Cressie and
Huang remains valid.

Example 4. Carroll et al. (1997) consider correlation models of the form

C(h;u) = exp
�
�a1juj � a2u

2
�
exp
�
(�b0 � b1juj � b2u

2)khk
�

(24)

for space-time data on ozone levels in Harris county, Texas. Here, h is the spatial lag in R
2, u is

the temporal lag, and a1, a2, b0, b1, and b2 are parameters to be �tted from the data. Concerns
about the validity of the model were raised in comments by Cressie (1997) and Guttorp, Meiring,
and Sampson (1997).

Inequality (7) supplies necessary conditions on the parameters, because it holds for the correlation
model (24) if and only if a1 � 0, a2 � 0, b0 � 0, b2 � 0, and b1 � �2 (b0b2)

1=2. The parameter
estimates in Table 1 of Carroll et al. (1997) satisfy these constraints except for the years 1981, 1982,
and 1987. The violations for 1981 and 1987 were noted in Cressie's comment and in the reply by
Carroll et al. (1997), respectively. We return to this point below. If the necessary conditions hold
and the inequalities are strict, then (24) is an integrable function and Criterion 1 applies. Thus,
(24) is a covariance function if and only if, for every ! 2 R2,

C!(u) =

Z
e�ih

0

! C(h;u) dh

= 2�

�
1 +

k!k2

(b0 + b1juj+ b2u2)2

��3=2�
b0 + b1juj+ b2u

2
��2

exp
�
�a1juj � a2u

2
�

is a covariance function in u 2 R. The parameter estimates for 1980 in Table 1 of Carroll et
al. (1997) are a1 = :1608, a2 = :0051, b0 = 1:8354, b1 = �:2942, and b2 = :0205, and satisfy the
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aforementioned necessary conditions. It is easily veri�ed that for the �tted values of the parameters,
and in a neighborhood of k!k = 1, C!(u) is not a covariance function, because inequality (8) is
violated. Thus, the �tted correlation model is not positive de�nite on the space-time domain R2�R.

Two observations are relevant here. First, Carroll et al. (1997) do not �t the correlation model
(24) itself, but a convex combination of the continuous covariance function (24) and a nugget e�ect.
A fundamental decomposition theorem for positive de�nite functions (Sasv�ari 1994, Theorem 3.1.2)
implies that any practically relevant covariance function on the Euclidean space Rd � R can be
written as a convex combination of a valid continuous covariance and a nugget e�ect. In particular,
the sum of a continuous function and a nugget e�ect is positive de�nite if and only if the continuous
part is such.

Our second observation continues the discussion on the paper by Carroll et al. (1997). In their
reply, the authors point out that the covariance model is not �tted over Rd�R, but over a bounded
domain S�T , where S � R

2 corresponds to the spatial lags in Harris county, Texas, and T � R is a
bounded and discrete set of temporal lags. Carroll et al. (1997, p. 415) wonder whether the covariance
model \is positive de�nite over the usable range of distances and time lags." The question relates to
extension problems for positive de�nite functions, which are discussed in Chapter 4 of Sasv�ari (1994).
Nonetheless, results are sparse and not readily applicable, unless the covariance model is isotropic
(Gneiting and Sasv�ari 1999) or the usable range of space-time lags is purely discrete. Otherwise,
the only approach to ensure that a valid space-time covariance is �tted, is to use known classes of
positive de�nite functions in Rd� R and restrict these to the spatio-temporal lags of interest. We
saw an example of such a strategy in Section 4, when �tting the parametric model (21) to the Irish
wind data of Haslett and Raftery (1989).

6 Discussion

Until recently, valid space-time covariance models were mostly subject to separability assumptions
or constrained to the same parametric form in space and time. Cressie and Huang (1999) introduced
general classes of nonseparable, stationary covariance functions that allow for space-time interaction
and include separable models as a special case. The present work provides a Fourier-free implementa-
tion of their approach and enlarges the class of valid space-time covariance functions at the modeler's
disposal. Our constructions provide 
exible models in closed form and with parameters which have
clear-cut interpretations. Using the Irish wind data in Section 4 as an example, we showed how
to develop covariance models with a readily interpretable space-time interaction parameter. We
identi�ed and estimated a nonseparable covariance structure, in which the spatial correlations at
nonzero temporal lags decay slower than would be expected under a separable model.

Physically based approaches might be crucial for further progress in geostatistical space-time
analysis. Christakos (2000, p. 18), for example, argues that \in modern spatiotemporal geostatistics,
the rational approach for choosing the appropriate model from the data is by means of a theory
that represents the physical knowledge available. . . " Dynamic geophysical processes such as wind
patterns or ocean currents play key roles here.

To illustrate this type of situation, we return to the discussion in Section 4 and to the Irish wind
data of Haslett and Raftery (1989). To �x the idea, we consider the correlation coeÆcients between
the velocity measures at Kilkenny and Shannon, and Clones and Belmullet, respectively. For these
pairs, either station has basically the same latitude (see Table 3), so that the north-south component
of the spatial separation vector is negligible. The empirical correlations between the western station
at a given day and the eastern station one day later are .53 and .52, respectively. However, the
correlations between the western station at a given day and the eastern station one day earlier are
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.42 and .40, respectively. The deviation from the fully symmetric assumption (5) is not surprising.
Winds over Ireland are predominantly westerly, so that velocity measures propagate from west to
east. Similar features might well occur in other geophysical or environmental data sets, such as
wind speeds over the tropical western Paci�c Ocean, as analyzed by Cressie and Huang (1999), or
atmospheric pollutant in the Milan district, Italy, as recently modeled by De Cesare, Myers, and
Posa (2001).

The covariance models proposed by Cressie and Huang (1999) and in the present paper cannot
capture features of this type, since they are fully symmetric as de�ned in (5). The recent approach
of Brown, K�aresen, Roberts, and Tonellato (2000) allows for covariance structures which are not
fully symmetric, but the resulting covariance models do not have closed form expressions, and it is
not obvious how to proceed in a given situation. Another approach to model dynamic environmental
and atmospheric processes builds on the general idea of a Lagrangian reference frame, which can
be thought of as attached to and moving with the center of an air or water mass. Lagrangian
covariance structures have indeed been discussed in the meteorological and hydrological literature,
and we refer to Cox and Isham (1988), Bouttier (1993), Desroziers and Lafore (1993), Fischer, Joly,
and Lalaurette (1998), and May and Julien (1998), among others. Cox and Isham (1988) show that
if V is a random vector in R

2, and G(r) denotes the area of intersection of two disks of common
unit radius whose centers are a distance r apart, then

C(h;u) = EVG(kh�Vuk); (h;u) 2 R2� R ; (25)

is a valid space-time covariance function. Evidently, (25) is in general not fully symmetric. This
model is easily extended to the Euclidean space Rd and general functions G, of which Christakos
(2000, p. 227) gives further examples. Conceptually, we think of (25) as the covariance function of
a spatio-temporal random �eld, in which �xed air masses move with random velocity V . Convex
combinations of fully symmetric space-time covariance models and models of the form (25) might
well provide improved �ts and improved prediction skill for atmospheric and environmental space-
time datasets. The general idea is to perturb a fully symmetric model, say of the form (11), so that
the dynamic features are captured, too. For the speci�cation of the random velocity V , various
choices are physically reasonable. The simplest case is a constant V = v, which represents the mean
wind vector as determined from synoptic or local wind patterns, such as a westerly wind in the case
of Ireland. Research along these lines is presently under development, and we hope to report on the
details elsewhere. Well-founded strategies for spatio-temporal modeling remain in great demand.

Appendix

In this appendix, we state and prove generalized versions of Criterion 1 and Criterion 2, which
apply to covariance functions de�ned on the Euclidean space Rk� R

l. We do so because the proofs
are identical to those in the special case when k = d and l = 1, and because the generalizations
might lead to further applications. For instance, a promising approach to the statistical analysis
of deterministic simulation experiments (Sacks, Welch, Mitchell, and Wynn 1989; Currin, Mitchell,
Morris, and Ylvisaker 1991) relies on analytical covariance models in R

n where n, the number of
parameters in a simulation experiment, is often large. In this situation, the parameter set might split
into two groups of size k and l, respectively, calling for a covariance model in Rk � R

l. Returning
to space-time problems, we see from Eq. (28) with k = 1 and l = d that under the conditions of
Criterion 2

C(h;u) =
�2

 (khk2)1=2
'

�
juj2

 (khk2)

�
; (h;u) 2 Rd� R ; (26)
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is a valid space-time covariance function. Note the symmetry between (11) and (26): now  (t) and
'(t) are associated the data's spatial structure and temporal structure, respectively.

Criterion 1 (generalized). A continuous, bounded, symmetric, and integrable function C(h;u),
de�ned on Rk� R

l, is a covariance function if and only if

C!(u) =

Z
e�ih

0

! C(h;u) dh; u 2 Rl; (27)

is a covariance function for almost all ! 2 Rk.

Proof. Notice that C(h;u) is square-integrable over Rk � R
l, and that its Fourier transform

f(!; � ) is a real-valued, continuous, and symmetric function. Furthermore, for all ! 2 R
k, C!(u)

is continuous and integrable, because C(h;u) is integrable and uniformly continuous on compact
sets, and ����Z C!(u) du���� � Z Z jC(h;u)j dh du <1:

From Bochner's theorem and Fourier inversion, C(h;u) is positive de�nite if and only if

f(!; � ) = (2�)�k�l
Z Z

e�ih
0

!�i� 0u C(h;u) dh du

= (2�)�k�l
Z
e�i�

0u C!(u) du

is nonnegative everywhere.
Now suppose that C!(u) is a covariance function for almost all ! 2 Rk. Since C!(u) is contin-

uous and integrable, we �nd that f(!; � ) � 0 almost everywhere on Rk� R
l. Thus, the continuous

function f(!; � ) is nonnegative everywhere. Conversely, if C(h;u) is a covariance function, then
f(!; � ) is nonnegative and integrable, by Bochner's theorem applied in Rk � R

l. By Fubini's the-
orem, f(!; � ) is also integrable as a function of � 2 R

l, for almost all ! 2 R
k. Thus, C!(u) is

a covariance function for almost all ! 2 R
k, by Bochner's theorem applied in R

l. The proof is
complete.

Criterion 2 (generalized). Let k and l be nonnegative integers, and let �2 > 0. Suppose that
'(t), t � 0, is a completely monotone function, and let  (t), t � 0, be a positive function with a
completely monotone derivative. Then

C(h;u) =
�2

 (kuk2)k=2
'

�
khk2

 (kuk2)

�
; (h;u) 2 Rk� R

l; (28)

is a covariance function.

Proof. We assume initially that the isotropic function '(khk2), h 2 Rk, is integrable. Then

C(h;u) = exp
�
�akuk2

� �2

 (kuk2)k=2
'

�
khk2

 (kuk2)

�
; (29)

which di�ers from (28) by the extra �rst factor, is integrable over (h;u) 2 R
k � R

l, for all a > 0.
We may apply Criterion 1, and (29) is a covariance function if and only if the associated function
(27) is a covariance function, for almost all ! 2 R

k. Notice that the nondecreasing function F in
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Bernstein's representation (9) for ' is bounded and continuous at zero, because ' is bounded and
limt!1 '(t) = 0 by the integrability assumption. From (9) and Fubini's theorem,

C!(u) =

Z
e�ih

0

! C(h;u) dh

= exp
�
�akuk2

� �2

 (kuk2)k=2

Z Z
(0;1)

e�ih
0

! exp

�
�

r

 (kuk2)
khk2

�
dF (r) dh

= �2�k=2 exp
�
�akuk2

� Z
(0;1)

exp

�
�
k!k2

4r
 
�
kuk2

�� 1

rk=2
dF (r):

Putting ! = 0 and u = 0, we see thatZ
(0;1)

1

rk=2
dF (r) =

1

�2�k=2
C0(0)

is �nite, because C0(u), u 2 R
l, is a continuous function. We may therefore write

C!(u) = '!
�
kuk2

�
; u 2 Rk;

where

'!(t) = �2�k=2 exp(�at)

Z
(0;1)

exp(�s  (t)) dG!(s); t � 0;

with a certain nondecreasing, bounded function G! . From Bernstein's theorem and the two criteria
for complete monotonicity on p. 441 of Feller (1966), '!(t), t � 0, is a completely monotone
function, for all ! 2 Rk. By Schoenberg's theorem (Schoenberg 1938; Cressie 1993, p. 86), C!(u) is
a covariance function for all ! 2 Rk. We conclude from Criterion 1 that (29) is a covariance function.
Now (29) converges to (28) as a! 0, and since limits of covariance functions are covariance functions,
(28) is a covariance function.

Another approximation argument is needed to dispose of our initial assumption of integrabil-
ity. Given a completely monotone function '(t), t � 0, and a positive number b, the product
exp(�bt)'(t), t � 0, is completely monotone, and exp(�bkh2k)'(kh2k) is integrable over h 2 Rk.
Thus,

C(h;u) =
�2

 (kuk2)k=2
exp

�
�

bkhk2

 (kuk2)

�
'

�
khk2

 (kuk2)

�
(30)

is a covariance function on Rk� R
l by the above. Since (28) is the limit of (30) as b! 0, the proof

is complete.
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