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Summary . This paper considers the spatio-temporal modelling of four pollutants measured daily at eight
monitoring sites in London over a four-year period. Such multiple pollutant datasets measured over time at
multiple sites within a region of interest are typical. Here, the modelling was carried out in order to provide
exposure for a study investigating the health effects of air pollution. Alternative objectives include the design
problem of the positioning of a new monitoring site, or for regulatory purposes in order to determine whether
environmental standards are being met. In general, analyses are hampered by missing data due, for example,
to a particular pollutant not being measured at a site, a monitor being inactive by design (for example, a six-
day monitoring schedule), or because of an unreliable or faulty monitor. Here, such data is modelled within
a dynamic linear modelling framework, in which the dependencies across time, space and pollutants are
exploited. Throughout the approach is Bayesian, with implementation via Markov Chain Monte Carlo.
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1. Introduction

Numerous epidemiological studies have studied the potential health effects of airbourne pollution, finding
consistent associations between daily levels of pollution and adverse health effects for both mortality and
morbidity. For summaries see Pope et al. (1995) and COMEAP (1995).

While the long-term (or chronic) effects of air pollution are also of interest, due to data availability,
the great majority of studies consider short-term, or acute, effects. Increases in adverse health events
are consistently reported, but it is unclear as to the actual pollutant(s) responsible, and the size of the
effect. In conducting such time series studies to investigate the relationship between air pollution and
a health outcome, for example, respiratory mortality, it is important to have a good measure of the
level of pollution on each of the study days. Often daily measurements are available from a number of
monitoring sites across the study area. Each of these monitors may measure different sets of pollutants,
there may be periods of missing data, and each of the recorded measurements is subject to error.

In studies investigating the health effects of daily changes in air pollution, the exposures are essentially
treated as constant across the study area. Many studies are carried out in urban areas where there
may be more than one monitoring site. In this case a daily average of readings from all sites is often
used (for example, Schwartz and Dockery (1992); Schwartz (1993)). The use of such an average, or the
readings from just one site, may be criticised on the grounds that pollution levels vary within an urban
environment. There may be spatial differences due, for example, to local traffic conditions and point
sources of pollution, and the ability of the pollutants to disperse because of the surrounding buildings.

In this paper a (hierarchical) dynamic linear model (DLM) is suggested for the analysis. Such DLMs
are described in, for example, Pole et al. (1994) and Gamerman and Migon (1993), who specifically
consider hierarchical DLMs. At stage one of this hierarchy, each of the individual pollutants on any day
are modelled as a function of the true underlying level, corrupted by measurement error. These true
underlying levels are assumed to have structure in both space and time, and this structure is modelled
at stage two of the hierarchy along with the relationship between pollutants. A Bayesian approach is
adopted throughout, with prior distributions being assigned to the unknown parameters at stages one
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and two. Essentially, the multiple pollutants at any time point are modelled as arising from a multivariate
Gaussian random field. This model addresses each of the inadequacies described in the observed data
and, specifically, allows information from multiple sites on different pollutants to be combined, in order to
provide an accurate level of pollution at each of the observed sites, or at locations previously unmeasured,
though the latter is more dependent on modelling assumptions. At any location, monitored or otherwise,
a measure of the uncertainty associated with the level can also be obtained. The latter is particularly
useful for accounting for the variability in the pollution level, formally via errors-in-variables modelling
(e.g., Carroll et al. (1995)), or informally when regression coefficients describing the relationship between
health risk and pollution are interpreted.

The Data
This approach was developed to model pollution data collected at eight monitoring sites within London
measuring the pollutants particulate matter (PM10), carbon monoxide (CO), nitrogen oxide (NO) and
sulphur dioxide (SO2) over the period 1994–1997. Table 1 summarises the periods of operation, and
pollutants measured at each of the sites. All four pollutants were measured at four sites only, the periods
of operation vary between one and four years, and the percentage of missing values within these periods of
operation can be large. For example, 37% of the daily measurements for CO were missing at Hillingdon.
Readings of zero for any of the pollutants were considered to be missing values, rather than implausibly
low readings. Figure 1 shows time series plots for PM10 at all eight sites, and clearly shows the sparsity
of data in the first two years. There is no apparent trend in level over the time scale of the study.

Pollutant Dependence
The model exploits the dependencies that exist between pollutants, temporally and spatially, due to
the common processes by which they are formed. For example, a major source of particulate matter
(PM10), and of the other pollutants considered here are combustion processes and, in particular, diesel
combustion. Carbon monoxide is a toxic gas emitted as a result of combination processes which, in
urban areas, is almost entirely produced from road traffic emissions, as are oxides of nitrogen, NOx.
Sulphur dioxide, SO2, a corrosive acid gas, is primarily caused by power stations burning fossil fuels
which contain sulphur

Associations between the levels of pollutants are also observed because of their relationship with meteo-
rological conditions, such as wind direction and speed and the increased reactivity of primary pollutants
in forming secondary pollutants in higher temperatures. Increased levels of pollution are also observed
during temperature ‘inversions’, where the usual decrease in temperature with altitude, which causes
hot pollutant gases to rise, is absent causing primary pollutants to be trapped near the ground, thus
enhancing the production of secondary pollutants (Onursal and Gautan (1997)). Dependencies with
temperature and certain pollutants will also be due, in part, to changing use of heating materials. Table
2 shows the sample correlations between the pollutants (logged values) and temperature, at the Blooms-
bury site. It is noted that the associations between the pollutants appear relatively constant across sites
(not shown), as do the associations with temperature.

Temporal Dependence
The pollutants considered here have varying atmospheric lifetimes, but all can linger in the environment.
For example, nitrogen oxides have a lifetime of approximately one day before being converted to nitric
acid, whereas CO can survive in the atmosphere for up to a month, before eventually oxidising to carbon
dioxide. The atmospheric lifetime of particulate matter is strongly related to particle size, but may
be as long as 10 days for particles of about 1mm in diameter. From these considerations strong daily
dependence would be expected between pollutant measures on consecutive days.

Spatial Dependence
There is very high correlation between the readings for each of the pollutants from different monitoring
sites. Figure 4(a) shows the position of the eight sites included in the study, and the correlations between
the logged measurements of PM10 measured at the eight sites are presented in Table 3. High correlations
between all pairs of measurements are observed at all sites. In Figure 2 the correlation between daily
measurements of each (log) pollutant and the distance between the site at which they were measured,
is plotted, for two different time periods. As expected, measurements from sites in close proximity to
each other are, in general, more highly correlated than those further away, and this relationship appears
relatively constant across time periods.

Measurement error
Data from continuous monitoring can generally be assumed to have a relatively small measurement error
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if, as is often the case, the sites are subject to strict quality assurance and validation procedures (as are
the London data considered here). The measurements of PM10 from different sample based monitoring
techniques can be affected by several factors, such as operating temperature and filter media and history.
Determination of the accuracy and precision of any given concentration is, therefore, liable to encompass
a wide margin of error, the target figure in the data quality standards is a precision of < 5µgm−3 for
concentrations of less than 100µgm−3 (DETR (1998)). For SO2, the accuracy depends on the accuracy
of the calibration standards and analyser stability, but based on long-term comparisons is estimated at
about ±1% (DETR (1998)).

Spatio-Temporal Modelling
The modelling of environmental variables in time and space has a considerable literature and only key
papers are highlighted here. In an early Bayesian application, Handcock and Wallis (1994) consider the
spatio-temporal modelling of winter temperature data but their approach was to carry out separate spa-
tial analyses in each year using a Gaussian random field model. Guttorp et al. (1994) modelled the spatial
covariances of hourly ozone levels using the Sampson and Guttorp (1992) spatial covariance approach,
and allowed the parameters of the model to vary as a function of time of day. Huang and Cressie (1996)
modelled snow water in time and space using a separable dynamic model. A spatio-temporal model for
hourly ozone measurements was developed by Carroll et al. (1997). The model combined trend terms
incorporating temperature and hourly/monthly effects, and an error model in which the correlation in
the residuals was a nonlinear function of time and space, in particular the spatial structure was a function
of the lag between observations. Unfortunately, as Cressie (1997) pointed out, this correlation function
is not positive definite. Mardia et al. (1998) propose what they term a ‘kriged Kalman filter’ and outline
a likelihood-based estimation strategy. A more general model and an (approximate) Bayesian estimation
approach appears in Wilke and Cressie (1999), with a fully Bayesian version being described in Wilke
et al. (1998). Brown et al. (2001) considered the spatio-temporal modelling of rainfall data, using a
non-separable model in which the spatial field at a specific time is obtained by ‘blurring’ the field at the
previous time point. Recently, independent research by Tonellato (2001) presented a similar modelling
approach to that presented here, using a univariate auto-regressive process measured with error, for
hourly measurements of a single pollutant (CO) from a small number of sites.

The structure of this paper is as follows. In Section 2 the general spatio-temporal model for multiple
pollutants is described and in Section 3 a number of simplified models are considered in order to examine
different aspects of the data, in particular to examine model fit. Section 4 describes the analysis of the
London data using the full model, and Section 5 contains a concluding discussion.

2. The Model

2.1. Specification

The general model allows for a temporal-pollutant interaction, and a spatial-pollutant interaction, with
the spatial model being constant across time, isotropic and stationary. The hierarchical dynamic linear
model is described in three stages.

Stage One, Observed Data Model:

Let Yspt denote the observed level of pollutant p at spatial location s on day t and assume

Yspt = Xsptβ + θpt + ms + vspt, (1)

for s = 1, ..., S, p = 1, ..., P , T = 1, ..., T

In this model:

• vspt represents the measurement errors which are assumed i.i.d. N(0, σ2
sp).

• ms represents the spatial effect of being at site s.

• θpt is the disturbance term that will induce temporal and pollutant dependence at Stage Two.
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• The q × 1 parameter vector β is a vector of regression coefficients.

• Xspt represents a 1× q vector of regressors that may change temporally and spatially. An example
of the former is temperature, whilst the latter may represent, for example, spatial characteristics
of the site that may be constant across time such as latitude and longitude (which could be used
to remove any trend), or characteristics of the monitor, for example roadside or elevation. The
subscript p allows these effects to be pollutant specific.

At the first stage, the daily measurements of each pollutant at each monitoring site are modelled as a
function of the true underlying level of the pollutant with a site adjustment and a pollutant-site specific
error term.

Stage Two (a), Spatial/Pollutant Model:

The collection of random effects mp = (mp1, ..., mpS)′, p = 1, ..., P , are assumed to arise from the
multivariate normal distribution

mp ∼ MV N(0S , σ2
pmΣpm), (2)

where 0S is an S × 1 vector of zeros, σ2
pm the between-site variance for pollutant p and Σpm is the

S × S correlation matrix, in which element (s, s′) represents the correlation between sites s and s′,
s, s′ = 1, ..., S, for pollutant p. This model is stationary, a point discussed later in more detail, and an
isotropic covariance model is assumed in which the correlation between sites s and s′ is assumed to be a
function of the distance between them only, i.e. f(dss′ , φp), where dss′ represents the distance between
sites s and s′ (in km). Such models are frequently used in geostatistics (e.g. Cressie (1993)), and the
specific form assumed here is

f(dss′ , φp) = exp (−φpdss′) (3)

where φp > 0 describes the strength of the correlation. Note that the log correlation is linear in distance
for this model and so the appropriateness of this form may be assessed using plots such as Figure 2. The
use of a stationary and isotropic model with a single parameter is restrictive, but with only eight sites
it is difficult to specify a more general model. In London, this assumption is likely to be more realistic
than in other locations, since the meteorology and topography are relatively spatially stable. For more
remarks concerning the specification of a spatial model see the discussion of Diggle et al. (1998). With a
larger number of sites, a two-parameter isotropic spatial could be used. For example, the Matérn class
has desirable properties (e.g. Handcock and Wallis (1994)).

A simpler model which is clearly unrealistic but is used for comparison is given by:

mps ∼ i.i.d N(0, σ2
pm), (4)

for s = 1, ..., S. This model assumes that the site-specific levels are (conditionally) independent.

Stage Two (b), Temporal/Pollutant Model:

θpt = θp,t−1 + wpt, (5)

for p = 1, ..., P . Here wt = (w1t, ..., wPt)′ are i.i.d. multivariate normal random variables with zero mean
and P × P variance-covariance matrix ΣP . This matrix contains variances σ2

wp thus allowing different
pollutants to have different amounts of temporal dependence, and P (P −1)/2 covariance terms reflecting
the dependence (more precisely the covariance) between each of the pollutants, conditional on the pre-
vious day’s values. This stage represents a first order smoothing model (e.g West et al. (1985); Fahrmeir
and Knorr-Held (pear)) with the true levels on day t modelled as a function of those on the previous
day. The model is a limiting form of the autoregressive first order model and provides a non-stationary
temporal model. Such an approach has been widely used (see for example, (Pole et al. (1994)). In terms
of DLMs, (1) is known as the observation equation, (5) is the system equation, and θpt the state.

Stage Three, Hyperprior:

A normal prior N(c, C) is assumed for β, where c is a q×1 vector and C a q×q variance-covariance matrix.
Gamma priors are specified for the precisions, specifically σ−2

sp ∼ Ga(av, bv) and σ−2
wp ∼ Ga(aw, bw).
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These distributions are parameterised so that, for example, E(σ−2
v ) = av/bv and var(σ−2

v ) = av/b2
v.

Also, Σ−1
P ∼ WP (D, d) where WP (D, d) denotes a P−dimensional Wishart distribution with mean D

and precision parameter d. The precision is chosen to be d = P which corresponds to the flattest
‘proper’ distribution. Given that the modelling is performed on the logarithmic scale, the variances σ2

wp
are approximately equal to the conditional coefficient of variation of the underlying states on the original
scale (which is a more natural scale on which to specify priors). For the mean therefore values are chosen
such that the diagonals of the expected value (D/d) relate to the coefficient of variation that might be
expected. The off-diagonal elements of D/d are chosen to reflect the expected correlations between the
pollution-specific states. Unless there is specific information to the contrary, i.e. that a monitor with
different characteristics is used at a particular site, it is assumed σ−2

vs ∼ Ga(av, bv), s = 1, ..., S. These
choices are convenient for the MCMC algorithm.

A uniform prior is used for φp, with the limits being based on beliefs about the relationship between
correlation and distance. For example, the distance, d, at which the correlation, ρ, between two sites
might be expected to fall to a particular level would be d = − log(ρ)/φp. Berger et al. (2000) provide an
interesting discussion of the choice of priors in spatial models, and in particular show that the improper
uniform prior on the positive real line leads to an improper posterior distribution. There is the possibility
of a lack of identifiability with this model since a constant pollution surface is consistent with both a
non-zero mean process with zero correlation, and a zero-mean process with correlations of one, and the
data alone cannot distinguish between these possibilities. Identifiability is resolved here by the use of a
proper prior.

The following assumptions of the model are emphasized :

• The measurement error variance σ2
sp does not depend on time. The model is easily extendable

to situations in which the measurement error may change as a function of t, for example, when a
monitor is replaced.

• The relationship between the pollutants is constant over time.

• The relationship between the pollutants is spatially constant.

• The temporal and spatial components are independent.

Considering the last point in more detail, for notational convenience, the dependence on p is suppressed
and a generic pollutant considered. If data is missing at a site s′ and at a time t′, these will be ‘filled
in’ using ms′ and θt′ , where the former component does not change with time. In the spatio-temporal
literature, separable models are often considered, these impose a particular type of independence between
space and time components. Let ρs′ denote the correlation between observations Ys and Ys+s′ , ρtt′

the correlation between Yt and Yt+t′ , and ρs′t′ the correlation between Ys+s′,t+t′ and Ys,t. Then the
correlation of a stationary model is separable if

ρs′t′ = ρs′ × ρt′ .

The model presented here exhibits a different kind of independence, though since it is non-stationary,
the marginal distribution of Y cannot be evaluated. Consider the model

θt = αθt−1 + wt,

with |α| < 1. Combining this stationary time series model with the spatial model presented gives

ρs′t′ = q × ρs′ + (1− q)× ρt′ ,

where q = σ2
m/(σ2

m + σ2
w), ρt′ = α|t

′|/(1− α2), illustrating that the ‘joint’ correlation is a weighted sum
of the spatial and temporal components, with the weights being independent of t and s. The model
presented here is the limiting form of this model with α = 1.

The temporal model is now discussed in more detail, for ease of exposition, again consider a generic
pollutant. From a Bayesian perspective, the second stage may be viewed as a prior distribution for
θ′ = (θ1, ..., θT ), with

p(θ|σ2
w) ∝

T
∏

t=2

p(θt|θt−1, σ2
w)
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∝ exp

{

− 1
2σ2

w

T
∑

t=2

(θt − θt−1)2
}

∝ exp

{

− 1
2σ2

w

T
∑

t=1

ntθt(θt − θ̄t)2
}

(6)

where nt indicates the number of, and θ̄ the mean of, the neighbours of θt, i.e. θt−1 and θt+1. The
(autoregressive) prior distribution for θ used in (6), p(θ|σ2

w), can therefore be expressed as

p(θt|θ−t, σ2
w) ∼











N(θt+1, σ2
w) for t = 1,

N
(

θt−1+θt+1
2 , σ2

w
2

)

for t = 2, ..., T − 1,
N(θt−1, σ2

w) for t = T.
(7)

where θ−t represents the vector of θ’s with θt removed. It is noted that σ2
w is a conditional variance

and so it is not comparable to σ2
v . The joint distribution is improper and only expresses prior beliefs

about differences in levels on neighbouring days, and no moments exist for the state process. Due to
this impropriety, an intercept is not specified in (1). An intercept may be incorporated if an additional
constraint is imposed, for example,

∑

θt = 0. Letting y = (y1, ..., yT )′, the distribution p(θ|y) exists,
however, and may be calculated empirically using the moments of the collection of θ1, ..., θT .

2.2. Inference

The posterior distribution is given by

p(θ, β1, σ2
v , σ2

w|y) = p(y)−1

{

T
∏

t=1

p(yt|θt, β1, σ2
v)

}{

T
∏

t=2

p(θt|θt−1, σ2
w)

}

p(θ1)p(β1)p(σ2
v)p(σ2

w) (8)

which is analytically intractable but samples from this distribution may be generated in a straightforward
fashion using Markov chain Monte Carlo (e.g., Smith and Roberts (1993)). This was performed using
the BUGS software (Spiegelhalter et al. (1998)), noting that dealing with the cyclical graph that arises
at stage two requires some of the conditional distributions to be explicitly specified (Spiegelhalter et al.
(1996)). If the variances σ2

v and σ2
w were known then the Kalman filter could be applied (Meinhold and

Singpurwalla (1983); Fahrmeir and Tutz (1994)) for efficient estimation.

In this context, the values of the pollutants on unmonitored (i.e. missing) days is of great interest;
it should also be noted that analytical computation is hampered by missing values. Such values may
be treated as parameters and the joint posterior is then obtained over these values and the model
parameters. This approach to dealing with missing values may be easily implemented within the BUGS
software. Inference on the parameters of interest is then performed via averaging over the distribution
of the missing values. If, for storage reasons for example, it is impractical to save the samples on-line,
samples may be generated from the posterior over the missing values retrospectively. If yo denotes the
observed values, ym the missing values, and λ = (θ, β1, σ2

v , σ2
w)′, then samples from the distribution of

missing values may be generated via

p(ym|yo) =
∫

p(ym|λ, y0)p(λ|yo)dλ

≈ 1
K

K
∑

k=1

p(ym|λ(k), y0),

where θ(k) ∼ p(λ|yo), k = 1, ..., K denote K realizations of the Markov chain. This formulation can also
be used for predicting pollution levels on future days.

Using this model it is possible to estimate the site effects, and thus pollution levels, at locations where
there is no monitoring site. Consider a generic pollutant and a new location, mS+1. Based on the
posterior estimates of the site effects, ms and the variance-covariance matrix σ2

mΣm, the vector of levels
at S + 1 locations (m1, ...,mS ,mS+1) follows a multivariate normal distribution with zero mean and
(S + 1) × (S + 1) variance-covariance matrix with upper S × S component given by σ2

mΣm, element
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(S +1)× (S +1) given by σ2
m, and final row and column, without this element, given by the correlations

σ2
mf(ds,S+1, φ), s = 1, ..., S. Denote the latter by the S × 1 vector σ2

mΩ. Letting m = (m1, ..,mS)′, the
conditional distribution of mS+1|m is, by properties of the multivariate normal distribution, also normal
with mean and variance given by

E(mS+1|m) = σ−2
m Ω′Σ−1

m m,

and
var(mS+1|m) = σ2

m(1− Ω′Σ−1
m Ω)−1,

respectively. For exploratory purposes, the posterior medians (for example) of the parameters may be
substituted into these expressions. A more accurate, though computationally expensive, strategy is to
average the normal distributions that result from individual draws from the posterior distribution.

3. Initial Analyses

A number of initial analyses are performed to examine modelling assumptions, in particular, each pollu-
tant may be modelled separately at each site to give, in this example, 32 analyses. The fits to individual
sites/pollutants may be examined and the plausibility of the second stage modelling assumptions may be
assessed. The model presented in Section 2 is then essentially smoothing across these 32 analyses. The
spatial and temporal aspects can then be combined to carry out four analyses, one for each pollutant.
Similarly, for each site all four pollutants may be modelled simultaneously. Examination of changes in
model parameters across these analyses allows an assessment of the impact of modelling assumptions.

3.1. Single pollutant, single monitoring site

The use of the above model is now demonstrated using the London data. At this stage, separate analyses
are performed for each pollutant at each site. The analyses are performed with and without the use of
daily temperature, the linear and quadratic effects of which are denoted by β1 and β2 when included.
In later sections the inference is refined as the data are linked across sites and across pollutants via the
hierarchy. Prior sensitivity is also addressed, and residuals examined to assess the assumptions of the
model.

Initially the prior distributions are specified as σ−2
v ∼ Ga(1, 0.01), σ−2

w ∼ Ga(1, 0.01) and β1, β2
∼ N(0, 1000), the latter corresponding to vague prior beliefs. The choices for the precisions give ap-
proximate values of the standard deviations of 0.1, i.e. on the original scale, a coefficient of variation of
approximately 10% with a large spread. Two separate chains starting from different initial values were
run for each model. Convergence was assessed by visual examination of the ‘time series’ plots of the
samples for each chain, and computing the Gelman and Rubin statistic (Gelman and Rubin (1992)),
which calculates the ratio of the between to within chain variability. The two Markov chains were run
for 15,000 iterations, discarding the first 5,000 of each as ‘burn in’.

Table 4 contains posterior summaries for the results of two pollutants, PM10 and SO2, analysed at the
two sites with the longest runs of data, Bloomsbury and Bexley. The estimates of the system variances
for PM10 from all eight sites were of similar magnitude, as were the measurement variances. The day-
to-day variability, as measured by sd(θt|y), showed greater differences over the sites, but was, in general,
a greater component of variability than the measurement error component. For example, for PM10 at
the two sites presented in Table 4, the variance of the measurement error accounts for around 25% of
the total variability, i.e. σ2

v + var(θ|y). For prediction or inference for missing values, higher precision
is obtained if the total variability is primarily from sources that are modelled via components that are
smoothed, across time in this case. For SO2, there was greater overall variability than seen with PM10,
with σv, σw and sd(θt|y) generally being higher, with lowest variability (as with PM10) being observed
at the Bloomsbury site. In general, measurement error comprised a higher proportion of total variability
than for PM10. The variability observed in both NO and CO was greater with more heterogeneity over
the eight sites than both PM10 and SO2, with NO showing the largest differences.

From the relationships observed in Table 2 and due to the mechanisms affecting the pollutant levels dis-
cussed in Section 1, a relationship with temperature would be expected. Examination of the scatterplots
of PM10 versus temperature indicated that a simple linear relationship would not be an adequate descrip-
tion, due to the seasonal changes in the composition of PM10, for example the larger contribution of ozone
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in the warmer months and from heating materials in the winter. Such a plot also showed large residual
variability, indicating that the predictive effect of temperature would not be strong. The observation
variances are relatively unchanged when temperature is added (apart from PM10 for Bloomsbury where
the median increases), but the system variances are reduced, with the reductions being comparatively
larger for PM10 than for the other pollutants.

The posterior medians presented in Table 4 appear to be relatively robust to the choice of prior
distributions for σ−2

v and σ−2
w . A number of prior combinations were tried, including the choices

Ga(1, 0.01), Ga(0.5, 0.0005) and Ga(0.001, 0.001), with very little difference in the resulting posterior
medians.

3.2. Single pollutant, multiple monitoring sites

The priors for β1 and β2 were as in the last section, while for the precisions σ−2
vs , s = 1, ..., S, σ−2

w
and σ2

m, the distributions Ga(1, 0.01) were assumed. With a small number of sites, there will be little
information on φ, the parameter relating correlation with the distance between sites, and it will therefore
be greatly influenced by the choice of prior. In this example, the limits of the uniform distribution were
chosen to represent the cases where the correlation falls to 0.95 at a distance of 20km, reflecting very
high correlation between all the sites, and 0.1 indicating far less spatial dependence.

The results of jointly modelling PM10 at the eight sites, using exchangeable site effects (4) and those
modelled multivariately according to (3) are shown in Table 5 and may be compared with those described
in Section 3.1 and shown in Table 4. It is noted that the medians are virtually unchanged under the two
spatial models, since there are large amounts of data at each site. The intervals are slightly wider under
the spatial model reflecting the loss of information with dependent observations. The posterior for φ
is very diffuse due to the small number of sites, and it shows high correlation between sites measuring
PM10 within a urban area, the median corresponds to the correlation at 30km falling to 0.85 with a 95%
credible interval of (0.75,0.94). The corresponding correlation was less for the other pollutants, being in
the region of 0.75.

In comparison to the results for pollutant-site specific analyses, there is a noticeable decrease in the ob-
servation variance at all of the sites. Although the system variances increase slightly for the Bloomsbury
and Bexley sites, they decrease for the others, for which higher system variances was observed in the
separate analyses. This reflects the fact that the underlying level, θt, is now ‘responding’ to eight series
of data rather than just ‘smoothing’ one. This could bring into question the assumption of independence
between space and time. Notwithstanding the advantages of borrowing information to produce estimates
of the underlying levels for sites with unstable and/or sparse data, if the objective of the analysis is to
produce a set of estimates for a single site for which there is already a relatively stable series of data
over the study period, i.e. Bloomsbury in this example, there may little to be gained from incorporating
data from other sites.

The coefficients of temperature, linear and quadratic, are similar to those seen in the separate analyses,
but their addition to the model now accounts for a smaller reduction in the system variance (3.5%, not
shown). Examining the average of the S = 8 measurement errors, the temporal, spatial and measurement
error components account for, respectively, 80%, 10% and 10% of the total variability. Hence the
variability due to the temporal components dominates that from the measurement error and spatial
variability, as measured by σ2

m.

Estimates of the differences in levels recorded at the eight sites are also given, the posterior medians of
the site effects, ms, range from -0.1209 to +0.1341. The site effects for the Bloomsbury and Bexley sites
are +0.1341 and -0.0696 respectively, indicating the increased levels observed at the Bloomsbury site,
which is in the centre of London (defined as an urban background site), compared to those at Bexley,
which is on the outskirts of the city and defined as a suburban site.

Similar results were observed for the other pollutants, with the site effects being more pronounced for
CO and NO, reflecting the greater differences observed in the individual site analyses.
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3.3. Multiple pollutants, single monitoring site

This model was applied to data on four pollutants (PM10, S02, NO and CO) for each site individually.
Again the priors σ−2

vp ∼ Ga(1, 0.01), p = 1, .., P, and β1, β2 ∼ N(0, 1000), were assigned. For the
parameters of the Wishart distribution, d was chosen to be equal to four, the dimension of ΣP ; D was
then chosen so that the diagonals of the expected value (D/d) represent a 10% coefficient of variation.
The off-diagonals were taken to be zero.

The results of the model applied to data from the Bloomsbury site can be seen in Tables 6 and 7. The
results for PM10 shown in Table 6 are similar to those seen in the univariate example (Table 4), with a
increase in the system variance σ2

w, an effect also seen at the other sites. The posterior medians of the
(conditional) correlations between the underlying levels of the pollutants are given in Table 7. These
are not strictly comparable to those seen in Table 2 as they are conditional on the previous day’s level
and do not include the non-negligible effect of independent measurement errors. Strong correlations are
observed between all the parameters, meaning that in the presence of missing values of one pollutant,
inference can be made by borrowing information from the non-missing values of the others.

Decomposing the total variability into that due to measurement error and that due to day-to-day vari-
ability it is apparent that the latter again dominates with 77%, 60%, 79% and 79% of the total variability
being explained by the temporal variance for PM10, SO2, NO and CO, respectively.

The effect of using different prior beliefs about the variation and correlation was examined by using
Wishart distributions representing combinations of coefficients of variations ranging from 0.1 to 0.75
with correlations from 0.001 to 0.9. Very little effect on the resulting posterior medians, particularly
for the correlation between the system parameters, was observed. This may be expected since there are
abundant daily measurements.

Figure 4(b) and (c) show contour plots of the site effects and standard deviations calculated via the
approach described in Section 2.2, using the posterior median values from the model, on a 20 × 20 grid
covering the study area. As expected the variability of the effects increases with distance from the actual
monitoring sites, and despite the small number of sites used, spatial patterns can be observed in the site
effects, with higher values in the centre of the city. The predictions should be viewed with caution as
the positions of the original monitors have not been accounted for, e.g. roadside, and this can strongly
influence the level of recorded pollution.

4. Full Analysis

The results from the final model are shown in Tables 8 and 9. Again there is very strong correlation
between the system, or underlying, parameters (Table 9). The posterior medians of the system standard
deviations, σwp, can be seen in Table 8 together with those for the site-pollutant random (measurement)
errors and the coefficients for temperature. The results for PM10 shown in Section 3.1 (Table 5) and
the other pollutants (not shown) when they were modelled independently of the other pollutants are
very similar to the results from this multi-pollutant model. The site effects are also given, with slightly
increased standard deviations, σmp, and show a pattern similar to those from the single pollutant models,
again with those for NO and CO again being more pronounced. The temporal component, represented by
sd(θ|y) is also very similar to that observed when PM10 was jointly modelled with the other pollutants at
a single site (Section 3.3, Table 6). The measurement error (and temperature effects) are also consistent.
The proportions of variability associated with the temporal, spatial and measurement error components
are also similar to those previously observed, at 75%, 15% and 10% respectively for PM10.

The results for SO2 are also comparable to those seen from both the individually (Section 3.1, Table
4) and jointly (Section 3.3, Table 6) modelled pollutant effects. Again, the temporal effect dominates
(65%), but with a larger effect of measurement error (29%) and a reduction in the spatial component
(6%). In comparison to the results from the single site (multiple pollutant) models, the temporal vari-
ation associated with NO and CO is reduced, with a corresponding increase in the measurement error
component.

Whilst the spatial relationships for the different pollutants seen in Figure 2 appear somewhat similar,
fitting a model with a single spatial effect for all four pollutants resulted in an over simplification of the
individual relationships (apparent from the different values of σmp and φp) and ignored the disparate
scales of the pollution variables. The observed results from such a model appeared to be dominated by
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PM10, which has the strongest correlation and for which there is most data available, at the expense of
the others, notably NO and CO, which have more marked decreases in correlation with distance, but
where the data is more sparse.

Substituting the posterior medians into the quadratic model to examine the relationship between tem-
perature and (log) pollutant level again showed clear curvature for all four pollutants implying that a
linear form is not sufficient.

5. Discussion

In this paper daily multiple pollution levels measured at a small set of spatial locations are modelled.
The proposed model is relatively simple, particularly the isotropic, stationary spatial component; this
simplicity was necessary because of the paucity of spatial information and the computational expense.
In London such a structure may not be too poor an approximation due to the topology, but in other
locations with a more irregular topology the model may well be inadequate. It may be possible to ease the
computational burden using extensions of the algorithms used for state space models Carter and Kohn
(1994). Alternatively, approximations in the spirit of Wilke and Cressie (1999) may be used. Flexibility
may also be added using the approach of Schmidt and O’Hagan (2000), though the computational burden
will be high.

It is noted that a number of other forms of data that commonly arise in studies such as these, may be
incorporated within our framework. For example, 6-day pollution monitors, hourly data, and local traffic
information could be incorporated if available.

As illustrated, estimates (and measures of uncertainty) can be made for locations at unmeasured sites
though the accuracy of these estimates will crucially depend on the number of covariates (such as type
of monitor) that have been incorporated. The width and symmetry of the intervals will also depend on
the assumption of a Gaussian random field model. It has been seen here that spatial variability is much
smaller than the temporal variability. The simple time series model used here may be extended to use
more general, and stationary, AR processes, which have the advantage that the variance parameters would
be directly comparable to the other variances of the other components in the model, but may compromise
the model’s ability to model strong dependencies (for a discussion see Besag and Kooperberg (1995)).
The parameters of these processes could also be made location specific, via a spatial model. In similar
approach to other authors, independent priors are assumed for φ and σm within the spatial model, this
is not realistic and further research is required to find a more appropriate form. One possibility is to
take priors such that σ2

m|Σm|, a measure of overall variability, is constant across models.

When the health study that motivated this exposure modelling is performed, the health and exposure
data could be modelled jointly. Strictly, from a Bayesian perspective, this is the correct approach, for
example, it allows ‘feedback’ from the health data to inform the exposure modelling, but it could lead to
the health/exposure relationship being compromised. If there was a problem with the exposure modelling,
which, for example, may be due to the difficulties in estimating the spatial effects, it could distort the
health/exposure relationship. Another drawback of this approach is that it is computationally intensive.
An alternative approach is to plug-in the exposure levels, using for example, the median of the predictive
distributions of observed pollutant levels and the predictive distributions themselves for unobserved
levels. Such an approach ignores the variability and so will in general produce interval estimates that are
too narrow. A refinement is to use an errors-in-variables approach in which the pollution estimates and
standard errors are used to inform a measurement error model – such a model does not allow feedback
between the exposure and exposure/health components, but does allow the uncertainty in the pollutants
to be acknowledged.

Given confidence in the spatial model, it would be possible to combine health data at the individual
or small-area level, with exposure interpolations from this model. In the case of small-area data, a
summary measure of all the pollutants may be used at, for example, the population weighted centroid.
Strictly, as described in Wakefield and Salway (2001), the appropriate ecological model would integrate
the pointwise model over the entire area, but this is may not be possible in closed form.
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Table 1. Summary of pollutants measured, and periods of operations, at eight sites in London, 1994–97. The
total number of days of operation are given for each pollutant at each site together with the percentage of missing
observations. The units are µgm−3 for PM10, parts per billion for SO2 and NO and parts per million for CO.

Period Total Missing % Mean Min. 25% Med. 75% Max.
Bexley

PM10 1994-97 1461 211 14.4 24.0 4.0 15.0 20.0 29.0 92.0
SO2 1994, 1996-97 1095 178 16.3 6.9 1.0 3.0 4.0 8.0 76.0
NO - - - - - - - - - -
CO 1994-97 1461 192 13.1 0.5 0.1 0.3 0.4 0.5 4.4

Bloomsbury
PM10 1994-97 1461 61 4.2 28.0 7.0 19.0 24.0 34.0 103.0
SO2 1994-97 1461 115 7.9 8.3 1.0 4.0 6.0 11.0 48.0
NO 1994-97 1461 44 3.0 42.4 4.0 19.0 30.0 50.0 467.0
CO 1994-97 1461 68 4.7 0.7 0.1 0.4 0.6 0.8 4.3

Brent
PM10 1996-97 731 120 16.4 20.8 6.0 14.0 18.0 25.0 82.0
SO2 1996-97 731 33 4.5 4.4 1.0 2.0 3.0 5.2 20.0
NO 1996-97 731 57 7.8 23.8 1.0 5.0 8.0 22.5 414.0
CO 1996-97 366 15 4.1 0.5 0.1 0.2 0.3 0.7 5.0

Eltham
PM10 1996-97 731 166 22.7 21.2 8.0 15.0 18.0 25.0 81.0
SO2 1996-97 731 91 12.4 4.6 1.0 2.0 3.0 5.0 40.0
NO 1996-97 731 95 13.0 21.7 1.0 5.0 9.0 20.0 339.0
CO - - - - - - - - - -

Harringey
PM10 1996-97 731 161 22.0 26.2 8.0 18.0 22.0 32.0 89.0
SO2 - - - - - - - - - -
NO 1996-97 731 139 19.0 63.3 5.0 28.0 43.0 68.6 562.0
CO - - - - - - - - - -

Hillingdon
PM10 1996-97 731 225 30.8 24.5 6.0 16.0 21.0 31.0 88.0
SO2 1996-97 731 230 31.5 5.1 1.0 3.0 4.0 6.0 28.0
NO 1996-97 731 252 34.5 81.9 2.0 31.0 67.0 105.0 506.0
CO 1996-97 731 268 36.7 0.8 0.2 0.5 0.6 0.9 4.3

N. Kensington
PM10 1996-97 731 99 13.5 23.6 9.0 16.0 20.0 27.2 89.0
SO2 1996-97 731 91 12.4 4.6 1.0 2.0 3.0 6.0 32.0
NO 1996-97 731 106 14.5 27.6 1.0 6.0 11.0 25.0 442.0
CO 1996-97 731 93 12.7 1.2 0.1 0.4 0.7 1.3 16.6

Sutton
PM10 1996-97 731 92 12.6 25.1 9.0 17.0 22.0 29.0 250.0
SO2 1996-97 731 96 13.1 4.9 1.0 2.7 4.0 6.0 28.4
NO 1996-97 731 106 14.5 51.1 3.0 26.3 39.0 57.0 404.0
CO 1996-97 731 104 14.2 1.1 0.2 0.8 1.0 1.3 6.7

Table 2. Correlation/covariance matrix for (logged)
pollutants and temperature at the Bloomsbury site,
1994–97. The variances lie on the diagonal, with co-
variances above and correlations below.

PM10 SO2 NO CO Temp
PM10 0.412 0.15 0.14 0.091 0.23
SO2 0.49 0.722 0.30 0.14 -1.21
NO 0.45 0.57 0.732 0.26 -2.09
CO 0.45 0.38 0.71 0.492 -0.82
Temp 0.10 -0.29 -0.50 -0.29 5.712
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Table 3. Correlation/covariance matrix for (logged) values of PM10, measured at eight sites in London, 1994–97. The
variances lie on the diagonal, with covariances above and correlations below.

Bexley Bloomsbury Brent Eltham Harringey R. Hillingdon N. Kensington Sutton
Bexley 0.462 0.16 0.19 0.18 0.16 0.17 0.18 0.17
Bloomsbury 0.92 0.392 0.15 0.15 0.14 0.15 0.15 0.14
Brent 0.92 0.90 0.432 0.16 0.16 0.17 0.17 0.15
Eltham 0.95 0.91 0.91 0.422 0.14 0.15 0.16 0.16
Harringey 0.90 0.89 0.94 0.87 0.392 0.16 0.15 0.13
Hillingdon 0.83 0.83 0.88 0.79 0.91 0.452 0.17 0.14
N.Kensington 0.95 0.93 0.96 0.94 0.94 0.87 0.422 0.15
Sutton 0.89 0.84 0.84 0.90 0.82 0.72 0.88 0.422

Table 4. Observation and system variances, with coefficients for temperature, for two pollutants, PM10 and SO2,
modelled individually at two sites, Bloomsbury and Bexley. The three sets of results show the effect of adding linear
and quadratic effects of temperature to the model

Without Temp. Linear Temp. Quad. Temp
Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5%

PM10, Bloomsbury
σv 0.2057 0.1822 0.2278 0.2839 0.2694 0.2989 0.2774 0.2639 0.2916
σw 0.2393 0.2143 0.2661 0.1710 0.1480 0.1977 0.1528 0.1313 0.1753
sd(θ|y) 0.3639 0.3459 0.3842 0.3263 0.3038 0.3511 0.3068 0.2856 0.3291
Temp. - - - -0.0006 -0.0092 0.0076 -0.0899 -0.1071 -0.0721
Temp.2 - - - - - - 0.0042 0.0035 0.0049

PM10, Bexley
σv 0.3235 0.3057 0.3421 0.3229 0.3049 0.3415 0.3144 0.2977 0.3319
σw 0.2037 0.1743 0.2357 0.2045 0.1760 0.2387 0.1848 0.1577 0.2138
sd(θ|y) 0.5435 0.4007 1.0250 0.4916 0.3796 0.9152 0.4281 0.3649 0.5880
Temp. - - - -0.0038 -0.0142 0.0071 -0.1055 -0.1260 -0.0850
Temp.2 - - - - - - 0.0047 0.0039 0.0056

SO2, Bloomsbury
σv 0.5709 0.5437 0.5989 0.5688 0.5426 0.5962 0.5632 0.5383 0.5897
σw 0.1690 0.1335 0.2095 0.1567 0.1246 0.1926 0.1349 0.1060 0.1679
sd(θ|y) 0.4680 0.4257 0.5119 0.4170 0.3743 0.4621 0.3886 0.3469 0.4353
Temp. - - - -0.0411 -0.0552 -0.0270 -0.1590 -0.1893 -0.1297
Temp.2 - - - - - - 0.0055 0.0043 0.0067

SO2, Bexley
σv 0.6433 0.6041 0.6862 0.6334 0.5949 0.6745 0.6192 0.5811 0.6605
σw 0.2655 0.2081 0.3313 0.2745 0.2216 0.3377 0.2488 0.1894 0.3128
sd(θ|y) 1.2880 0.9008 2.0620 1.1000 0.7747 2.0190 1.0860 0.6726 1.7760
Temp. - - - -0.0395 -0.0609 -0.0181 -0.2083 -0.2546 -0.1620
Temp2 - - - - - - 0.0077 0.0058 0.0095
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Table 5. Observation and system variances, with coefficients for temperature,
for PM10 modelled jointly at eight sites, but independently of measurements of
other pollutants. Site effects, and variances are presented for both independent
and multivariate spatial models. The labelling is: 1 = Bexley, 2 = Bloomsbury, 3 =
Brent, 4 = Eltham, 5 = Harringey Roadside, 6 = Hillingdon, 7 = North Kensington,
8 = Sutton.

Independent Multivariate
Median 2.5% 97.5% Median 2.5% 97.5%

σv1 0.1361 0.1290 0.1437 0.1361 0.1291 0.1438
σv2 0.1279 0.1211 0.1349 0.1278 0.1211 0.1348
σv3 0.1042 0.0976 0.1115 0.1042 0.0975 0.1115
σv4 0.1248 0.1169 0.1334 0.1248 0.1170 0.1335
σv5 0.1222 0.1145 0.1306 0.1222 0.1145 0.1307
σv6 0.2116 0.1987 0.2266 0.2114 0.1984 0.2259
σv7 0.0632 0.0573 0.0695 0.0632 0.0573 0.0693
σv8 0.2290 0.2166 0.2425 0.2290 0.2166 0.2429
σw 0.3462 0.3326 0.3605 0.3465 0.3328 0.3609
sd(θ|y) 0.4062 0.4007 0.4143 0.4067 0.4005 0.4164
m1 -0.0696 -0.0785 -0.0605 -0.0696 -0.0785 -0.0607
m2 0.1341 0.1256 0.1429 0.1341 0.1257 0.1426
m3 -0.1209 -0.1292 -0.1120 -0.1210 -0.1294 -0.1125
m4 -0.1103 -0.1203 -0.0998 -0.1105 -0.1205 -0.1005
m5 0.1098 0.1000 0.1200 0.1098 0.0999 0.1195
m6 0.0131 -0.0043 0.0299 0.0132 -0.0032 0.0300
m7 0.0031 -0.0031 0.0094 0.0030 -0.0031 0.0090
m8 0.0410 0.0250 0.0575 0.0410 0.0250 0.0572
σm 0.0955 0.0627 0.2202 0.1019 0.0668 0.1794
φ - - - 0.005675 0.002158 0.009778
Temp. -0.0905 -0.1033 -0.0741 -0.0872 -0.1091 -0.0609
Temp.2 0.0037 0.0031 0.0043 0.0035 0.0026 0.0044

Table 6. Observation and system variances,
with coefficients for temperature, for four pol-
lutants modelled using the multivariate pol-
lution model. Results are from the Blooms-
bury site, modelled independently of mea-
surements at other sites

Median 2.5% 97.5%
PM10

σv1 0.2258 0.2148 0.2375
σw1 0.3424 0.3124 0.3737
sd(θ1|y) 0.4099 0.3899 0.4299
Temp1 -0.0972 -0.1144 -0.0782
Temp2

1 0.0043 0.0035 0.0050
SO2

σv2 0.4823 0.4607 0.5049
σw2 0.4715 0.4188 0.5260
sd(θ2|y) 0.5948 0.5503 0.6385
Temp2 -0.1663 -0.1981 -0.1357
Temp2

2 0.0052 0.0038 0.0067
NO

σv3 0.2502 0.2378 0.2633
σw3 0.3703 0.3357 0.4069
sd(θ3|y) 0.4795 0.4578 0.5015
Temp2 -0.0904 -0.1089 -0.0716
Temp2

3 0.0031 0.0024 0.0037
CO

σv4 0.3383 0.3220 0.3555
σw4 0.5511 0.5025 0.6020
sd(θ4|y) 0.6661 0.6350 0.6970
Temp4 -0.1385 -0.1652 -0.1122
Temp2

4 0.0027 0.0016 0.0039
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Table 7. Posterior medians of the Σp matrix be-
tween the underlying levels of four pollutants mod-
elled using the multivariate pollution model at the
Bloomsbury site, modelled independently of mea-
surements at other sites. The variances lie on the
diagonal, with covariances above and correlations
below.

PM10 SO2 NO CO
PM10 0.34242 0.1442 0.1039 0.1535
SO2 0.8806 0.47152 0.1472 0.2315
NO 0.8192 0.8472 0.37032 0.1866
CO 0.8134 0.9202 0.9146 0.55112
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Table 8. Posterior medians from the general model with dependencies across time
and pollutants, with pollutant specific spatial effects. Pollutant specific observation
and system variances, together with coefficients for temperature, are presented to-
gether with the site effects, and variances, for the multivariate spatial components.
The labelling is: 1 = Bexley, 2 = Bloomsbury, 3 = Brent, 4 = Eltham, 5 = Harringey
Roadside, 6 = Hillingdon, 7 = North Kensington, 8 = Sutton.

PM10

Median 2.5% 97.5% Median 2.5% 97.5%
σv11 0.1380 0.1310 0.1456 m11 -0.0696 -0.0785 -0.0607
σv21 0.1273 0.1209 0.1343 m21 0.1344 0.1260 0.1427
σv31 0.1049 0.0983 0.1122 m31 -0.1209 -0.1293 -0.1124
σv41 0.1251 0.1172 0.1339 m41 -0.1105 -0.1204 -0.1005
σv51 0.1227 0.1150 0.1312 m51 0.1098 0.1000 0.1195
σv61 0.2112 0.1983 0.2255 m61 0.0128 -0.0039 0.0291
σv71 0.0623 0.0565 0.0684 m71 0.0030 -0.0031 0.0090
σv81 0.2291 0.2166 0.2429 m81 0.0411 0.0250 0.0570
σw1 0.3438 0.3302 0.3581 σm1 0.1297 0.0806 0.2597
sd(θ1|y) 0.4060 0.4005 0.4138 φ1 0.00752 0.00181 0.01130
Temp.1 -0.0951 -0.1155 -0.0811 - - -
Temp.21 0.0040 0.0034 0.0047 - - -

SO2

Median 2.5% 97.5% Median 2.5% 97.5%
σv12 0.4811 0.4545 0.5099 m12 0.0064 -0.0607 0.0783
σv22 0.4211 0.4012 0.4422 m22 0.3084 0.2451 0.3756
σv32 0.4244 0.3992 0.4517 m32 -0.2797 -0.3470 -0.2131
σv42 0.4743 0.4459 0.5052 m42 -0.1915 -0.2601 -0.1223
σv52 0.1199 0.0519 0.6343 m52 0.0965 -0.3228 0.5017
σv62 0.3551 0.3295 0.3830 m62 0.1505 0.0842 0.2173
σv72 0.3822 0.3580 0.4085 m72 -0.1495 -0.2149 -0.0848
σv82 0.4135 0.3885 0.4410 m82 0.0594 -0.0057 0.1266
σw2 0.4710 0.4458 0.4973 σm2 0.2701 0.1651 0.5590
sd(θ2|y) 0.5719 0.5559 0.5880 φ2 0.00871 0.00262 0.01138
Temp.2 -0.1429 -0.1663 -0.1174 - - -
Temp.22 0.0048 0.0038 0.0058 - - -

NO
Median 2.5% 97.5% Median 2.5% 97.5%

σv13 0.1196 0.0523 0.6354 m13 0.1626 -1.2820 2.2640
σv23 0.2668 0.2509 0.2837 m23 0.3293 0.0293 0.5361
σv33 0.6721 0.6349 0.7124 m33 -0.8548 -1.1590 -0.6441
σv43 0.6660 0.6278 0.7067 m43 -0.8725 -1.1730 -0.6616
σv53 0.3804 0.3557 0.4064 m53 0.6277 0.3269 0.8358
σv63 0.8761 0.8211 0.9370 m63 0.7097 0.4105 0.9264
σv73 0.5013 0.4712 0.5334 m73 -0.6188 -0.9207 -0.4092
σv83 0.4407 0.4136 0.4699 m83 0.5235 0.2223 0.7323
σw3 0.4994 0.4757 0.5241 σm3 0.8929 0.5204 2.0340
sd(θ3|y) 0.6250 0.6105 0.6432 φ3 0.00842 0.00236 0.01138
Temp.3 -0.1366 -0.1615 -0.1124 - - -
Temp.23 0.0026 0.0016 0.0036 - - -

CO
Median 2.5% 97.5% Median 2.5% 97.5%

σv14 0.3580 0.3419 0.3748 m14 -1.1940 -1.7390 -0.5778
σv24 0.2725 0.2592 0.2866 m24 -0.6926 -1.2390 -0.0771
σv34 0.5987 0.5537 0.6491 m34 -1.2810 -1.8270 -0.6542
σv44 0.1209 0.0526 0.6176 m44 1.5530 -0.9085 5.4500
σv54 0.1202 0.0525 0.6330 m54 2.7910 0.3848 7.9660
σv64 0.3465 0.3223 0.3729 m64 -0.6946 -1.2390 -0.0825
σv74 0.6167 0.5825 0.6539 m74 -0.5123 -1.0560 0.1012
σv84 0.2753 0.2572 0.2951 m84 -0.1723 -0.7199 0.4416
σw4 0.2962 0.2806 0.3126 σm4 1.9380 0.6739 4.7520
sd(θ4|y) 0.4073 0.3961 0.4185 φ4 0.00894 0.00310 0.01139
Temp.4 -0.0975 -0.1140 -0.0800 - - -
Temp.24 0.0032 0.0025 0.0038 - - -
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Table 9. Posterior medians of the Σp matrix be-
tween the underlying levels of four pollutants mod-
elled using the general model with multivariate pol-
lution model with multivariate spatial effects for all
eight monitoring sites. The variances lie on the di-
agonal, with covariances above and correlations be-
low.

PM10 SO2 NO CO
PM10 0.34382 0.1142 0.1143 0.0705
SO2 0.7055 0.47102 0.1889 0.1022
NO 0.6655 0.8027 0.49942 0.1417
CO 0.6924 0.7327 0.9578 0.29622
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Fig. 1. Time series plots of logged values of PM10 for eight sites in London, 1994–97 (missing values are marked
on the horizontal axis as triangles).
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Fig. 2. The (log) correlation between logged values of pollutants and distance between sites, for two time periods,
1994-96 and 1997. The reference lines are log(correlation)= −φp× distance, using the posterior medians for φp

from the general model, using pollutant specific multivariate spatial effects.
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Fig. 3. Time series plot for a subset of 250 days: (a) recorded measurements and estimated θ̂t for (log) PM10,
Bloomsbury, triangles indicate missing values; (b) differences between recorded and estimated values. In (a) the
dotted lines indicate approximate 90% intervals, in (b) the dotted lines are ±2σ̂v
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Fig. 4. (a) Map of locations of the eight monitoring sites in London, (b) contour plot of site effects from the multi-
variate spatial effects model, for PM10, based on a 20x20 grid of locations without a pollution monitor, and (c) the
corresponding standard deviations of the site effects


