
Locating Nearby Sources of Air Pollution by Nonparametric
Regression of Atmospheric Concentrations on Wind Direction

Ronald C. Henry Yu-Shuo Chang Clifford H. Spiegelman

NRCSE
T e c h n i c a l   R e p o r t   S e r i e s

NRCSE-TRS  No.  071

Sept 21, 2001

The NRCSE was established in 1997 through a cooperative agreement with the United States
Environmental Protection Agency which provides the Center's primary funding.



1

Locating Nearby Sources of Air Pollution by Nonparametric
Regression of Atmospheric Concentrations on Wind Direction

Ronald C. Henry* and Yu-Shuo Chang, Environmental Engineering Program, Civil Engineering

Department, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089-

2531.  Clifford H. Spiegelman, Department of Statistics, Texas A&M University, College Station, Texas.

* Corresponding author.  Submitted to Atmospheric Environment July, 2001.

Abstract
The relationship of the concentration of air pollutants to wind direction has been determined by

nonparametric regression using a Gaussian kernel.  The results are smooth curves with error bars that allow

for the accurate determination of the wind direction where the concentration peaks, and thus, the location of

nearby sources.  Equations for this method and associated confidence intervals are given.  A non-subjective

method is given to estimate the only adjustable parameter. A test of the method was carried out using

cyclohexane data from 1997 at two sites near a heavy industrial region in Houston, Texas, USA.

According to published emissions inventories, 70 percent of the cyclohexane emissions are from one

source.  Nonparametric regression correctly identified the direction of this source from each site.  The

location of the source determined by triangulation of these directions was less than 500 m from that given

in the inventory.  Nonparametric regression is a powerful technique that has many potential uses in air

quality studies and atmospheric sciences.
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Introduction

The problem addressed here is estimating the wind direction that gives a local maximum in the observed

average concentration of an atmospheric species, i.e., finding the directions of peaks in the concentrations.

This direction is taken as the direction of the source, assuming that the source is not too distant.  Finding

the location of a nearby source is important in identification of the causes of local toxic “hot spots” and

reconciliation of emission inventories observed concentrations, to give two examples.  Sommerville et al.

(1996) present a classic parametric modeling approach to this problem.  In this paper, an alternative
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nonparametric approach is taken.  This approach is related to the kernel density counting procedure

proposed by de Haan (1999) for certain air quality models.  There is an enormous statistical literature on

nonparametric regression.  Härdle (1990) gives a very good introduction to this literature and the more

practical aspects of the subject.  As will be seen, nonparametric regression is a powerful, well-developed

method with many possible applications to air quality studies and, indeed, atmospheric sciences in general.

It is very difficult to locate even a single strong peak accurately from a simple scatter plot of the data versus

hourly resultant wind direction.  This is seen in Figure 1, a scatter plot of hourly concentrations of

cyclohexane observed during 1997 at the Deer Park site near the Houston ship channel in Houston, Texas,

USA, an area dominated by large refineries and petrochemical industries. The wind speed and direction

were measured at the site.  The wind direction is the azimuth angle (measured clockwise from north) that

the wind is blowing from.  The figure clearly shows high concentrations when the wind comes from

between 0 and 50 degrees and between 300 and 350 degrees, but that is about all that can be said.

The usual method of analysis of the data in Figure 1 is to group the data into bins of width ?? based on

wind direction and calculate the average concentration in each bin.  The result can be displayed as a simple

bar chart as in Figure 2 or as a polar chart.  Polar charts are not used here because small peaks are forced

into an area near the origin, making them hard to see.  In Figure 2 the bins are 10 degrees wide and start at

0 degrees.  When the wind speed is low, the direction is not well determined, consequently all hours with

wind speed less than 1 mile per hour were excluded from Figure 2.  It is now clear that the data possess

several peaks, including a large peak around 330 degrees; but a more precise estimate of the peak location

is not possible for reasons discussed next.

Bar plots such as Figure 2 have major limitations for the problem at hand.  The location of the peaks is

highly dependent on the choice of the bin size ?? and the location of the boundaries of the bins.  Peaks that

are closer together than 2?? may not be resolved and the location of a peak maximum cannot be estimated

to better than ± ??, at best.  This is less of a problem if ? ? can be made as small as a degree or two.  With

bins this small, however, almost always there are many bins in the less frequent wind directions that will
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have too few observations.  In practice, even with hourly data for an entire year, bin size can seldom be

made less than 10 degrees.

In addition to the large peaks, several small peaks are seen in Figure 2 at about 170, 220, 260, and 290

degrees.  Which, if any, of these are real peaks and which are just random fluctuations in the data?  Reliable

error bars (or confidence intervals) would help answer these questions.  For large peaks, confidence

intervals would put bounds on the peak height and provide a measure of the error in peak location.

Based on the above discussion, a method is needed to estimate the location of large peaks more precisely

and reliably separate peaks that are close to each other.  The method should produce statistical confidence

intervals.  Finally, any parameters needed by the method, such as bin size in the bar chart, should be

estimable by a reproducible, quantitative algorithm, to reduce the subjectivity of the analysis.

Such a method with all these properties exists and is known in the statistical literature as nonparametric

regression.  The following section will briefly introduce the method.  This is followed by the application of

the method to cyclohexane data from two sites in Houston, Texas.  Cyclohexane is chosen to test the

method because 70% of the industrial emissions in the region are known to be from a single source.  Thus,

the intersection of two lines drawn from each site in the direction of the largest peak should be the location

of this source.  The success of the method can be judged by how closely the predicted position of the source

corresponds to the known location.

Nonparametric Regression

Kernel Estimators

One obvious improvement that overcomes some of the problems of a simple bar chart is to average over a

sliding window of width ?? centered at ?. Let the observed average concentration for the time period

starting at ti be Ci, where i = 1, …, n observations.  Further, let the resultant wind direction for the ith time

period be Wi, then the average concentration in the sliding window centered at ? is



4

i

n

i
i CWKNC )()(

1

1∑
=

− −= θθ , (1)

where K(x)=1, for x – ? ? /2 = x = x + ?? /2, and zero otherwise, and N is the number of data points inside

the sliding window.  Figure 3 shows the results of this method applied to the same data as Figure 1.  This is

certainly an improvement over Figure 2, but the curve in Figure 3 is not very smooth, which makes

determining peak locations difficult.  The problem is that the function K gives equal weight to all the

measurements inside the sliding window.  A more reasonable approach would be to give less weight to

observations near the edges, as shown next.

To generalize equation 1, it is important that ??, also called the smoothing parameter, appear explicitly in

the equation, so equation 1 is rewritten as
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where K(x) = 1 for -1/2 = x = 1/2, and zero otherwise.  Note that the denominator is simply a complicated

way of writing N, the number of data points for which ? – ? ? /2 = Wi = ? + ?? /2.  In this form the

equation can be generalized by taking K(x) to be any continuous function of x such that

∫
∞

∞−
= 1)( dxxK . (3)

There are many possible choices for K, two of the most often used are:

 the Gaussian kernel

)5.0exp()2()( 22/1 xxK −= −π ,  -8 < x < 8, (4)

and the Epanechnikov kernel.

)1(75.0)( 2xxK −= ,  -1 = x = 1. (5)

Both of these kernels will give maximum weight to observations near ? and less weight to observations

further away.  The major difference between the two is that the Gaussian kernel is defined over an infinite

domain and the Epanechnikov kernel is defined over a finite range.  For wind direction and other circular
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data the Gaussian kernel is preferred.  For data limited to a finite range the Epanechnikov kernel has less

bias at the end points and is preferred, and, under certain conditions, can be shown to converge to the true

expected value at the optimal rate.

The primary nonparametric regression estimator for this paper is given by equation 2 with the Gaussian

kernel.  Technically, this is an example of a Nadaraya - Watson estimator, which is known to be consistent,

that is, as sample size increases the value of the estimate will converge to the true value (Härdle, 1990, p.

25).  Figure 4 shows the result of using this estimator on the Deer Park cyclohexane data.  The plot is much

smoother than the moving average plot in Figure 3.  The gray region surrounding the curve in the figure is

the 95 percent confidence interval, which will be discussed later.

The smoothing parameter for Figure 4 was chosen to produce results comparable with the 10-degree bins in

Figure 2.  To this end, we define the smoothing parameter in terms of the Full Width at Half Maximum

(FWHM), an intuitive measure of the width of the kernel function.  It is simply the full width of the peak in

K measured at the point where the curve has fallen to half its value at the peak.  For the Gaussian kernel,

the FWHM and smoothing parameter are related by:

θ∆= 2FWHM . (6)

Thus, since the FWHM is 10, the Gaussian smoothing parameter (usually called the standard deviation) for

Figure 4 is 10/v2 = 7.07.  In the following, the FWHM will be used as a more intuitive surrogate for the

smoothing parameter.

Choosing the smoothing parameter

The most important decision in nonparametric regression is the choice of the smoothing parameter, or,

equivalently, the FWHM.  If the FWHM is too large the curve will be too smooth and peaks could be lost

or not resolved.  If it is too small the curve will have too many small, meaningless peaks dominated by

noise or large peaks may resolve into false multiple peaks
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There are several ways to select the best smoothing parameter.  This paper applies the cross validation

method (Härdle, 1990, p.152).  For each observed wind direction Wj, j=1…n and associated concentration

Cj=C(t j)  use equation 2 to estimate the expected concentration, but leaving out the jth observation, i.e.
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The optimal smoothing parameter is the one that minimizes V(? ?) , the mean squared difference between

concentration estimated leaving out one observation and the observed concentration:
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For the Deer Park data in Figure 4, the minimum of V occurs at a FWHM of 7.   This is close to the value

of 10 used in Figure 4 but indicates that Figure 4 may be somewhat over-smoothed.

Confidence intervals

The confidence intervals in Figure 4 are calculated from formulae based on the asymptotic normal

distribution of the kernel estimates.  The sample estimate of the variance of the asymptotic distribution of

),( θθ ∆C is given by (Härdle, 1990, pp 98 -101):
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Thus, if ca is the (100-a)-quantile of the normal distribution (1.96 for a = 0.025) the confidence limits on

),( θθ ∆C are given by:
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If a=0.025, then the expression above gives a two-sided 95 percent confidence interval.  This is shown as

the gray shaded area of Figure 4.  From these confidence intervals, it is obvious that the small peak near

170 is real but the peaks near 260 and 290 are not.  The peak near 220 is not an obvious call and requires

further analysis.

The derivation of the equations for the confidence intervals given above are based on assumptions about

the error structure of the data that are often violated by air quality data, e.g. homogeneous variance and lack

of serial correlation.  However, such formulae often perform well on data that does not strictly satisfy the

assumptions of the derivation.  So a test of the formulae for confidence intervals is a worthwhile exercise.

The only independent method of estimating confidence intervals from data that is not simulated is the

bootstrap.  A bootstrap with 1000 resamplings was done on the nonparametric regression of cyclohexane

wind direction for the two sites used in this paper.  From the resulting 1000 nonparametric regression

curves, empirical 95 percent confidence intervals were calculated for each site.  These empirical confidence

intervals were almost identical to those calculated by the above formulae.  Indeed, the graph of the two

curves looks like one curve and is not shown for this reason.  These bootstrap results are discussed further

in the next to last section of this paper.

Bias in nonparametric regression

This type of nonparametric regression has some obvious drawbacks, chief among these being bias.   Since

the data is being smoothed, the peaks usually will not be quite as high or sharp as in reality.  This bias is an

inevitable result of the smoothing.  Bias can be estimated by simply using the output curve in Figure 4 as

the input to the nonparametric regression.  The bias estimate is the difference between the twice-smoothed

curve and the once-smoothed curve.  Calculated this way, the bias in Figure 4 is less than 10 percent at the

peaks, and much less than this elsewhere.  Because the bias is small in the examples considered here, it will

be ignored in the rest of the paper.
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Application to 1997 Houston Cyclohexane Data

Data

Concentration data for cyclohexane and other Volatile Organic Compounds (VOCs) for the year 1997 were

obtained from the U. S. Environmental Protection Agency’s  (EPA) Photochemical Assessment Monitoring

Stations (PAMS) database.  Hourly concentrations from an automated gas chromatograph from two sites

were available. The two sites, Deer Park and Clinton Drive, are shown in Figure 7 in context with nearby

1997 emissions of VOCs taken from the EPA’s AIRS database.  This database does not have emissions of

individual species, unlike the Air Toxics Emissions Inventory.  Extracted from the air toxics inventory,

Table 1lists all the emissions of cyclohexane for the year 1997 in Harris County, Texas, which includes the

city of Houston and the Houston Ship Channel, an area of major petroleum refining and petrochemical

industries.  Table 1 shows that one company, Phillips Petroleum, is the source of almost 70 percent of the

emissions in the inventory.  Thus, one would expect that high concentrations of cyclohexane would be

associated with wind directions at the sites coming from this facility.  Lines drawn in the direction of the

maximum cyclohexane concentrations from the two sites should intersect near the location given for the

source in the inventory.  The accuracy of the nonparametric regression can be judged by how close the

estimated position is to the putative position.

Results

Figure 5 and Figure 6 are the result of nonparametric regression of cyclohexane on wind direction at the

two sites using optimal FWHM values.  Much of the wind data at the Clinton Drive site was missing.

Thus, the wind direction and speed data from Deer Park were used in the analysis of both sites.  The two

sites are only 14.33 km apart and the terrain is very flat, so it is expected that the wind data at one site will

serve for both.  Figure 5 is for Deer Park but it is not the same as Figure 4 for two reasons.  Only data with

wind speed greater than 6 miles per hour (9.66 km per hour) were used, instead of all data greater than 1

mph as for Figure 4.  The optimal FWHM for data with wind speed greater than 6 mph was calculated to be

5, significantly smaller than 10 used in Figure 4.  The data are restricted to periods with wind speed greater

than 6 mph because the Deer Park site is 9.25 km from the Phillips source and the clearest impact will be

seen if the travel time from the source to the sampler is less than 1 hour.  For the same reason, the data from
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Clinton Drive were restricted to hours where the wind speed is greater than 5 mph (8 km per hour) since the

source is 7.91 km from the site.  Using the known location of the source to restrict the data is not a case of

unacceptable circular reasoning (using the source location to estimate the source location).  Data for all

wind speed greater than 1 mph could have been used to estimate the location of the peaks and get an

approximate location of the source.  From this the approximate distance to the sites can be estimated, which

would lead to the same result without prior knowledge of the source location.

Table 2 gives the wind direction and the expected concentration of the four largest peaks in Figure 5 and

Figure 6.  The nonparametric regression calculations were carried out for each whole degree from 0 to 359.

Thus, to get the entries in Table 2 it was necessary to interpolate to find the peak locations with greater

precision than 1 degree.  If the data are equally-spaced with spacing h and local maximum C(xo),  then the

interpolated maximum is at xo+ ph, where:

))()(2)((2
))()((

000

00

hxCxChxC
hxChxC

p
++−−

+−−
= . (11)

The interpolated maximum concentration is given by

)()1(5.0)()1()()1(5.0)( 00
2

00 hxCppxCphxCppphxC +++−+−−≈+ . (12)

Both these formulae are from Abramowitz and Stegun (1972).

Comparison to known sources

The sources in Table 1 can now be compared with the peaks in Table 2.  A measure of the uncertainty of

the peak locations is helpful in this comparison.  Table 2 gives very conservative ranges for the peak

locations that are calculated by drawing a horizontal line through the peak and reading its intersection with

the upper confidence boundary.  Not surprisingly, at both sites the largest peak has an azimuth consistent

with the location of the largest source in the inventory.  For Clinton Drive, the second largest source in the

inventory also lies in the azimuth range of the largest peak in Figure 6.  This may explain why this peak is

so broad.  The second largest peak for Clinton Drive is at 160, which corresponds well with Valero

Refining in the inventory.  Valero only accounts for 4.79 percent of the emissions but it is located only 1.17

km from the monitoring site.  It seems reasonable to associate this peak with this source.  The remaining
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two small peaks in Figure 6 do not correspond to any source in Table 1.  These could be emissions

associated with non-industrial sources such as roadways.  At Deer Park, the location of the second largest

peak in Figure 5 corresponds closely with Enichem Americas in Table 1.  However, the location of the

source is given an accuracy of only 11 km, so one cannot definitely associate this peak with this source.

The remaining two small peaks in Figure 5 do not correspond to any sources in Table 1.

Location of the largest source

The location of the Deer Park and Clinton Drive sites as given by the AIRS database are 29.6694 N,

95.1281 W, and 29.7333 N,  95.2569W.  Using these positions and the azimuth of the largest peaks the

estimated location of the source is 29.7378 N,  95.1751 W.  (All calculations involving longitude and

latitude were performed using functions from the Matlab Mapping Toolbox.)  The distance between this

and the location given in Table 1 is 0.436 km.  The variability in the predicted location was estimated by

1000 bootstrap calculations.  The peak positions were normally distributed with the standard deviation for

Deer Park being only 0.7241 degrees and 1.3728 degrees for Clinton Drive.  This gives 99 percent

confidence intervals for the peak location of (327.25, 330.99) and (82.89, 89.97) for Deer Park and Clinton

Drive, respectively.  Note that these intervals are much smaller than those given in Table 2, validating the

statement that the ranges in the Table are very conservative ranges.

The corresponding estimated source locations calculated for the 1000 bootstrap samples are given in Figure

7.  The cloud of points does not quite cover the location of the source given in Table 1.  However, the

figure also shows that the location in Table 1 does not correspond to any of the VOC sources in the AIRS

inventory, so it may not be entirely reliable. Interestingly, the cloud of points lies neatly between the

location in Table 1 and the sources of Phillips Petroleum that lie just to the south.  (No VOC emissions are

hidden under the cloud and the nearby VOC sources to the east are not part of Phillips Petroleum.)  All

things considered, the location predicted by the nonparametric regression is in excellent agreement with the

inventories.
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Discussion

Now that this technique has been validated, it may be applied to other chemical species in the air that are

not dominated by a single source.   The results will help reconcile the emissions inventories to observed

concentrations.

In obvious extension of this method, the wind direction analysis presented here can be applied to the source

contributions estimated from receptor models.  The results should be sharper that using chemical species

that usually have many sources.  Previous work on comparison of the emissions inventory for the Houston

ship channel relied on simple bar charts to determine the direction of sources (Henry et al. 1997).  Later

work of this type should benefit from the methods presented here.  Nonparametric regression techniques

could also be used in other air quality applications, such as trend analysis of time series or simply providing

data smoothing for exploratory analysis of air quality data.

This work has demonstrated the usefulness of nonparametric regression of air quality data on wind

direction.   Nonparametric regression allows for accurate determination of the wind direction of maximum

concentration.  However, ground level concentrations are function of wind speed as well as wind direction.

For elevated sources, ground level concentration can be a complex function of wind speed.  Indeed,

scenarios could be constructed where the direction of the maximum average concentration does not

correspond to the direction of the source.  Such situations are probably rare, but a method that included the

effects of wind speed would be desirable.  Simultaneous nonparametric regression of concentrations on

wind direction and wind speed is possible and could help throw light on, among other things, the distance

to the sources and whether the sources are ground level or elevated.  This will be the subject of a sequel to

this paper.  More can be done with the confidence intervals to determine if a peak is real or noise and to

estimate the variance of the peak location.  This too will be the subject of a later paper.
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Table 1 Emissions of Cyclohexane for 1997 in Harris Co., TX.

Deer Park Clinton Drive
Facility Name Release

Type
Total

Release
(lbs/year)

Percent
of Total

Latitude Longitude Accuracy
(m)

Azimuth Distance
(Km)

Azimuth Distance
(km)

Phillips Petroleum Co. STACK 167000 58.74 29.74167 95.17556 50 330.27 9.25 83.25 7.91
Phillips Petroleum Co. FUGITIVE 33000 11.61 29.74167 95.17556 50 330.27 9.25 83.25 7.91
Exxonmobil Baytown Refinery STACK 15282 5.38 29.73944 95.00694 80 56.33 14.05 88.33 24.15
Exxonmobil Baytown Refinery FUGITIVE 3777 1.33 29.73944 95.00694 80 56.33 14.05 88.33 24.15
Enichem Americas Inc. STACK 16402 5.77 29.77194 95.01694 11000 43.24 15.65 79.44 23.56
Lyondell-Citgo Refinery FUGITIVE 8472 2.98 29.71806 95.23000 50 298.79 11.23 123.13 3.11
Lyondell-Citgo Refinery STACK 7509 2.64 29.71806 95.23000 50 298.79 11.23 123.13 3.11
Shell Chemical STACK 7000 2.46
Valero Refining Co. STACK 6628 2.33 29.72333 95.25306 20 296.43 13.48 161.34 1.17
Valero Refining Co. FUGITIVE 2323 0.82 29.72333 95.25306 20 296.43 13.48 161.34 1.17
Westhollow Tech. Center STACK 6365 2.24 29.725 95.63333 11000 277.34 49.19 268.63 36.36
Millennium Petrochemical Inc. FUGITIVE 4360 1.53 29.71389 95.06833 80 49.40 7.60 96.72 18.34
Crown Central Refinery FUGITIVE 3594 1.26 29.72389 95.20833 50 308.00 9.84 102.60 4.81
Fmc Corp. FUGITIVE 2576 0.91 29.6325 95.04140 80 116.11 9.33 118.25 23.65
Total Emissions 284288

Table 2 Largest Peaks in the nonparametric regression of cyclohexane on wind direction, Figure 5 and Figure 6.

Deer Park Clinton Drive
Maximum Azimuth Azimuth Range Maximum Azimuth Azimuth Range

Peak 1 14.953 329.12 325.64 - 332.68 7.197 86.43 80.56  - 92.76
Peak 2 5.391 43.72 40.68 - 46.96 4.251 160.04 153.90 - 166.21
Peak 3 2.197 21.60 15.51 - 25.01 1.147 332.63 326.37 - 340.20
Peak 4 1.775 168.89 165.87 - 171.44 1.027 240.95 235.12 - 248.86
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Figure 1. Hourly cyclohexane measured at Deer Park during 1997 versus the azimuth of the wind direction.
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Figure 2. Bar chart of average cyclohexane in 10 degree bins starting at zero.
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Figure 3. Moving average cyclohexane concentrations calculated using a 10-degree wide sliding window.
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Figure 4. Nonparametric regression of cyclohexane versus wind direction using a Gaussian kernel with a 10 degree FWHM.  Data with wind speed less than 1
mile per hour are excluded.  The gray region is the 95 percent confidence interval.
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Figure 5. Nonparametric regression of cyclohexane at Deer Park using a Gaussian kernel with a FWHM of 5.  Data are restricted to periods with wind speed
greater than 6 miles per hour (about 1 hour travel time from the largest source to the site).  The gray region is the 95 percent confidence interval.
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Figure 6. Nonparametric regression of cyclohexane at Clinton Drive using a Gaussian kernel with a FWHM of 10.  Data are restricted to periods with wind
speed greater than 5 miles per hour (about 1 hour travel time from the largest source to the site).  The gray region is the 95 percent confidence interval.
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Figure 7. Map of 1000 bootstrap locations of the cyclohexane source (black dots).  The location of the Phillips Petroleum source in the inventory is shown as a +.
The Deer Park site is the x and the Clinton Drive site is the *.  The gray areas are water bodies.  The circles are VOC sources with the area proportional to the
annual emission rate.  The cloud of black dots does not hide any sources.  Railroads are dash-dotted lines.


