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Summary

We propose a recursive algorithm as a more useful alternative to the Brook expansion for

the joint distribution of a vector of random variables when the original formulation is in

terms of the corresponding full conditional distributions, as occurs for Markov random

fields. Usually, in practical applications, the computational load will still be excessive

but then the algorithm can be used to obtain the componentwise full conditionals of

a system after marginalizing over some variables or the joint distribution of subsets of

the variables, conditioned on values of the remainder, which is required for block Gibbs

sampling. As an illustrative example, we apply the algorithm in the simplest nontrivial

setting of hidden Markov chains. More important, we demonstrate how it applies to

Markov random fields on regular lattices and to perfect block Gibbs sampling for binary

systems.
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1 Introduction

Let X = (X1, . . . , Xn) denote a vector of n random variables, which here we take to be

discrete. Let Si denote the minimal sample space for Xi and S that for X. Assume the

positivity condition (e.g. Besag, 1974) that S = S1 × . . . × Sn, which implies that any

conditional probabilities we may wish to consider are well defined. A Markov random

field for X is then a corresponding probability distribution {π(x) : x ∈ S} that is specified

via its n local characteristics, more recently termed full conditionals, {π(xi|x−i) : x ∈ S},
where x−i denotes all components of x other than xi. Markov random field formulations

originated in spatial statistics and there it is typical to choose the full conditional for

each Xi to depend only on a few of the other Xj’s. A well–known example is the Ising

model that occurs in statistical physics (Newman & Barkema, 1999, Ch. 1, 3, 4) but

Markov random fields also play a central role in graphical models (e.g. Lauritzen, 1996),

in random graphs (e.g. Frank and Strauss, 1986), in Markov chain Monte Carlo methods

(e.g. Besag and Green, 1993; Smith and Roberts, 1993) and elsewhere.

The requirements for a self–consistent specification of π(.) via its full conditionals are

not at all obvious but are identified by the Hammersley–Clifford theorem (Besag, 1974).

Then, if a is any fixed vector in S, the Brook (1964) expansion determines π(.) up to

scale:

π(x) / π(a) =
n∏

i=1

{π(xi|x<i, a>i) / π(ai|x<i, a>i)}, x ∈ S, (1)

where, for example, x<i = {xj : j < i}. Although the normalising constant for π(.) is

available in theory as an n–fold summation, its direct evaluation is usually prohibitive

unless n is very small. Even for a simple binary Markov random field, such as the Ising

model on the physically trivial 10×10 rectangular array, naive calculation of π(.) cannot

be implemented because it involves summation over 2100 terms. Indeed, it was for such

reasons that the Metropolis et al. (1953) and other Markov chain Monte Carlo algorithms

were first developed.

It is of course always true that

π(x) = π(x1)
n∏

i=2

π(xi|x<i), (2)
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and this is the natural factorisation in time series analysis, with the index i referring

to temporal order. However, for Markov random fields, the terms in the product are

not easily available. There are also lesser tasks for which solutions in terms of the full

conditionals of X are important but awkward to obtain. Examples include the joint

distribution of a particular subset of the Xi’s, given the values of the remainder, and the

componentwise full conditionals of such a subset, irrespective of the other components.

It is not obvious how to make such calculations in a reasonably efficient manner. This is

especially important in Markov chain Monte Carlo algorithms where the computations

need to be repeated a very large number of times. The Brook expansion (1) is not well

suited to such tasks.

Such difficulties motivate the new recursion in §2 for the individual terms in (2). This

allows explicit calculation of π(.) when the conditional probability structure is sufficiently

straightforward and is also useful more generally in tackling the simpler subtasks that

are described above. A mainly illustrative example is given in §3, where we apply the

recursion to a hidden Markov chain and obtain a new algorithm of comparable complexity

to that of Baum et al. (1970). We outline some extensions to more complex systems.

In §4, we describe implementation of the recursion specifically for a first–order Markov

random field on a finite rectangular array and evaluate the corresponding complexity.

We also discuss the corresponding algorithm for second–order Markov random fields.

Larger systems, whether or not they are on a regular array, can be broken down into

subsystems which are conditioned by their current boundary values, so that block Gibbs

samplers (e.g. Besag et al., 1995, §2.4.5) can be devised. Finally, in §5, we show that, for

multivariate binary distributions satisfying total positivity (Karlin and Rinott, 1980),

our implementation of block Gibbs satisfies the monotonicity condition of Propp and

Wilson (1996), so that perfect block samplers can be constructed. For example, this

applies to autologistic distributions with nonnegative interactions.
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2 An algorithm for Markov random fields

In this section, we derive an algorithm for evaluating the individual terms on the right–

hand side of (2) as functions of the full conditionals {π(xk|x−k)} for k = 1, . . . , n. We

achieve this by interpreting π(xi|x<i) as the full conditional of Xi in the Markov random

field induced by marginalizing over X>i and using the following simple result.

Lemma. Let U , V and W denote discrete random variables. Then, in an obvious

notation,

pr(u|v) = {∑

w

pr(w|u, v) / pr(u|v, w) }−1, (3)

provided the conditional probabilities are well defined.

If we now interpret the random variable V as a random vector, then the relevance of

the lemma is that it identifies the full conditional of U , and similarly of any component,

in the reduced system (U, V ) from the full conditionals in the system (U, V,W ). For

example, the term for i = n− 1 in (2) is obtained immediately from equation (3) by the

substitution U = Xn−1, V = X<n−1 and W = Xn. Of course, additional full conditionals

in the system (X1, . . . , Xn−1) are required to evaluate the term for i = n − 2 in (2), and

so on, but these can also be obtained from (3). This process leads to a recursion for π(.),

based on the following general result, which is an immediate consequence of the Lemma.

Theorem. Let X = (X1, . . . , Xn) denote a vector of discrete random variables

with joint distribution {π(x) : x ∈ S}, defined in terms of its full conditionals and

satisfying positivity. Write Xk = (X1, . . . , Xk) for k = 1, . . . , n, so that, for example,

xk
−i = {xj : j ≤ k, j �= i} for i = 1, . . . , k. Then

π(xi|xk−1
−i ) = {∑

xk

π(xk|x<k) / π(xi|xk
−i) }−1, i = 1, . . . , k − 1, (4)

for all x ∈ S.

As a trivial example, suppose that n = 3. First, we can evaluate

π(x1|x2) = {∑

x3

π(x3|x1, x2) / π(x1|x2, x3) }−1

π(x2|x1) = {∑

x3

π(x3|x1, x2) / π(x2|x1, x3) }−1
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for any x1 and x2 and then

π(x1) = {∑

x2

π(x2|x1) / π(x1|x2) }−1.

Note that quite generally the indexing of the n random variables is arbitrary and that, as

with (1), the n! available choices may lead to factorizations that look distinct but which,

of course, must lead to the same joint distribution.

In the worst case, no conditional independence relations hold between X1, . . . , Xn and

there is no preferred indexing. Then, assuming for simplicity that each Si has the same

cardinality s, the number of operations required to evaluate π(x) is of order sn and, as

one would expect, there is no benefit. However, when the Markov random field has a

simplified structure, judicious indexing leads to massive reductions in the computational

load, as we demonstrate in §3 and §4.

Nevertheless, it is unlikely that π(x) can be evaluated explicitly and so we turn now to

the intermediate task of constructing block Gibbs samplers. Such samplers are intended

to increase mobility around S by updating sets of conditionally dependent Xi’s rather

than single components. Without loss of generality, consider any particular block B of b

components, labelled i = 1, . . . , b. Then the analogue of (2) is

π(xB|x−B) =
b∏

i=1

π(xi|x<i, x−B), (5)

which can be evaluated from the full conditionals as above. For a simple example, suppose

that n = 5 and that we require

π(x1, x2, x3|x4, x5) = π(x1|x4, x5) π(x2|x1, x4, x5) π(x3|x1, x2, x4, x5).

Then, as one of six possible decompositions, we have

π(x1|x4, x5) = {∑

x2

π(x2|x1, x4, x5) / π(x1|x2, x4, x5) }−1,

with

π(x1|x2, x4, x5) = {∑

x3

π(x3|x1, x2, x4, x5) / π(x1|x2, x3, x4, x5) }−1

and a corresponding formula for π(x2|x1, x4, x5). We return to block Gibbs in §5.
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3 Hidden Markov chains

Hidden Markov chains are relevant in quite diverse areas, including speech recognition,

neurophysiology, protein modelling and climatology; see, for example, MacDonald and

Zucchini (2000). Here we use hidden Markov chains to illustrate the ease with which

the theorem in §2 can be applied. Thus, consider random variables X1, . . . , Xn, where

X1 has distribution {p1(x1)} and the subsequent X2, . . . , Xn follow a Markov chain with

transition probabilities {p(xi|xi−1)}. The complication in a hidden Markov chain is that

the outcomes x1, . . . , xn cannot be observed and only a degraded version yi of each

xi is available, generated via conditional probabilities {f(yi|xi)}. It is implicit in our

formulation that p(.|.) and f(.|.) are time homogeneous but this is merely a notational

convenience. Also, although we appear to assume that p1(.), p(.|.) and f(.|.) are known,

they can change dynamically as part of a wider simulation algorithm.

The standard tool for analyzing hidden Markov chains is the Baum et al. (1970)

algorithm. The original goal was to evaluate pr(y) but the underlying recursions are also

used for restoration and for simulation, whether in a frequentist or Bayesian paradigm;

see, for example, Robert et al. (2000). Here we focus on the calculation of {π(x|y) : x ∈
S}, where π now refers to the distribution of X given Y = y. Equation (2) is replaced

by

π(x|y) = π(x1|y)
n∏

i=2

π(xi|xi−1, y), x ∈ S, (6)

using the Markov property. Elementary probability manipulations and the Markov struc-

ture imply that

π(x1|y) ∝ f(y1|x1) pr(y>1|x1) p1(x1), (7)

π(xi|xi−1, y) ∝ f(yi|xi) pr(y>i|xi) p(xi|xi−1), i = 2, . . . , n, (8)

where proportionality is with respect to the first argument, and with the convention that

pr(y>n|xn) ≡ 1. The Baum et al. (1970) algorithm uses the recursion

pr(y>i|xi) =
∑

xi+1

pr(y>i+1|xi+1) f(yi+1|xi+1) p(xi+1|xi), (9)

evaluated in reverse order i = n − 1, . . . , 1, then substitutes into (7) and (8), and finally

normalizes the results with respect to each xi. Note that dummy renormalisations are
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generally required during the backwards recursion because pr(y>i|xi) becomes vanishingly

small as i decreases. Equations (7), (8) and (9) enable X given y to be simulated via (6)

and other quantities of interest to be calculated. For further details, see MacDonald and

Zucchini (2000, Ch. 2 and Appendix A).

We now consider the analogue of the above results, based on the lemma in §2. If, in

equation (3), we condition on y throughout, let U = Xi, V = Xi−1 and W = Xi+1, and

apply the Markov property to π(xi+1|xi−1, xi, y), we immediately obtain the backwards

recursion,

π(xi|xi−1, y) = { ∑

xi+1

π(xi+1|xi, y) / π(xi|xi−1, xi+1, y) }−1, (10)

for i = n − 1, . . . , 2, with

π(x1|y) = {∑

x2

π(x2|x1, y) / π(x1|x2, y) }−1. (11)

In both (10) and (11), the denominator in the summation can be evaluated explicitly in

terms of f(.), p(.) and p1 because it depends on y only through yi and so

π(xi|xi−1, xi+1, yi) ∝ f(yi|xi) p(xi+1|xi) p(xi|xi−1),

for i = 2, . . . , n − 1, and

π(x1|x2, y1) ∝ f(y1|x1) p(x2|x1) p1(x1),

with normalizing constants found by summing the right–hand sides over xi. The number

of floating point operations required in calculating the data–dependent conditional prob-

abilities (6) is of order n, as it is in the Baum et al. (1970) algorithm. The multiplicative

factor is generally greater but the new recursion is more direct, does not require dummy

renormalisations and generalizes very easily, as we illustrate below.

Suppose, for example, that the underlying Markov chain is second–order rather than

first–order. Then the theorem in §2 immediately yields the backwards recursion,

π(xi|xi−2, xi−1, y) = {∑

xi+1

π(xi+1|xi−1, xi, y) / π(xi|xi−2, xi−1, xi+1, y)}−1

π(xi|xi−2, xi−1, xi+1, y) = {∑

xi+2

π(xi+2|xi, xi+1, y) / π(xi|xi−2, xi−1, xi+1, xi+2, y)}−1
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in which

π(xi|xi−2, xi−1, xi+1, xi+2, y) ∝ f(yi|xi) p(xi+2|xi, xi+1) p(xi+1|xi−1, xi) p(xi|xi−2, xi−1) .

Now suppose, in addition, that yi depends on xi−2 and xi−1, as well as xi. Then the

general recursion is unchanged and f(yi|xi) in the final equation is merely replaced by

f(yi+2|xi, xi+1, xi+2) f(yi+1|xi−1, xi, xi+1) f(yi|xi−2, xi−1, xi).

Other forms of generalization are also available but below we discuss applications to

Markov random fields.

4 Markov random fields on regular lattices

Consider a rectangular lattice, with r rows and c columns, the rc sites of which are

labelled lexicographically. Suppose that, associated with each site i, there is a random

variable Xi. We assume that X = (X1, . . . , Xrc) is a first–order Markov random field

(Besag, 1974), so that the full conditional of each Xi depends only on the xj’s at sites

directly adjacent to i. In practice, X might be conditioned on a fixed or, in block Gibbs

sampling, a temporarily fixed border.

It follows from the global Markov property (Besag, 1974) that X≥i, given X<i, depends

only on Xρi, where ρi comprises the c sites previous to i, except for simple further

reductions when i is in the first and last rows. Therefore, the same is true of Xi itself

and equation (2) becomes

π(x) =
rc∏

i=1

π(xi|xρi). (12)

We evaluate the terms on the right–hand side of (12) in reverse lexicographic order, in

which case π(xi|xρi) is determined by applying (4) successively for k = i + c, . . . , i + 1,

except for reductions in row r. To be more explicit, consider any i not in the first or last

rows or columns. First note that each use of (4) requires 2s floating point operations.

When k = i + c,

π(xi|xi+c−1
i ) ≡ π(xi|xi−c, xi−1, xi+1, . . . , xi+c−1),
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so that a total of 2sc+3 operations is involved in calculating all possible values of the

left–hand side. However, for each of the other c − 1 values of k,

π(xi|xk−1
i ) ≡ π(xi|xi−c, xk−c, . . . , xi−1, xi+1, . . . , xk−1),

involving the lesser number 2sc+2 of operations. Hence, the total number of operations in

evaluating all terms on the right–hand side of (12) is bounded above by 2rc(c+s−1)sc+2.

This also applies when there is a border. Note that, if r < c, it is generally better to

interchange rows and columns. We have used the algorithm for binary systems with

c ≤ 12. For large binary systems, one can work with say 10 × 10 blocks.

The algorithm extends immediately to second–order Markov random fields, in which

the full conditional of each Xi depends additionally on the xj’s at sites diagonally adjacent

to i. Then ρi in (12) comprises the c + 1 sites previous to i, except for reductions in

the first and last rows and in the first column. Now π(xi|xρi) is determined by applying

(4) for k = i + c + 1, . . . , i + 1, apart from reductions in special cases. Finally, note

that versions for other lattices can be constructed, especially for the first–order field on

a hexagonal lattice.

5 Perfect block Gibbs for binary distributions

In standard Markov chain Monte Carlo algorithms, it is often difficult to determine an

adequate burn–in period during which output should be discarded. In principle, the

problem can be eliminated using Propp and Wilson’s (1996) “coupling from the past”.

In practice, the method is limited by its reliance on a stringent monotonicity condition

and by the possible need for a prohibitive run length. Nevertheless, Propp and Wilson

(1996) show that their methodology can be used in several important cases, including

both the Gibbs sampler and Sweeny’s (1983) algorithm applied to the two–dimensional

ferromagnetic Ising model, even at its critical temperature. More generally, their method

extends to any autologistic distribution (Besag, 1974) having non–negative interactions;

and, indeed, to the Gibbs sampler for any binary distribution that satisfies what is known

as the FKG condition (Fortuin, Kasteleyn and Ginibre, 1971) in statistical physics and

as multivariate total positivity (Karlin and Rinott, 1980) in statistics.
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Definition. Let π(.) denote a (discrete) distribution over a sample space S. Then

π(.) satisfies multivariate total positivity if, for any pair of vectors y, z ∈ S,

π(min{y, z}) π(max{y, z}) ≥ π(y) π(z) , (13)

where the minimum and maximum functions act elementwise.

It is known (Karlin and Rinott, 1980) that, for binary distributions, (13) is equivalent

to the requirement that the full conditional distribution of each pair of components,

given any particular values of the others, has a non–negative log–odds ratio. This is

clearly satisfied by but is not restricted to any binary distribution having non–negative

interaction parameters in its Bahadur expansion, including autologistic distributions with

non–negative interactions. It is also standard, and can be shown directly with some care,

that, if π(.) satisfies (13), then so does any marginalization of π(.). This is crucial below.

Note here that marginalizations of autologistic distributions are not generally autologistic

themselves.

Although the monotonicity of the Gibbs sampler for binary distributions satisfying

(13) is implicit in Propp and Wilson (1996), we briefly recall the main idea. For n

components in π(.), imagine 2n runs of the Gibbs sampler, in which each run is initialized

by a different configuration but starts with the same random seed. Suppose that the

usual inverse distribution function method is employed to update each variable. Then

(13) implies that, at any stage, a component that takes the value 1 in the run initialized

by all 0’s must also take the value 1 in all other runs at that stage; and correspondingly

a component that takes the value 0 in the run initialized by all 1’s must also take the

value 0 in every run. This monotonicity implies that all realizations must have coalesced

by the time those initialized by all 0’s and by all 1’s are observed to do so. Thus, it

is necessary merely to run the two extreme cases to determine the time at which all

2n realizations are coalescent. Because this coupling time is random, it does not itself

produce a random draw from the target distribution and it is this problem that can be

fixed by coupling from the past. The required monotonicity condition remains the same.

Now suppose π(.) is a multivariate binary distribution satisfying (13) and that, de-

spite monotonicity or indeed because of it, a single–component Gibbs sampler produces
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coalescence times that are prohibitive. For applications in statistics, Sweeny’s algorithm

may either be irrelevant or counter–productive, in which case a block Gibbs sampler may

provide a viable alternative, provided that block updates are reasonably efficient. In fact,

since π(.) satisfies (13), so do the marginal distributions π(x≤i, x−B), corresponding to

the terms on the right–hand side of (5), and it follows that the block updates and the

sampler itself inherit the required monotonicity.
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