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ABSTRACT
The field of environmental statistics is one of rapid growth at the moment. Environ-

mental decision-making is prevalent in much of the world, and politicians and other decision

makers are requesting new tools for understanding the state of the environment. In this pa-

per, three case studies involving water pollution, air pollution, and climate change assess-

ment are presented, together with brief descriptions of some other areas of environmental

statistics. A discussion of future directions of the field concludes the paper.
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1. Introduction
The field of environmental statistics is relatively young. The term “environmetrics” was

apparently introduced in an NSF proposal by Philip Cox in 1971 (Hunter, 1994). During

the last decade, the field has achieved some recognition, in that there now are three journals

wholly or partially devoted to the field (Environmetrics published by Wiley; Environmental

and Ecological Statistics published by Kluwer, and Journal of Agricultural, Biological and

Environmental Statistics published by the American Statistical Association). There are three

regularly occurring conferences with environmental statistics focus: the annual international

Environmetrics meeting, the (roughly) biennial SPRUCE (Statistics for Public Resources,

Utilities, and in Care for the Environment), and the triennial International Meetings on Sta-

tistical Climatology. There is an international Environmetric Society (TIES), The Royal Sta-

tistical Society has an Environmental Statistics Study Group, the American Statistical Asso-

ciation has a section on Statistics and the Environment, and the International Statistical In-

stitute is currently discussing such a section. Volume 12 of the series Handbook of Statis-

tics (Patil and Rao, 1994) was devoted to the topic of environmental statistics. Its 28 chap-

ters constitute an interesting overview over the field. Wiley recently published a four-volume

Encyclopedia of Environmetrics (El-Shaarawi and Piegorsch, 2001), with 530 entries writ-

ten by 490 researchers. The Center for Statistical Ecology and Environmental Statistics at

the Pennsylvania State University has been operating since 1969 with funding from the

U.S. National Oceanic and Atmospheric Administration (NOAA). The US Environmental

Protection Agency has funded a five-year National Research Center for Statistics and the

Environment at the University of Washington, and is currently funding a similar Center for

Integrating Statistical and Environmental Science at the University of Chicago.

In spite of all this activity, there are only a handful of courses taught in environ-

mental statistics at US universities. As far as I know, only three schools in the United States

(Cornell, Tulane and Penn State) offer Master’s degrees in environmental statistics, al-
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though several other departments allow an emphasis in environmental statistics for a general

graduate degree in Statistics. Perhaps this is due to the relative rarity of Ph.D. level envi-

ronmental statisticians; perhaps it is due to the complexity of many environmental problems;

perhaps it is due to lack of critical mass even in the Statistics departments with a strong em-

phasis in environmental research. The field of environmental statistics has not yet reached

the level of recognition within the statistical community that is needed to obtain the status of

a separate subfield. Rather, it seems that the majority of statisticians consider environmental

statistics as just one particular application of statistics. I will return to this discussion in the

final section of this article.

Following my teaching strategy when teaching environmental statistics at the Uni-

versity of Washington, I will try to illustrate some aspects of the field by presenting three

case studies, covering some aspects of environmental statistics that I and some of my co-

workers currently are involved in. The first case deals with biological monitoring of water

quality. Here, the methods are largely borrowed from classical compositional data models.

The second deals with source-receptor modeling, and is using tools from multivariate statis-

tics. Finally, I describe some aspects of stochastic downscaling of general circulation mod-

els to model local and mesoscale precipitation. The modeling techniques in this case origi-

nated in ecology. Common to these situations is considerable spatial and temporal depend-

ence. These cases are some that I have been directly involved with. They do not span the

range of work that could go under the title environmental statistics (and the references are in

no way comprehensive), so in the penultimate section of the paper I present an overview of

some of the other areas of research in the field, and sketch some of the methodology needed

for that work. Four major areas: assessment of deterministic models (Fuentes et al, 2003);

estimation of health effects (Dominici et al, 2003); data assimilation (Bertino and Wacker-

nagel, 2003); and hierarchical modeling of complex systems (Wikle, 2003) are covered in

other articles in this issue. The final section of this paper concerns the future of environ-

mental statistics.
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2. Biological monitoring
Traditionally, most environmental monitoring has been based on chemical analysis

of water, air and soil. This allows for the identification of sources and pathways of pollution,

and the thought is that some of the chemical changes are “biologically relevant.” Biologists

have generally not been convinced that the concept of biologically relevant chemistry is a

valid one, and have proposed direct biological rather than indirect chemical monitoring

methods (Cairns, 1979; Marmorek et al, 1988). The basic idea of biological monitoring is to

study the effect of environmental insults on the biota by measuring changes in population

composition, biodiversity, and so-called indicator species, or species that are particularly

sensitive to certain kinds of pollution. There has also been an effort towards deriving in-

dexes of pollution effect or biological integrity of a stream or watershed (e.g., Fore et al.,

1996)

The US Environmental Protection Agency (EPA) started in 1989 an ambitious

monitoring program called EMAP (Environmental Monitoring and Assessment Program).

This was intended to create a “report card” for the state of the US environment. While

EMAP has many components (see its home page at http://www.epa.gov/emap), I will here

mainly be concerned with an effort to characterize changes in estuarine environments on the

East coast of the United States. Specifically, I consider the Delaware Bay in the mid-Atlantic

region, and in this bay the population of benthic (or bottom-dwelling) organisms.

The spatial design of the EMAP study (Overton et al., 1990) is a hexagonal grid,

with a random starting point and a side of 27 km, resulting in 12,600 grid points over the

continental United States, of which 25 fall in the Delaware Bay. The EMAP protocol re-

quired revisiting some of the sites on a rotating 3-year basis. The measurements made at

each site (three times each summer) included a bottom grab sample of benthic organisms,

together with measurements of covariates such as temperature, depth, and salinity.
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The basic biological tenet behind this sampling scheme is that environmental insults

affect the distribution of organisms, in that, with increased pollution levels, pollution tolerant

species would tend to get a larger proportion of the sample than do sensitive species.

Looking at the benthic fauna we expect bottom-feeding organisms to exhibit the clearest

response to harmful changes in the sediment, while organisms that feed in the water column,

or have mixed feeding strategies, would not react as much to changes in sediment quality.

Both groups of organisms would be expected to react to changes in water quality. Consul-

tation with biologists led to a classification scheme (see Billheimer et al., 1997, for details)

in which we look at three groups of taxa: a pollution tolerant bottom-feeding group, a pollu-

tion sensitive bottom-feeding group, and a control-like group with mixed feeding strategy.

 A simple model for this type of data would be a multinomial model with constant

proportions of the three categories across the entire observation region. Some data analysis

(Billheimer et al., 1997) indicates, however, that there is more variability between samples at

the same site than can be explained by this simple model. Instead, we assume that the pro-

portions follow a spatial autoregressive model in logit space, and that the observed counts

are conditionally multinomial, given the actual proportions. This is a state space model in

which the (unobserved) state is the actual proportion at the site, and the observation is the

counts in the three categories. In the case where the true state follows a Markov process, this

is called a hidden Markov model. I will return to that in Section 4. Letting !p(x) = (p1, p2, p3)

denote the vector of proportions at site x, n(x) = (n1,n2, n3) the corresponding counts, and

g(p) = log(p1/p3, p2/p3), we write

n | p ~ Mult(1Tn, p)

g(p(x)) | p(y); y ≠ x ~ N(m(x) , S(x)) (1)
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where 

† 

m(x) - m = ax,y
y ~x
Â (m(y) - m), is the conditional mean of g(p(x)), given all the other

proportions; y~x means that y is a neighbor of x,; and  S(x) is a block diagonal matrix de-

pending on the number of observed neighbors of site x, the details of which are given in

Billheimer et al. (1997). In other words, we have a conditional autoregressive model (CAR;

see Besag 1974). The mean model can be made to depend on covariates by replacing the

term m by a (usually linear) function of the covariate at the appropriate site.

This is a generalization of the work by Aitchison (1986) on iid proportions (see

Billheimer, 1995). Model fitting is done using Markov chain Monte Carlo methods (Bill-

heimer and Guttorp, 1996). Another approach to proportional data was developed by Grun-

wald et al. (1993) with an application to biological monitoring given by Guttorp (1993).

The analysis in Billheimer et al. (1997) provides a baseline measure of the 1990

variability of benthic counts in the three categories. The analysis showed a dependence on

water salinity, with saltier water having proportionally more pollution intolerant species and

fewer water feeders. The salinity gradient does not, however, explain all the spatial depend-

ence. The spatial autoregressive parameter was deemed different from zero. Model checking

was done by fitting the model to the data, leaving out one site at the time, and then estimating

a prediction region for the observations at the left out site. For all sites except one, the three

observations fell inside the prediction region. For the exceptional site, however, all three ob-

servations were well outside the prediction region. On-site inspection revealed a nuclear

power plant coolant exhaust near the observation site!

Once a background model is determined, it becomes feasible to look for changes in

the proportions of the different groups as a function of time. Data from 1991-94 were pre-

dicted, using observed salinity and the fitted model from 1990 (Silkey, 1997). The results

were not very surprising: in essence, the data did not indicate any departures from the base-

line model over the three years of further data. Comparing data to a baseline set on an estu-
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ary with significant human pollution already present is a much less sensitive comparison

than if the baseline can be set on relatively undisturbed waters. Unfortunately, there is not

much of the latter available in North America.

3. Source-receptor modeling

3.1 General description

The chemical composition of air pollution at a given site can yield important clues as to the

origin of the pollution. The problem of identifying these sources, and of attributing the pro-

portion of air pollution at a site to a particular course has been studied in the chemometric

literature under the name of multivariate receptor modeling (Henry, 1991, contains a review).

Assuming that q sources contribute concentrations 

† 

y t = (y1t ,..., ypt )  of p chemical species to

the receptor at time t, a basic chemical relation is the mass balance equation

† 

y t = a t P (2)

where 

† 

at = (a1t ,...,a qt )  is the vector of contributions from each of the q sources, and P is a

q ¥ p matrix with each column being the source composition profile (chemical fingerprint)

of a particular source, Notice that at is a q-dimensional proportion.

A simple statistical model based on the mass balance equation (2) is obtained by adding

measurement error,
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† 

y t = a t P + e t . (1)

If the errors are iid, we can think of this as a factor analysis model in which P corresponds

to the loading matrix and at to the factor scores. This model requires attention to be focused

on chemical species which are not being highly reactive in the atmosphere, so that the fin-

gerprint emitted at the source is advected by the wind and received relatively unattenuated at

the receptor.

The traditional chemometric approach to the receptor modeling problem has been

factor analysis. There are three major difficulties: (a) identifiability–unless the chemical fin-

gerprints are sufficiently different we cannot separate pollution from different sources; (b)

number of sources (generally unknown); and (c) temporal dependence. Park et al. (2001a)

develop Bayesian methodology for estimating the number of sources and judging different

identifiability conditions, while Park et al. (2001b) develop time series methodology for

source-receptor models.

3.2 Spatial source-receptor modeling

Conventional receptor models depending on chemical mass balance equations are mainly

used for multivariate air pollution data (a series of measurements on multiple chemical spe-

cies, e.g. VOC species) collected at a single receptor. When the effect of meteorology is

fairly constant (or negligible) over the region covered by receptors, a multivariate receptor

model treating receptor sites as variables can be applied to locate spatially distinct source

regions (Park et al., 2002a; Park et al., 2002b).  Here, source composition profiles are inter-

preted as spatial profiles.  Consider the profile of one chemical species (source type).  The

profile represents the relative amounts of that species (from the source) conveyed to recep-

tor sites.  The closer the receptor site is to the source, the higher the relative amount in the
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spatial profile is. This approach was used for Seoul PM1 0 data  (Park et al., 2002b), where a

distinct source, only present in the winter, was detected and attributed to wood smoke.

The relationship of the concentration of air pollutants to wind direction can also be deter-

mined by nonparametric regression (Henry et al., 2002). The results are smooth curves with

error bars that allow for the accurate determination of the wind direction where the concen-

tration peaks, and thus, the location of nearby sources. The method was applied to cyclo-

hexane data from 1997 at two sites near a heavy industrial region in Houston, Texas, USA.

According to published emissions inventories, 70 percent of the cyclohexane emissions are

from one source. Nonparametric regression correctly identified the direction of this source

from each site. The location of the source determined by triangulation of these directions

was less than 500 m from that given in the inventory.

Within the next few years, multivariate air pollution data obtained from multiple receptors

will become available.  Current receptor models do not fit into that framework.  This calls

for developing/extending multivariate receptor models to account for spatial variability in the

data.  When multiple species are measured at multiple receptors, incorporating spatial vari-

ability in modeling is a challenging problem. For simplicity, I assume no temporal depend-

ence.

To account for spatial dependence in the data, we need to specify the spatial dependence

structure in a and  e, since the spatial correlations among the y are induced by those in a

and  e. This can be done either by a conditional autoregression as in the previous section, or

by a geostatistical approach.
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An alternative to the mass balance equation (2) is to consider the vector yt as a composition,

ignoring the measured masses of each chemical species. The methodology in section 2 can

then be applied directly (Billheimer, 2001).

4. Downscaling of general circulation models

The problem of the possible global warming due to increased anthropogenic pro-

duction and emission of greenhouse gases has been the subject of intensive research over

the last decade or so (Intergovernmental Panel on Climate Change, 1995, 2001). Typically,

the effect of changes in greenhouse gas concentrations is assessed by running the changed

scenario through a (deterministic) model for the general atmospheric circulation and inter-

action with land and water surfaces. Modern general circulation models (GCMs) also con-

tain sophisticated analyses of the oceanic circulation. Because of the complexity of the

processes involved in GCMs, the resolution of such models is generally quite limited, such

as 3 x 3 degree grid squares. In order to assess the effect of climate change on processes

such as precipitation, which take place on a scale much smaller than the resolution of a

GCM, it is necessary to somehow model subgrid variability for at least some of the proc-

esses involved in the GCM. The general term for this type of modeling is downscaling. For

precipitation, there are two main approaches: the extremely compute-intensive mesoscale

meteorological models (the Penn State/NCAR fifth-generation mesoscale model MM5,

Grell et al., 1995, has been successfully applied in a variety of situations), or stochastic

models for precipitation (e.g. Hughes and Guttorp, 1994).

The application of Markov models to precipitation has a long history, starting with

Quetelet (1852). For some modern approaches, see Coe and Stern (1982) and Woolhiser

(1992). Generally speaking the Markov chain approach suffers from two drawbacks: it is
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unable to reproduce observed dry and wet spells, and it does very poorly in attempting to fit

spatial patterns (e.g., Guttorp, 1995, section 2.12).

Instead of assuming that the patterns of precipitation follow a Markov model, the

hidden Markov approach used in the benthic population model above can be used. Here the

hidden states are thought to summarize the meteorological situation. There are two different

main approaches to this: the weather states can be estimated from data, or they can be de-

termined a priori from meteorological considerations. While the latter would be preferable

from a scientific point of view, experiences thus far have not been overly successful. We

(Hughes, 1993, Hughes and Guttorp, 1994a,b, Hughes et al., 1998, Bellone et al., 2000)

have found a maximum likelihood approach to a hidden Markov model a reasonable way of

determining suitable weather states. The Viterbi algorithm (e.g., Guttorp, 1995, p.112) can

be used to estimate the most likely sequence of states, given the observations. An important

aspect of this is that summaries of the atmospheric variables for each state have been found

to agree with the understanding of meteorologists, although the weather states determined in

this fashion seem to provide a less detailed distinction between atmospheric patterns than

would the meteorological a priori determination.

In more detail, assume that there are a finite number S of weather states, which pro-

gress according to a temporally non-homogeneous Markov chain St. The transition prob-

abilities for the Markov chain are assumed to depend (in a logistic fashion) upon atmos-

pheric summary measures Xt. Given a weather state, the precipitation occurrences Rt at the

network of stations is taken to follow an autologistic spatial model. A simple way of in-

cluding the amounts into this model is to assume that amounts are conditionally independ-

ent between stations within weather states. Schematically, the dependence structure can be

depicted thus:
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† 

Xt-1 Xt

Ø Ø

Æ St-1 Æ St Æ

Ø Ø

Rt-1 Rt

The likelihood is evaluated using a Markov chain Monte Carlo approach (Hughes et

al., 1998), combined with the standard forward-backward algorithm (Baum et al., 1970) for

estimation in hidden Markov models. A recent algorithm developed by Lystig (2001) im-

proves on the Baum algorithm, and allows for easy evaluation of derivatives of the log like-

lihood for use in estimating standard error of parameter estimators. In order to determine

what atmospheric measures to use, and how many weather states are needed, we use a Bayes

factor approach (Kass and Raftery, 1995).

Current work by Bellone (presentation at TIES 2002 conference in Genova, Italy)

deals with precipitation in southeastern United States. There are 175 stations in the region

with high quality data available for the entire period April-June 1965-1987.

Fitting the model outlined above to these data is computationally infeasible with cur-

rent computing equipment. Rather, a subset of 30 stations was selected to fit a preliminary

model. This model was then used to divide the area into three homogeneous regions: the

coastal area, the mountainous area, and the inland area. Separate models, chosen to have five

weather states each, were then fitted in the three regions. As is often the case with this type

of precipitation models, there is a state with high probability of precipitation everywhere, and

one with low probability everywhere. The remaining three states show substantial geo-

graphic variability of precipitation probabilities: one with rain in the south, one in the north,

and one near the mountainous interior but not the coast.

The resulting model displayed some spatial dependence between regions, which

could not be explained simply by large-scale atmospheric variables. A promising approach
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uses a three-dimensional state space. Looking at the resulting dependence structure, there is

some indication that two sites may be located in the wrong region.

5. Other topics in environmental statistics
The US Environmental Protection Agency is committed to assessing environmental

problems using risk analysis. Traditionally, this has been done by putting down a determi-

nistic model of the relationship between level of pollutant and effect. The typical risk func-

tion is a differential equation, with parameters that are determined from a variety of sources,

such as laboratory experiments, measurements on exposed individuals, or scientific consen-

sus. When the model has to do with human health effects, the basis for the risk function is

more often than not experiments on animals, which are then rescaled to provide a risk func-

tions for humans using a fairly arbitrary scaling factor.

Recently much emphasis has been put on uncertainty analysis of these risk assess-

ments. Primarily it has been noted that the values of the parameters in the model is subject

to uncertainty, which then propagates through the whole assessment and results in uncer-

tainty about the final risk. The method of probabilistic risk analysis (Cullen and Frey, 1999)

assigns what a statistician would call a prior distribution to each of the parameters. Typi-

cally, the parameters are treated as independent a priori, with simple marginal distributions

such as uniform or normal.  The analysis is done by simulating values from the prior distri-

butions and summarized by producing simulated confidence intervals for quantiles from the

resulting risk distribution. Current work aims at assessing the uncertainty more accurately

by looking at the entire model uncertainty (e.g., Poole and Raftery, 2002, Clyde 2000,

Fuentes and Raftery 2001). This includes, in addition to the uncertainty of the parameters

mentioned above, uncertainty of the data used to fit and/or assess the model, and uncertainty

of the model selection process itself. Bates et al. (2002) apply these models to a risk as-

sessment for dredging a heavily polluted bay.
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The detailed understanding of the health effects of a pollutant (Dominici et al., 2003)

is one of the tools needed for setting scientifically valid standards for environmental compli-

ance. Currently, most standards are set by requiring all sites in an area to remain below a

limit for a given time period. As an example, the US standard for ozone requires that all

sites in a region have an expected number of annual maximum daily 1-hour exceedances of

120 ppb of not more than one. Such a standard is not enforceable, since the expected num-

ber of exceedances is not directly measurable, and measurements cannot be taken at all sites.

Rather, the rule was implemented by requiring that each site in an approved monitoring net-

work, there would be no more than 3 exceedances in 3 years. In fact, this implementation

was motivated in the regulation by applying the law of large numbers to n=3. The concept

of statistically realizable ideal standards was introduced by Barnett and O’Hagan (1998).

Their idea is to combine an ideal standard with a statistically based rule of implementation.

A statistical approach to the problem of setting scientifically valid environmental standards

is likely to borrow tools from industrial process control (Thompson et al., 2002) as well as

from the cell level analysis of dose-response relationships (Leroux et al., 1996).

An area of considerable importance in all of modern statistics is the management,

display and analysis of massive data sets. Land use data from satellite-based sensors, auto-

mated air quality sensors, continuous water flow meters are among a variety of new meas-

urement devices producing vast amounts of data. The fields of data mining (Hastie et al.,

2001) and geographic information systems (ref) provide some valuable tools. We are lack-

ing tools for displaying uncertainty measures for spatially expressed data (see Lindgren and

Rychlik, 1995, for one approach to confidence intervals for contour lines). Recent advances

in three-dimensional visualization allow a viewer to consider spatially expressed multivariate

data (essentially having a rotating scatter plot at each observational site; see Sutherland et al.,

2000).
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The field of environmental statistics was first implemented in the areas of sampling

techniques and monitoring design. Modern sampling techniques that are finding increasing

use in environmental problems include composite and ranked set sampling. Composite

sampling, defined as the pooling of field samples prior to measurement or laboratory analy-

sis, is a simple and straightforward method of enhancing sampling programs in situations

where estimates of variability are less important. It is particularly useful when trying to as-

sess whether or not a pollutant has spread into a given area. Ranked set sampling is a two-

phase sampling procedure involving initial ranking of each of m samples of size m (often

via a relatively cheap or fast method of measurement), followed by observing (often using a

more accurate and more expensive method of measurement) the first order statistic from the

first sample, the second order statistic from the second sample, and so on, until the mth order

statistic from the mth sample yields a secondary sample of size m from the initial m2 data

points.

Environmental monitoring design deals mainly with two quite different sorts of de-

sign problems: monitoring for trend, where spatial and temporal dependence is of impor-

tance, and monitoring for “hot spots”, or regions of local high intensity. The basic theory

of optimal design for spatial random fields is outlined in Ripley (1981, Chapter 3). Among

the popular designs are systematic random sampling designs, in which a point is chosen

uniformly over the study area, and a regular design (consisting of squares, triangles, or

hexagons) is put down starting at the chosen point. When the sample mean is used to esti-

mate the spatial mean over a region, the regular sampling plans are most efficient (Matérn,

1960, Chapter 5). As an example, the EMAP monitoring program mentioned in section 2

above, implemented a hexagonal design with a random starting point. The hexagonal design

requires fewer sampling sites than a square or triangular one to cover the same area, but

does not take into account spatial covariance heterogeneity or temporal nonstationarity. The

covariance mapping technique (Fuentes et al., 2003) can be used to deal with spatial hetero-

geneity, by implementing a spatial design in the transformed space. There is a need for de-
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signs aimed at multivariate measurements. While optimality criteria can be useful in choos-

ing between alternate designs, it is more important to develop designs that are easily ex-

plained to field workers and planners.

Much of the work in environmental statistics is aimed at providing decision tools for

planners and decision makers at different levels. The problem of communication with non-

statisticians therefore is very important, perhaps more so here than in other fields of appli-

cation. Research specifically aimed at improving such communication is important, and not

much has been done from the statistical point of view. Methods of display (including un-

certainty) of monitoring data; methods for effects analysis and risk assessment that make

sense to non-technical end users; methods for involving people with a stake in the decisions

being made; and methods aimed at collaborative decision analysis are some of the areas in

which current work is ongoing. In particular, much work is being done in several countries

at the moment on the problem of regional summary measures of environmental quality, so-

called environmental report cards. Other interesting areas involving decision tools include

natural resource management, and environmental economics.

6. The future of environmental statistics
In each of the cases discussed above there has been important aspects of the work

that originated outside statistics. In fact, most environmental statistics projects (and, indeed,

most applied statistical projects) are driven by scientific questions that can only be solved in

cooperation with other scientists. In the past, statisticians have often played the role of an

outside expert, brought in to deal with the inferential aspects of a statistical problem. Our

profession has frequently complained about this role, and urged scientists to bring in statis-

ticians at an earlier stage: while designing their study. However, even then the statistician is

viewed as an outside specialist, not really as a part of the research team. This must change.

Not only in environmental statistics, but in most areas to which we apply our tools, we must

start to learn to maintain a dialogue. This means that not only do we need to explain to other
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scientists what we as statisticians consider important, but we need to learn their scientific

language, so that we become useful members of research teams, rather than outside experts.

Environmental problems are by their very nature multi-disciplinary, and statistics is just one

of several of the disciplines involved. This has, obviously, important implications for how

we teach our graduate students.

Many of the important environmental problems involve directly multi-dimensional,

spatially heterogeneous, and temporally non-stationary random processes. My personal be-

lief is that the development of statistical research tools (Cressie, 1993, is a good place to find

some of the background material) in this area may prove to be the most useful development

in the field of environmental statistics. The multivariate aspect, in particular, is very impor-

tant, in that there are few symmetries in space and time that can be used in setting up models

for realistic situations. As an example, if we are studying the joint distribution of SO2 and

SO4 during situations of similar meteorology, we will find different space-time correlations

for positive and negative time lags, since most of the SO4  is produced from SO2 emissions.

With an increased emphasis on the use of monitoring data to make environmental

decisions, it is likely that environmental statistics will be a fruitful area of employment for

statisticians. In addition to employment in governmental agencies and consulting firms, I

would expect that large corporations will need some of the tools discussed in the previous

section for their own environmental decision-making, and thus may need environmental

statisticians to tailor these tools to their particular situation.

There seems to be an increasing demand for environmental statisticians, and, thus,

for more graduate programs with environmental statistics pathways. In addition, there is a

need for more statistics departments with groups of researchers focusing in environmental

problems. As I mentioned above, there is a need for crossdisciplinary work, where statisti-

cians work with other environmental scientists on an equal footing. I do not believe that we

need departments of environmental statistics, or of environmetrics. The focus should be on
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the multi-disciplinary nature of the environmental field, not on creating more subfields of

existing fields.

The area of environmental statistics, albeit not yet a full-fledged subfield on its own,

is full of interesting and complicated problems. There is much to be done, and we can use

many more statisticians to do it.
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