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Abstract

We have previously formulated a Bayesian approach to the Sampson and Guttorp model

for the nonstationary correlation function r(x, x′) of a Gaussian spatial process [Damian

et al., 2001]. This model assumes that the nonstationarity can be encoded through a

bijective space deformation, f, that defines a new coordinate space in which the spatial

correlation function can be considered isotropic, namely r(x, x′) = ρ(||f(x) − f(x′)||),

where ρ belongs to a known parametric family. We extend this model to incorporate

spatial heterogeneity in site-specific temporal variances. In our Bayesian framework, the

variances are considered (hidden) realizations of another spatial process, which we model

as log-Gaussian, with correlation structure expressed in terms of the same spatial

deformation function underlying that of the observed process. We demonstrate the method

in simulations and in an application.
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1 Introduction

Nonstationarity (or heterogeneity) of the covariance structure of space-time environmental

processes is now widely recognized, although modelling tools remain in their infancy and

are not widely available. Among the most recent work are the kernel and/or convolution

methods of Higdon et al. [1999] and Fuentes [2002] along with our development of the

spatial deformation model introduced by Sampson and Guttorp. Sampson [2002] and

Sampson et al. [2001] provide recent reviews.

The fundamental emphasis of the spatial deformation methodology has been the

concept of spatially varying, locally anisotropic spatial correlation structure. A second,

related feature of the observed covariance structure of many space-time processes is that

the variance of the temporal replications (temporal variance) is spatially heterogeneous.

We note that this heterogeneity is observed even after response transformations (power or

logarithmic) computed to symmetrize the response distribution, often in hope of stabilizing

variances, are applied. Nonstationarity in variance appears to be an intrinsic characteristic

of environmental processes, not simply related to questions of distributional form.

As an example, figure 1(a) shows a map of variances of log-transformed 10-day

aggregate precipitation (mm) at 39 stations in the Languedoc-Roussillon region of France.

The data were collected over the months of November and December from 1975 to 1992.

The 10-day aggregates over these two month periods at the 39 stations resulted in 6

observations per year, 108 observations in all. (These data have been analyzed previously

by Meiring et al. [1997], Iovleff and Perrin [1999] and Sampson et al. [2001], but focusing
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only on spatial correlation, disregarding the issue of temporal variance). A log

transformation (of the 10-day precipitation aggregates +1) was used to eliminate the

mean-variance relationship. Despite this transformation, the map of sample variances

shows more variation than would be expected were the true underlying variance process

constant. The sample variances range between 2.5 and 6.4, with lower values in the

southern part of the region and higher values in the central and northern parts.

When the variance can be assumed constant throughout the region of interest, the

variance modeling is straightforward, involving only a single parameter. If the variance is

thought to be varying over the region, however, a more sophisticated model is required,

especially if one is interested in predictions at locations where observations are not

available. We propose in section 3 a preliminary empirical assessment of the magnitude of

the heterogeneity in sample temporal variances. A model for non-constant temporal

variance is suggested in section 4. We assume the variances at observation locations to be

hidden realizations of a nonstationary spatial process. The spatially varying anisotropy of

this process is modeled utilizing the same Sampson-Guttorp spatial deformation

representing the spatial correlation structure of the observed process, but with different

correlation hyperparameters.

We note that another Bayesian setting for the Sampson-Guttorp spatial

deformation model was proposed by Schmidt and O’Hagan [2000]. While recognizing the

need for modeling the temporal variances and suggesting a log-normal approach, the latter

paper does not propose a spatial model like ours. The temporal variances are assumed
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exchangeable, with a noninformative prior distribution, and thus remain unstructured. The

present paper introduces spatial structure for the temporal variances, taking a step further

the correlation modeling of both Damian et al. [2001] and Schmidt and O’Hagan [2000].

2 The Observed Space-Time Process Model

We assume that temporally independent samples Zit = Z (xi, t) are available at each of N

geographic locations and at the same T points in time: i = 1, 2, . . . , N and t = 1, 2, . . . , T .

We consider the following model for the underlying process:

Z (x, t) = µ (x, t) + ν (x)1/2 Ht (x) + ε (x, t) (1)

where x denotes location and t time.

µ (x, t) represents the spatio-temporal mean field. We focus here on modeling the

variance-covariance structure and do not address inference about the spatio-temporal

mean; we assume that the mean is constant in time (but not necessarily in space) and use a

flat prior to remove it from the likelihood (eq. (5)). This assumption is appropriate for

suitably short time periods, or when the temporal trends have been removed at each

station and eq. (1) is used to model the residuals. Extensions to incorporate parameterized

spatio-temporal trend components are under development.

Ht (x) is a zero mean, variance one, Gaussian spatial process with a correlation

function that depends smoothly on the geographic coordinates through the composition of

an isotropic correlation function and a spatial deformation of the geographic coordinate
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system:

Corr (Ht (x) , Ht (y)) = ρθ (‖f (x) − f (y)‖) . (2)

This representation of the correlation function was introduced by Sampson and Guttorp

[1992]. We assume that ρθ (·) belongs to a known parametric family with unknown

parameter(s) θ and that it is continuous at the origin: ρθ (d) −−→
d→0

1. f represents the

spatial deformation from the geographic coordinate system (G-plane) to an hypothesized

plane (D-plane) in which the process Z is isotropic. The correlation function of Z (x, t)

does not necessarily converge to 1 at the origin due to the white noise process ε (x, t), with

variance σ2
ε , representing small-scale spatial variability and measurement error.

ν (x), the variance of the process observed at location x, reflects the temporal

fluctuations in the process Z (x, t). Since we have temporal repetitions, at each geographic

location we can compute the sample variance estimate, and thereupon inspect the behavior

of these estimates in space. If the variance estimates do not vary too much throughout

space, and if there is no apparent spatial pattern in their variability, we model the

temporal variance as constant. Otherwise, we represent the variance as a spatial random

process. This representation is the subject of our current paper.

Denoting by Z̄ the vector of site means, Z̄ = 1
T

∑T
t=1 Zt, and by S the sample

covariance matrix, S = 1
T−1

∑T
t=1

(
Zt − Z̄

) (
Zt − Z̄

)′
(which is non-singular if T > N), we
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can write the likelihood derived from eq. (1) as

L (
µ, θ, f, ν, σ2

ε ; Z1, . . . , ZN

)
=

[
Z̄,S | µ,Σ

]
(3)

= |2πΣ|−T/2 exp

{
−(T − 1)

2
trΣ−1S − T

2

(
Z̄ − µ

)′
Σ−1

(
Z̄ − µ

)}
.

(We use square brackets to denote probability density functions.) Here, µ denotes the

N -dimensional vector of means at the geographic locations and Σ represents the covariance

matrix with elements

σij =



√

νiνjρθ (‖f (xi) − (xj)‖) i �= j

νj + σ2
ε i = j

, 1 � i, j � N (4)

where νi denotes the variance at location i.

The mean µ is viewed in this context as a nuisance parameter. We therefore

integrate it out of eq. (3) under a flat (improper) prior distribution, [µ] ∝ 1:

[S | Σ] =

∫ [
Z̄,S | µ,Σ

]
[µ] d µ ∝ |Σ|−(T−1)/2 exp

{
−(T − 1)

2
trΣ−1S

}
. (5)

3 Is the Temporal Variance Constant in Space?

Inspection of the sample variances allows us to decide whether it is appropriate to model

the temporal variance as constant or as varying in space. In order to explain this, we first

review the theoretical properties of the sample variances (e.g., [Anderson, 1984]). Denoted

by Sii, 1 ≤ i ≤ N , these are the diagonal elements of the sample covariance matrix S. The

diagonal elements of the theoretical covariance matrix Σ are denoted by σii, 1 ≤ i ≤ N .
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Conditional on Σ, under the usual normal assumption,

(T − 1)Sii

σii
∼ χ2

(T−1). (6)

The first two conditional moments of Sii are given by:

E (Sii |Σ) = σii (7)

and

Cov (Sii, Sjj |Σ) =
2 Tσ2

ij

(T − 1)2 . (8)

In particular,

Var (Sii |Σ) =
2 Tσ2

ii

(T − 1)2 . (9)

Therefore, the sample variances are unbiased (eq. (7)), consistent (eq. (9)), with

correlations that are functions of the distances of the images of the observation sites in

D-plane (eq. (8) and eq. (9)).

If the temporal variance is constant (ν), then all the Sii have the same chi-squared

distribution (conditional on ν and σ2
ε) with expected value ν + σ2

ε and variance

(
2 T

/
(T − 1)2

)
(ν + σ2

ε)
2
. Thus, if the spread of the Sii is “reasonable” (based on the

corresponding χ2 distribution), we will model the variance as constant throughout space;

otherwise we will prefer a model that accomodates spatial variability of the variance. By

“reasonable” we mean that about (1 − α)100% of the sample variances divided by their

average should fall within the interval

(
χ2

(T−1),α/2

/
(T − 1) , χ2

(T−1),(1−α)/2

/
(T − 1)

)
. (10)
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where χ2
df,p is the p-quantile of the χ2

df distribution.

Figure 2 presents an illustration: 36 sample variances were simulated twice at 36

sites on the unit square (T = 200). The first sample, mapped in panel (a), corresponds to a

model with constant temporal variance, and the second, (b), to a model with spatially

varying temporal variances. The difference between the two graphs is not easily

characterized. But if we inspect the boxplots of the sample variances divided by their

average, (c) and (d), it is clear that the range and the interquartile range corresponding to

(a) are narrower than those corresponding to (b). Indeed, only 2 out of 36 sites (5.6%) in

(a) fall outside the interval given by eq. (10) with α = 0.05%, (0.81, 1.21), whereas in (b)

16 out of 36 sites (44.4%) do.

For the French precipitation data presented in the introduction, if the variance were

constant in space, we would expect about 95% of the sample variances divided by their

average to fall within the interval (0.75, 1.29). However, 7 out of these 39 values (18%) fall

outside the interval, thus a model with spatially varying temporal variance appears more

appropriate for these data. Figure 1(b) presents the values of the sample variances divided

by their average.

In the next section we describe how the variances are modeled when the constant

temporal variance assumption does not seem to hold.
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4 The Variances as a Random Field

4.1 Motivation

In the general case, we consider the variances at each of the observation sites as unknown

parameters and model them as an unobserved vector of random variables, ν. In the same

way that we model Z for the whole spatial domain and not only at the N arbitrary

observation sites, we model the variance wherever Z is defined. This is necessary in order

to predict the Z process (and its variance) at sites where no observations are collected. We

model ν as resulting from a random field, ν (x), that is defined and varies smoothly over

the region of interest. It is reasonable to assume that this process will inherit the

nonstationarity of the observed process Z (x, t), in the sense that the spatial deformation f

induces a new distance between geographic sites (the distance between their images in the

D-plane), that determine the neighborhoods that influence most the process Z (x, t) at any

given point. These neighborhoods are in fact our way to express (and simplify) the

complex effects of environmental processes and traits, often hidden or unmeasured, that

impact Z (·). This temporal variability ν (·) will be impacted by the same environmental

processes and traits assumed to underly the nonstationary spatial correlation structure of

Z (·), and therefore we model the nonstationarity in ν (·) through the same spatial

deformation f . Of course, this heuristic argument requires empirical validation.

Because of its interpretation as a variance process, ν (·) has to be positive

everywhere. We chose to use a log-normal model, the properties of which are described
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below, through an auxiliary Gaussian spatial process, η (·).

4.2 A random field model

Let η (x) be a real Gaussian process defined for x ∈ R
2, with constant spatial mean µ,

constant variance σ̃2, and Sampson-Guttorp nonstationary correlation

Corr (η (x) , η (y)) = ρθ̃ (‖f (x) − f (y)‖), where ρ (·) belongs to the same parametric family

as the correlation function of the process Z (·), but with different parameter(s) θ̃. f is the

same planar deformation as the one used in modeling the nonstationarity in Z (·). Then, at

the observation sites, η = (η (x1) , . . . , η (xN )) has density of the form

[η] ∝ |Σ̃|− 1
2 exp

{
−1

2
(η − µ · 1)′ Σ̃−1 (η − µ · 1)

}
(11)

for Σ̃ an N × N matrix with elements σ̃ij = σ̃2ρθ̃ (‖f (xi) − f (xj)‖).

We define the variance process, ν (x), as ν (x) = exp (η (x)) and we readily obtain

from eq. (11) the density of ν (·) and its moments at the observation sites:

[ν] ∝ 1
N∏

i=1

νi

|Σ̃|− 1
2 exp

{
−1

2
(log (ν) − µ · 1)′ Σ̃−1 (log (ν) − µ · 1)

}
(12)

where log (ν) = (log (ν1) , . . . , log (νN)). The process ν (·) has constant spatial mean and

variance of the form

E (ν (x)) = exp

(
µ +

1

2
σ̃2

)
(13)

and

Var (ν (x)) = exp
(
2µ + σ̃2

) (
exp

(
σ̃2

) − 1
)
. (14)
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Its nonstationary covariance is given by

Cov (ν (x) , ν (y)) = exp
(
2µ + σ̃2

) {
exp

[
σ̃2ρθ̃ (‖f (x) − f (y)‖)] − 1

}
, (15)

and its correlation is

Corr (ν (x) , ν (y)) =
exp [σ̃2ρθ̃ (‖f (x) − f (y)‖)] − 1

exp (σ̃2) − 1
. (16)

The upper row in figure 3 presents three (discretized) realizations of a log-normal

nonstationary variance process on the unit square of the type described above. The

underlying spatial deformation f is shown in figure 4. Each of the three realizations were

sampled and are plotted on a grid of basic unit 0.1 × 0.1 (so that they are each based on

121 sampled values). The mean of the process is 3, and its variance is 1. The correlation

function ρθ̃ (d) is the exponential ρθ̃ (d) = exp
(
−θ̃d

)
. The correlation of ν (x) at each

distance in D-plane is highest for θ̃ = 0.1 and lowest for θ̃ = 10. Because of this, the

realization of the variance process appears smoothest for θ̃ = 0.1 and roughest for θ̃ = 10.

It is also interesting to note that in the middle upper panel (that corresponds to θ̃ = 1) it

is visible that the spatial correlation is highest in the “northeastern” corner of the square,

where the plane is most “shrunk” by the deformation.

The middle row in figure 3 shows histograms of the 121 sampled ν values

corresponding to the three values of θ̃. As expected, the higher the value of θ̃, the larger

the range of the sampled ν values.

We would expect the variability in the values of ν to be reflected in the range of

sample variances of realizations of the Z process (since ν (x) represents the variance of
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Z (x)). The panels in the lowest row of figure 3 demonstrate that this indeed is the case:

conditional on the respective ν, 36 sample variances were simulated (for time series of

length T = 200) at the same sites as those shown in figure 2. Boxplots of these sample

variances divided by their averages are shown. It is evident that the higher the variability

in ν, the higher is the variability in the sample variances. Based on the appropriate

confidence interval (eq. (10)) none of the three samples would have been judged a priori to

correspond to a model with constant temporal variance: 11.1% (4/36) of the θ̃ = 0.1

sample, 33.3% (12/36) of the θ̃ = 1 sample and 47.2% (17/36) of the θ̃ = 10 sample fall

outside the confidence interval.

This illustration emphasizes that besides bringing the model of the observed process

Z and the variance model under the same conceptual framework, our approach to modeling

the variance is flexible enough to cover a spectrum of temporal variance—from almost

uniform to highly irregular.

4.3 Choosing the Hyper-Prior Distributions

The variance model (eq. (12)) defines the distribution of ν conditional on the

hyperparameters µ, σ̃2 and θ̃. In order to render this model complete, we need to specify

the prior distributions of the hyperparameters (the hyper-prior distributions). As for the

other parameters of our model, we chose diffuse but proper hyper-distributions. In

particular, the priors for µ and σ̃2 were chosen as normal and inverse gamma, respectively.

This strategy simplifies the corresponding steps in the MCMC algorithm used for obtaining
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samples from the posterior distributions since it allows for direct sampling from the full

conditionals.

5 Predictive Distributions for the Variance Process

In this section we develop the predictive distribution of the variance field at ungauged

locations. We follow the notation of the previous section in which log(ν(x)) was defined as

η(x) (the auxiliary Gaussian random field). In addition, the subscripts OL and UL denote

observation and ungauged locations respectively. Using this notation, the joint distribution

(conditional on the hyperparameters µ̃, θ̃, σ̃2 and on all the other parameters which we

denote by Ω) of ηOL and ηUL is multivariate normal of the form

ηOL

ηUL

∣∣∣∣∣∣∣∣
(
µ̃, θ̃, σ̃2, Ω

)
∼ MVN

(
µ̃ · 1,

˜̃
Σ

)
. (17)

Similar to the matrix Σ̃ in eq. (11),
˜̃
Σ has elements ˜̃σij = σ̃2ρθ̃(||f(x∗

i ) − f(x∗
j)||),

where x∗ denotes now either an observation site or an ungauged site.
˜̃
Σ can be partitioned

in four blocks that represent the covariances between pairs of sites:

observation–observation, observation–ungauged, ungauged–observation and

ungauged–ungauged. We denote these by
˜̃
ΣOO,

˜̃
ΣOU ,

˜̃
ΣUO and

˜̃
ΣUU , respectively. From

eq. (17) we obtain the distribution of ηUL conditional on ηOL, on the hyperparameters and
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on the parameters as

ηUL

∣∣∣ (
ηOL, µ̃, θ̃, σ̃2, Ω,ZOL

)
∼ ηUL

∣∣∣ (
ηOL, µ̃, θ̃, σ̃2, Ω

)
∼ MVN

(
µU |O,

˜̃
ΣU |O

)
, (18)

where

µU |O = µ̃ · 1 +
˜̃
ΣUO

(˜̃
ΣOO

)−1

(ηOL − µ̃ · 1) ,
˜̃
ΣU |O =

˜̃
ΣUU − ˜̃

ΣUO

(˜̃
ΣOO

)−1 ˜̃
ΣOU . (19)

The two conditional distributions in eq. (18) are the same because, conditional on ηOL and

on Ω, the distribution of ZOL (the data) is not a function of ηUL.

We may generate K samples from the predictive distribution νUL |ZOL by sampling

from the posterior distribution of
(
ηOL, µ̃, θ̃, σ̃2, Ω

)
|ZOL. For the jth sample, we then

draw η
(j)
UL from a multivariate normal distribution with parameters µ

(j)
U |O and

˜̃
Σ

(j)
U |O and

define ν
(j)
UL = exp(η

(j)
UL) (j = 1, . . . , K). Point predictions of νUL can then be obtained as

the mean (or median) of this sample, and the predictive variance can be estimated as the

sample variance.

Alternatively, we can compute point predictions directly from the K samples of(
ηOL, µ̃, θ̃, σ̃2, Ω

)
|ZOL by noting that

E
[
νUL,i

∣∣∣(ηOL, µ̃, θ̃, σ̃2, Ω,ZOL

)]
= exp

(
µU |O,i +

1

2
˜̃
ΣU |O,ii

)
, (20)

hence,

ν̂UL,i = E [νUL,i |ZOL ] (21)

= Ê E
[
νUL,i

∣∣∣(ηOL, µ̃, θ̃, σ̃2, Ω, ZOL

)]
=

1

K

K∑
j=1

exp

(
µ

(j)
U |O,i +

1

2
˜̃
Σ

(j)

U |O,ii

)
.
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Estimated predictive variances can also be obtained directly if we first note that

Var
[
νUL,i

∣∣∣(ηOL, µ̃, θ̃, σ̃2, Ω, ZOL

)]
= exp

(
2µU |O,i +

˜̃
ΣU |O,ii

) (
exp

(˜̃
ΣU |O,ii

)
− 1

)
,

(22)

and then make use of the formula

V̂ar [νUL,i|ZOL] = Ê Var
[
νUL,i

∣∣∣(ηOL, µ̃, θ̃, σ̃2, Ω, ZOL

)]
(23)

+ V̂arE
[
νUL,i

∣∣∣(ηOL, µ̃, θ̃, σ̃2, Ω, ZOL

)]

=
1

K

K∑
j=1

exp

(
2µ

(j)
U |O,i +

˜̃
Σ

(j)

U |O,ii

) (
exp

(˜̃
Σ

(j)

U |O,ii

)
− 1

)

+
1

K

K∑
j=1

(
exp

(
µ

(j)
U |O,i +

1

2
˜̃
Σ

(j)

U |O,ii

)
− ν̂UL,i

)2

.

6 A Simulation Study

In this section we assess how well the hyperparameters and the variances can be estimated

and use the formulas developed in the previous section to predict variances at ungauged

locations. For these purposes, samples from three realizations of the variance process are

studied, with exponential correlation functions having parameter θ̃ set to 0.1, 1 and 10,

respectively. The spatial deformation is that of the unit square (figure 4). Models were

fitted from data generated at the 16 observation locations (“gauged” sites) marked by

diamonds. Twenty locations marked by open circles were considered as “ungauged” sites to

assess predictions. The corresponding correlation functions (as functions of distances in the

D-plane) are presented in figure 5 along with the correlation function of the Z process.
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When θ̃ is the smallest, the correlation in the variance process is high even at large

distances. When θ̃ is equal to 10, the correlation decays rapidly. The intermediate value of

1 approximately corresponds to the correlation in the Z process. The correlation

parameter θ̃ affects the smoothness of the realizations of the variance surface: these are

smoothest for small values of θ̃ and roughest when θ̃ has a large value. For θ̃ we have used

a diffuse prior (uniform on the interval (0, 50)) that is flat at all three values of θ̃.

We note, that even though the emphasis of the present paper is variance estimation,

all the many parameters of the model, including the site variance, are estimated jointly.

The estimates are obtained through a Metropolis-Hastings algorithm, the basic steps of

which are described by Damian et al. [2001]. The extension of this algorithm to include the

additional variance parameters is straightforward, so we do not discuss details here here.

As explained in Damian et al. [2001], in the early stages of the development of the

algorithm, we monitor its convergence both by studying the behavior (until stabilization)

of the log-posterior distribution and by means of the Gelman-Rubin R̂ statistic that

compares between- to within-chain variability for sufficiently distant initial configurations

[Gelman and Rubin, 1992].

Smoothed histograms of the posterior distributions of the hyperparameters are

shown in figure 6. Maximum aposteriori (MAP) estimates and 95% credible intervals are

marked on the histograms. µ and σ̃2 are well estimated in all three cases. When θ̃ is either

0.1 or 1, the MAP estimate is close to the true value. When θ̃ is 10 the posterior is almost

flat over the interval (10,50) resulting in a poor estimate. The reason for this behavior is
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that for large values of θ̃ the sample variances are practically uncorrelated (figure 5) and

thus could have resulted from a range of values of θ̃.

The variances at the observation locations are estimated quite well for all three

values of θ̃, as can be seen from figure 7 in which MAP estimates of the temporal variances

are plotted against the true sampled values – in all cases the true values fall within the

95% C.I.s.

The plots in figure 8 show the simulated variance values at 20 “ungauged” sites vs.

the predicted values of these variances. The predicted values obtained by sampling from

the predictive distribution are quite similar to the ones obtained directly through eq. (21),

and all the predicted variances are within one estimated standard deviation of the

simulated values.

In figure 9 we present maps of variance contours representing the different levels of

variability in the spatial process Z. The left panel of the figure is based on the simulated

variance values and the right panel is based on the 16 estimated and 20 predicted values.

Both panels exhibit the same behavior: in an east—west direction the variance levels first

decrease then increase again (by the same order of magnitude).

We conclude that our method performs satisfactorily in estimating the variance field

at observation locations and in predicting it at ungauged locations.
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7 The French Precipitation Data

We have divided the 39 observation locations of the Languedoc-Roussillon database into

two groups: the first group, consisting of 31 locations, was used for model fitting and the

the remaining 8 locations were set aside for the evaluation of spatial predictions.

We fitted two models to the data from the 31 locations, one assuming a

nonstationary variance process and one assuming constant temporal variance. Samples of

2,000 observations from the posterior distributions of the various parameters of each of

these models were used to estimate the Bayes factor comparing them [Kass and Raftery,

1995]. Its estimated value is greater than 150, the threshold value for decisive evidence in

favor of the model with nonstationary variance, so we conclude that the model with

constant temporal variance is not suitable for the precipitation process. A comparison of

the plots of estimated covariances versus the sample ones for these two models (figure 10)

supports the choice of a nonstationary temporal variance in this application, since the

variability of the covariance cloud is notably lower. Our results are thus based on a model

similar to the one presented in section 4. Figure 11 depicts the estimated spatial

deformation as given by the mean of the posterior distribution. Dots mark the 31 locations

used for model fitting while numbered open circles identify the sites set aside for the

evaluation of predictions.

The estimated variances at the 31 locations are shown in figure 12. The pattern in

their spatial distribution is similar to the one observed in the sample variances (figure 1):

the lowest values are in the southwest, and the highest in the central and northern regions.
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The estimated mean of the variance field is 4.31 with interquartile range (3.94, 4.66).

The estimated correlation in the variance field decreases from 0.85 between the two closest

locations in D-plane to 0.0002 between the most distant pair (figure 12).

Figure 13 is a plot of the observed sample variances (including nugget effects) vs.

the corresponding estimated (or fitted) variances for the 31 sites used in model fitting and

the variances predicted for the remaining 8 sites. Most of the predictions fall as close to the

sample values as do the estimated variances, but there are two predicted variances, at sites

19 and 41, that are clearly further away from the reference line. The sample variance at

site 19 is surprising large compared that of a nearby observation site while the sample

variance at site 41 is over-estimated. A plot of variance contours based on the estimated

and the predicted values is shown in figure 14.

8 Discussion

In this paper we have proposed a model for spatially heterogeneous temporal variance,

integrated within the conceptual framework of the spatial deformation approach of

Sampson and Guttorp for structuring spatial correlations. Software for the MCMC

estimation of this model is available from the authors. These variances, combined with the

spatial correlation structure to define spatial covariance, are fundamental in the prediction

of the observable process, Z (x, t), at ungauged sites. To fully enable this spatial prediction

we have under development the incorporation of an additional (multivariate) random field

to represent µ (x, t) through temporal trend models at the monitoring sites with spatially
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varying parameters. This random field model may incorporate physical attributes of the

domain, such as slope and elevation, for example, as spatially varying covariates. The

accommodation of simple temporal autocorrelation structure will follow. The model is

being applied now to daily observations of tropospheric ozone across the U.S.
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Figure Captions

Figure 1 Sample variances of log-transformed French precipitation data: (a) original

values, (b) values divided by their average (all values multiplied by 10 to facilitate

visualization). The axes define a rectangular coordinate system measured in 100’s of

meters.

Figure 2 Maps of simulated sample variances, (a) and (b), and corresponding boxplots of

sample variances divided by their average, (c) and (d). (Values in the upper panels

are multiplied by 10 to facilitate visualization.) The contour lines in the upper panels

correspond to values from 20 to 44 at intervals of 2. The data in (a) and (c) were

generated from a constant temporal variance model (equal to 3) and the data in (b)

and (d) were generated from a log-normal variance model with mean equal to 3 and

exponential hyper-parameter θ̃ = 2.5.

Figure 3 Variance processes for different values of the correlation parameter θ̃

(exponential correlation). The first row illustrates three realizations of the process.

The second row shows histograms of the resulting 121 variances, and the third row

presents boxplots of sample variances divided by their average.

Figure 4 A non-linear deformation of the unit square: (a) G-plane, (b) D-plane. Solid

diamonds mark the 16 observation locations used in model fitting. Open circles mark

20 points used to assess predictions.

Figure 5 Correlation functions of the variance process for θ̃ = 0.1, 1, 10. The solid line is
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the correlation function of the Z process.

Figure 6 Posterior distributions of the hyperparameters (the parameters of the variance

process). The first column corresponds to the model with θ̃ = 0.1, the second to

θ̃ = 1 and the third to θ̃ = 10. The true values are marked by solid lines. MAP

estimates are marked by dotted lines. The dashed lines depict 95% credible intervals.

Figure 7 Estimated variances at 16 sites used for model fitting vs. corresponding true

variances underlying the simulation. The vertical bars represent 95% credible

intervals. The y = x line is superimposed.

Figure 8 Predicted variances at 20 ungauged sites vs. corresponding true (simulated)

variances (θ̃ = 1). (a) The predictions are based on means of a sample of 2,000 values

from the predictive distribution. (b) The predictions are calculated using eq. (21).

The bars represent ± one standard deviation.

Figure 9 Variance contour maps: (a) based on true (simulated) values at 36 sites and (b)

based on estimated values at 16 gauged sites and predicted values at 20 ungauged

sites. The contour lines correspond to values from 2.5 to 4.0 at intervals of 0.3.

Figure 10 Estimated vs. sample covariances: (a) in a constant variance model and (b) in

a nonstationary variance model. The solid line is the graph of y = x.

Figure 11 (a) G-plane representation of 31 Languedoc-Roussillon precipitation monitoring

sites. (b) D-plane representation according to the mean of the posterior distribution.
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Figure 12 (a) Estimated French precipitation variances at 31 stations (values multiplied

by 10 to facilitate visualization). (b) The correlation function of the variance field (as

a function of distance in D-plane).

Figure 13 Estimated (·) and predicted (◦) variances (including nugget) vs. the sample

variances. The solid line is the graph of y = x and the dashed line represents the

mean value of the variances. Vertical lines are ± one predictive standard deviation.

Figure 14 Contour plot of the estimated variance field for the French precipitation data.
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