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ABSTRACT

Evaluation of physically based computer models for air quality applications is crucial to assist in control

strategy selection. The high risk of getting the wrong control strategy has costly economic and social

consequences. The objective comparison of modeled concentrations with observed field data is one approach

to assessment of model performance. For dry deposition fluxes and concentrations of air pollutants there is

a very limited supply of evaluation data sets. We develop a formal method for evaluation of the performance

of numerical models, which can be implemented even when the field measurements are very sparse. This

approach is applied to a current U.S. Environmental Protection Agency air quality model. In other cases,

exemplified by an ozone study from the California Central Valley, the observed field is relatively data rich,

and more or less standard geostatistical tools can be used to compare model to data. Yet another situation

is when the cost of model runs is prohibitive, and a statistical approach to approximating the model output

is needed. We describe two ways of obtaining such approximations.

A common technical issue in the assessment of environmental numerical models is the need for tools to

estimate nonstationary spatial covariance structures. We describe in detail two such approaches.
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1 Introduction

A major focus of the Clean Air Act, the United States main law on air pollution control, from its passage in

1970 to the 1990 amendments, has been the effect of atmospherically transported pollutants on terrestrial

and aquatic ecosystems. The Clean Air Act Amendments (CAAA) of 1990 established emissions reductions

to reduce risk to public health and to protect sensitive ecosystems. The CAAA also established a monitoring

program to assess improvements in the Nation’s air quality and overall environment. If a state or district

in the US is found in violation of some of the air pollution standards in the Clean Air Act it is required

to develop a plan for bringing the region back into compliance with the Act. If the violation is sufficiently

substantial, the region must prove the effectiveness of the plan by developing a comprehensive deterministic

air pollution model, describing emissions, air transport, chemical transformation, and deposition of the

pollutant and its precursors. This model must be compared to observed data, found to describe these well

(a process often called model validation, although a more appropriate term would be model assessment),

and the proposed controls must, as shown by a model run under the modified conditions, bring the region

back into compliance. These deterministic models produce predictions for grid squares over some temporal

window. The data are obtained at individual points, and often have a different temporal resolution from the

model output. Consequently, it is not possible to compare the data to the model output directly. Rather,

some manipulation of the data (or the model output) is needed for comparability. The 1994 EPA Guidance

on Urban Airshed Model Reporting Requirements for Attainment Demonstration suggests manipulating the

model output:

“... recommends the use of a four-cell weighted average to determine the predicted concentration

to be used in comparison with observed values” [at monitoring sites].

Since the model output is already an average over the grid square, it seems inappropriate to smooth it

further spatially in order to compare to non-smooth point measurements. Rather, we would be inclined to

use the data to predict the model output, i.e., to predict the grid square values. However, this requires a

rather data-rich situation, in which the prediction can be made with adequate precision. Furthermore notice

that in order to do this, it would not be appropriate to model, statistically or stochastically, the air pollution
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transportation, transformation, emission and deposition processes. The deterministic model is built to model

these processes, and to use another model of these processes for manipulating the data would confound the

comparison between model and data.

The main objective of our work is a statistical assessment of the performance of complex air quality

models. Numerical models of air pollution are a form of a highly complex scientific hypothesis concerning

natural processes, that can be rejected through comparison with observations, but never confirmed. The

objective comparison of modeled concentrations with observed field data provides a means for assessing

model performance. Statistical evaluation of model performance is viewed as part of a larger process (which

includes sensitivity analysis and other tools) that collectively is referred to as model evaluation.

Air quality simulation models have been used for many decades to characterize the transport and dis-

persion of material in the atmosphere. Early evaluations of model performance usually relied on linear

least-squares analysis of observed versus modeled values, using traditional scatter plots of the values, e.g.

Clarke, (1964), Martin, (1971), and Hanna (1971). Further development of these proposed statistical evalu-

ation procedures is needed. The process of summarizing the overall performance of a model over the range

of conditions experienced within a field experiment typically involves determining two points for the model

evaluation objectives: estimate the bias in comparisons with observations, and study whether the differences

seen in the comparisons are significant in light of the uncertainties in the observations.

More generally, it can be helpful (Walden and Guttorp, 1987) to set up a framework for model assessment

in which the predictions (model outputs) and observations each have a decomposition into different error

types.

Pt = Xt + Mt + St + Nt (1)

Ot = Xt + Bt + Et (2)

where

Xt is the true state of nature (a spatial field)

Mt stands for model error, caused by inadequate description of the physical system, simplifying assump-
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tions, etc.

St is the smoothing error due to the modeling describing a discretized (rather than continuous) spatial

and temporal field

Nt describes numerical errors and/or approximations in the implementation of model predictions

Bt stands for measurement bias, caused by consistent operator error, properties of the measurement device,

temporal averaging, etc.

Et is the unavoidable measurement error, typically band-limited noise with a relatively flat spectrum

Notice that in this setup there is no “ground truth”: both model output and observations have measure-

ment error associated with them. In the decomposition we have, for simplicity, taken the components to

be additive. Frequently there can be interactions between the components, such as having numerical error

being a problem only when model error is large and smoothing error small. The discussion in Walden and

Guttorp (op. cit.) illustrates how misleading it can be to use the correlation between model prediction and

data to assess model quality: under realistic conditions, one can get high correlation between Pt and Ot if

the smoothing error is a nearly linear function of the true process, i.e., when extreme episodes (something

the model is developed to deal with) are poorly tracked.

In section 2, an approach to model assessment based on the Bayesian melding technique by Raftery

and Poole (2000) is illustrated in a case where there is ample model output and sparse monitoring data.

In section 3 we describe a geostatistical approach to model assessment, requiring monitoring data from a

relatively dense network, but enabling detailed analysis of the model output. Section 4 describes a situation

where it is difficult to get sufficient number of model runs, and a statistical approximation to the model

output is compared to data. Finally, in section 5 we briefly compare the different scenarios that these types

of assessment are suited for.
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Figure 1: (a): SO2 concentrations (ppb) from Models-3 for the week of July 11, 1995. The resolution is 36km×36km.

(b): SO2 concentrations (ppb) at the CASTNet sites for the same week.

2 A Bayesian framework for model evaluation

2.1 Statistical Models for CASTNet and Models-3 Output

Maps of loadings of pollutants to aquatic and terrestrial ecosystems are needed over different geo-political

boundaries, to discover when, where, and to what extent the pollution load is improving or declining. One

important source of information on pollution loads over large areas are the regional scale air quality models.

These models, e.g. Models-3, are run by EPA and the U.S. States and provide air pollution concentrations

and fluxes in regular grids in parts of the US (see Figure 1 (a) and Figure 2 (a)). The current resolution of

Models-3 is 36 km×36 km. The primary objective of Models-3 is to improve the environmental management

community’s ability to evaluate the impact of air quality management practices for multiple pollutants

at multiple scales, as part of the regulation process of the air pollutants standards. EPA provides point

measurements at 50 irregularly spaced sites in the eastern U.S. known as the Clean Air Status and Trends

network (CASTNet) (see Figure 1 (b) and Figure 2 (b)). At each site, EPA measures dry deposition fluxes

and concentrations of different atmospheric pollutants.

Models-3 is used to examine the response of the air pollution network to different control strategies under
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Figure 2: (a): HNO3 concentrations (ppb) from Models-3 for the week of July 11, 1995. The resolution is 36km ×

36km. (b): HNO3 concentrations (ppb) at the CASTNet sites for the same week.

various high-pollution scenarios. To establish its credibility, however, it is essential that it should accurately

reproduce observed measurements when applied to ground data. Models-3 uses as inputs metereological

data, emissions data and boundary values of air pollution. The available emissions data are combined with

numerical models of local weather (the Mesoscale Model version 5 (MM5)), the emissions process (the Sparse

Matrix Operator Kernel Emissions (SMOKE)), as well as information about land use and cover, to estimate

pollution levels in space and time (the Community Multiscale Air Quality (CMAQ) output) and produce

maps (Dennis et al, 1996). Models-3. are not statistical models but numerical deterministic simulation

models based on systems of differential equations that attempt to represent the underlying physics, and

take the form of huge blocks of computer code. To statistically assess the performance of Models-3 we need

measures of how well Models-3 output and real data agree. An approach to evaluation of model performance

is to use spatio-temporal models for monitoring data to provide estimates of average concentrations over grid

cells corresponding to model prediction (Dennis et al., 1990, Sampson and Guttorp 1998). This approach is

reasonable when the monitoring data are dense enough that we can fit an appropriate spatio-temporal model

to the data. In situations like the one presented here, with few and sparse data points that show a lack of

stationary, the interpolated grid square averages would be poor because of the sparseness of the CASTNet
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network, and so treating them as ground truth for model evaluation would be questionable.

A related problem is that the comparison does not take into account the uncertainty in the interpolated

values. In this section, we develop a new approach to the model evaluation problem, and show how it can

also be used to remove the bias in model output. We specify a simple model for both Models-3 predictions

and CASTNet observations in terms of the unobserved ground truth, and estimate it in a Bayesian way.

Solutions to all the problems considered here follow directly. Model evaluation then consists of comparing

the CASTNet observations with their predictive distributions given the Models-3 output. Bias removal

follows from estimation of the bias parameters in the model. The resulting approach takes account of and

estimates the bias in the atmospheric models, the lack of stationarity in the data, the ways in which spatial

structure and dependence change with locations, the change of support problem, and the uncertainty about

these factors. Fuentes and Raftery (2001) used this Bayesian framework for inference about deterministic

simulation with the goal of combining data from different sources as well as for numerical model evaluation.

The approach presented here could be considered an instance of the Bayesian melding approach (Poole and

Raftery, 2000).

Our general modeling framework is shown in Figure 3. We do not consider CASTNet measurements

to be the “ground truth”, because there is measurement error. Thus, we assume there is an underlying

(unobserved) field Z(s), where Z(s) measures the “true” concentration/flux of the pollutant at location s.

At station s we make an observation Ẑ(s), corresponding to the CASTNet observation at this station, and

we assume that

Ẑ(s) = Z(s) + e(s), (3)

where e(s) ∼ N(0, σ2
e) represents the measurement error (nugget) at location s. The process e(s) is indepen-

dent of Z(s).

The true underlying process Z is a spatial process with a nonstationary covariance,

Z(s) = µ(s) + ε(s), (4)

where Z(s) has a spatial trend, µ(s), that is a polynomial function of s with coefficients β. If additional

information about covariates is available, the spatial trend of Z(s) can be also modeled as a function of
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Figure 3: General Modeling Framework.

some metereological and geographic covariates f1, . . . , fp that are know functions at some locations s, with

unknown coefficients β :

µ(s) =
∑

βifi(s).

We assume that Z(s) has zero-mean correlated errors ε(s). The process ε(s) has a nonstationary covariance

with parameter vector θ that might change with location.

We could model the output of the EPA physical models as follows:

Z̃(s) = a(s) + b(s)Z(s) + δ(s). (5)

Here, the parameter function a(s) measures the additive bias of the air quality models at location s, and

the parameter function b(s) accounts for the multiplicative bias in the air quality models. The process

δ(s) ∼ N(0, σ2
δ ) explains the random deviation at location s with respect to the underlying true process

Z(s). The process δ(s) is independent of Z(s) and e(s), which is the error term for CASTNet. Since the

outputs of Models-3 are not point measurements but areal estimations in subregions B1, . . . , Bm that cover
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the domain, D, we have

Z̃(Bi) =
∫

Bi

a(s)ds + b

∫
Bi

Z(s)ds +
∫

Bi

δ(s)ds (6)

for i = 1, . . . ,m. We model the function a(s) as a polynomial in s with a vector of coefficients, a0, and b is

a unknown constant term.

For model evaluation we simulate values of CASTNet given models-3, from the following posterior pre-

dictive distribution:

P (Ẑ|Z̃, a = 0, b = 1). (7)

For bias removal we simulate values of the parameters a and b from the posterior distribution:

P (a, b|Ẑ, Z̃). (8)

2.2 Nonstationary Covariance

The spatial patterns shown by the air pollutant fluxes and concentrations change with location, so that

the underlying process Z with the true values of fluxes/concentrations of air pollution is nonstationary

and standard methods of spatial modeling and interpolation are inadequate. In recent years, probably the

most extensively studied method for nonstationary spatial processes is the deformation approach due to

Sampson and Guttorp (1992); see also Guttorp and Sampson (1994), which also contains descriptions of

other approaches in the literature up to that time. A Bayesian framework for the deformation approach

was introduced by Damian, Sampson, and Guttorp, P. (2000), and also by Schmidt and O’Hagan (2000).

Maximum likelihood versions of the method were developed by Mardia and Goodall (1993) and Smith

(1996). This approach requires repeated observations of the underlying field, and is therefore well suited for

application to monitoring data. In a series of papers best represented by Haas (1995), Haas has proposed

an approach to nonstationary spatial estimation based on moving windows. Another approach has been

developed by Nychka and Saltzman (1998) and Holland et al. (1999), extending the “empirical orthogonal

functions” (EOF) approach that is popular among atmospheric scientists.

A broad class of stationary Gaussian processes may be represented in the form

Z(s) =
∫

K(s − u)X(u)du,

9



with K(·) some kernel function and X(·) a constant-variance Gaussian white noise process. The motivation

for defining a spatial process as an integral of white noise can be said to go back to Whittle (1954), who gave

a similar representation for discrete spatial processes. Matérn (1986) used this representation to derive a

wide class of stationary spatial processes. Higdon, Swall and Kern (1999) considered extensions of the form

Z(s) =
∫

Ks(u)X(u)du, (9)

where the kernel Ks depends on position s. The idea of Higdon et al. was to model Ks(u) as an unknown

function in terms of specific parameters which can then be estimated in a hierarchical Bayes framework.

In the case where Ks is a Gaussian kernel for each s, this leads to tractable expressions for the covariance

function and hence the likelihood function for the process. This approach is promising, and a quite different

idea from earlier approaches for nonstationary processes, but it has the disadvantage of not being easily

related to traditional spatial models. The development of Higdon et al. relies heavily on the Gaussian form

of kernel function and it is not clear how restrictive this is. Our own approach also uses kernel representations,

but has a quite different motivation.

Another model for nonstationary processes was proposed by Fuentes (2001, 2002), and further developed

by Fuentes and Smith (2001). In this model, the process is represented locally as a stationary isotropic

random field, but the parameters of the stationary random field are allowed to vary across space. With this

model we are able to make inferences about the nonstationary random field with only one realization of the

process. In this section we use this approach by Fuentes (2002) to model nonstationary covariance. Consider

a Gaussian spatial process Z(x), where x varies over a domain D contained in a d-dimensional Euclidean

space R
d for some d > 1. Typically, d = 2. We represent Z as a convolution of local stationary processes

(Fuentes and Smith, 2001):

Z(x) =
∫

D

K(x − s)Zθ(s)(x)ds, (10)

where K is a kernel function and Zθ(x), x ∈ D is a family of (independent) stationary Gaussian processes

indexed by θ. The parameter θ is allowed to vary across space to reflect the lack of stationary of the process.

The stochastic integral (10) is defined as a limit (in mean square) of approximating sums (e.g., Cressie, 1993,

p. 107, Yaglom, 1962, p. 23). Each stationary process Zθ(s)(x) has a mean function µs that is constant, i.e.
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µs does not depend on x. We propose a parametric model for the mean of Z,

E{Z(x)} = µ(x;β),

where µ is a polynomial function of x (or known functions of x) with coefficients β. The covariance of Zθ(s)

is stationary with parameter θ(s),

cov{Zθ(s)(s1), Zθ(s)(s2)} = Cθ(s)(s1 − s2).

The process Zθ(s) could have a Matérn stationary covariance (Matérn, 1960):

Cθ(s)(x) =
σs

2νs−1Γ(νs)
(2ν1/2

s |x|/ρs)νsKνs
(2ν1/2

s |x|/ρs), (11)

where Kνs
is a modified Bessel function and θ(s) = (νs, σs, ρs). The parameter ρs measures how the corre-

lation decays with distance; generally this parameter is called the range. The parameter σs is the variance

of the random field, i.e. σs = var(Zθ(s)(x)), where the covariance parameter σs is usually refereed to as the

sill. The parameter νs measures the degree of smoothness of the process Zθ(s). The higher the value of νs

the smoother Zθ(s) would be; e.g. when νs = 1
2 , we get the exponential covariance function. In the limit

as νs → ∞ we get the Gaussian covariance. The covariance C(s1, s2; θ) of Z is a convolution of the local

covariances Cθ(s)(s1 − s2),

C(s1, s2;θ) =
∫

D

K(s1 − s)K(s2 − s)Cθ(s)(s1 − s2)ds. (12)

.

Since the processes Zθ(s) are stationary with autocovariances Cθ(s), they can be represented in the form:

Zθ(s)(x) =
∫

R2
Ks(u − x)Xs(u) (13)

where Ks is a kernel for each s, and Xs are independent white noise processes for each s. In the present

paper, we consider a model in which Xs is an independent process for each s. In that case, we could combine

(13) and (10) into a single integral representation for Z(x), but one which does not reduce to the form (9).

An alternative approach would be to make Xs() a common white noise process for all s, but that turns out

to be harder to implement computationally than the present approach.
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In (12) every entry requires an integration. Since each such integration is actually an expectation with

respect to a uniform distribution, we propose Monte Carlo integration. We propose to draw a systematic

sample of locations sm, m = 1, 2, ...,M over D. Hence, we replace C(s1, s2;θ) with

CM (s1, s2;θ) = M−1
M∑

m=1

K(s1 − sm)K(s2 − sm)Cθ(sm)(s1 − s2). (14)

This is a Monte Carlo integration which can be made arbitrarily accurate and has nothing to do with

the data Z. The sampling points sm, m = 1, 2, ...,M, determine subregions of local stationarity for the

process Z. We increase the value of M until convergence is achieved. this paper, function K(x− s). A final

complication is the “change of support” problem. The change-of-support problem occurs when we combine

data sources with different supports, or when the supports of predictand and data are not the same. Here,

we have point measurements at the CASTNet sites, and then we observe the output of Models-3 averaged

over regions, B1, . . . , Bm, of dimensions 36km × 36km. We have specified a covariance function between

points, not grid boxes. A point covariance function is needed if we are to obtain predictive distributions at

individual locations, as is the objective. However, the Models-3 data are on grid boxes, not at individual

locations. The model fitting must reflect this discrepancy between the scale of model-based grid cell averages

and monitoring data which are taken at individual locations. We derive the covariances of the block averages

Z(Bi), i = 1, . . . , N, in terms of the pointwise covariance C(u,v).

cov(Z(Bi), Z(Bj)) =
∫

Bi

∫
Bj

C(u,v)dudv/|Bi||Bj |, (15)

where

C(u,v) = cov(Z(u), Z(v)),

C being a possibly nonstationary spatial function. If Bi = si (a point) the covariance is defined by

cov(Z(si), Z(Bj)) =
∫

Bj

C(si,v)dv/|Bj |. (16)

The integrations in (16) are replaced by discrete sums for computational convenience. This is then used to

define a likelihood function for the parameters of the covariance function for the process Z in terms of the

observed block averages Z(B1), Z(B2), . . . , Z(BN ).
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2.3 Estimation

In this section we explain how to efficiently implement our algorithm for numerical models evaluation, using

the approach proposed by Fuentes and Raftery (2001).

2.3.1 Algorithm

1. Posterior predictive values for CASTNet given Models-3 The quantity of interest is the predictive dis-

tribution for Ẑ(x0) given the values of Z̃. We approximate the predictive distribution with the Rao-

Blackwellized estimator, conditioning on the posterior simulated values for all the parameters, using

for this simulation the following Gibbs algorithm.

2. Algorithm for Gibbs sampling We discuss now how to sample from the posterior distribution of the

parameters. In our Gibbs sampling approach there are three stages. We alternate between the param-

eters that measure the lack of stationarity, (β,θ) (Stage 1), the parameters that measure the bias of

Models-3 and the measurement error of CASTNet (Stage 2), and the unobserved true values of Z at

all the CASTNet sites and at the blocks where we have the Models-3 output (Stage 3).

Gibbs sampling: Stage 1. We obtain the conditional posterior for the parameters that measure the lack

of stationarity, (β,θ(s)), conditioning on the values of Z that are updated in Stage 3. The posterior

of (β,θ(s)) will be completely specified once we define the priors for (β,θ(s)), because we have that

[Z|β,θ] is Gaussian,

where the brackets [ ] are used here to denote densities.

Gibbs sampling: Stage 2. We obtain the conditional posterior for the parameters a0, b, σ
2
δ and σ2

e that

measure the bias and uncertainty of Models-3, and the measurement error of CASTNet. The posterior

of σ2
e given the n values of Ẑ and Z at the CASTNet sites (updated in Stage 3), can be easily obtained,

because we have the following regression problem:

Ẑ(s) = Z(s) + e(s),

where σ2
e is the variance of the error term e(s), and Z(s) is independent of e(s). We have that

[Ẑ(s)|Z(s), σ2
e ] is normal with mean Z(s) and variance σ2

e .
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Then, the posterior of σ2
e is proportional to

[Ẑ(x1), . . . , Ẑ(xn)|Z(x1), . . . , Z(xn), σ2
e ][σ2

e ]

where [σ2
e ] denotes the prior distribution for σ2

e , and x1, . . . ,xn are the n CASTNet sites. The posterior

distributions of a0, b, σ
2
δ given the values of Z̃ and Z (updated in Stage 3) at the m blocks, can be

easily calculated, because we have the following regression problem:

Z̃(Bi) =
∫

Bi

a(s)ds + b

∫
Bi

Z(s)ds +
∫

Bi

δ(s)ds,

where σ2
δ is the variance of the error term δ(s), and Z(s) is independent of δ(s). It follows that

[Z̃(B1), . . . , Z̃(Bm)|Z(B1), . . . , Z(Bm), a0, b, σ
2
δ ]

is normal with mean a + b {Z(B1), . . . , Z(Bm)}, where a =
{∫

B1
a(x)dx, . . . ,

∫
Bm

a(x)dx
}

, and a

diagonal covariance matrix with diagonal elements σ2
δ |Bi|. Thus, the posterior of a0, b, σ

2
δ is proportional

to

[Z̃(B1), . . . , Z̃(Bm)|Z(B1), . . . , Z(Bm), a0, b, σ
2
δ ][a0, b, σ

2
δ ].

Gibbs sampling: Stage 3. We simulate values of Z (the unobserved true values) at the n locations

where we have measurements for Ẑ, and also at the m blocks where we observe Z̃, conditioning on

the values of β,θ (updated in Stage 1) and Z. The simulated values at the m blocks are obtained by

simulating values of Z at a sample of locations within each block. Then Z(Bi) is approximated by

L−1
∑L

k=1 Z(sik
), where si1 , . . . , siL

is a centered systematic sample in Bi.

For model evaluation, we simulate values from the posterior distribution of CASTNet given Models-3,

P (Ẑ|Z̃, a = 0, b = 1),

and we compare the actual observations with this simulated posterior predictive distribution. For bias

removal of the air quality models, we simulate values of the parameters a and b from the posterior distribution:

P (a, b|Ẑ, Z̃),

obtained in Stage 2 of the Gibbs sampling approach.
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2.4 Statistical Assessment of Air Quality Models

The regional scale air quality models (Models-3) run by the U.S. EPA estimate hourly concentrations and

fluxes of different air pollutants. The spatial domain, D, is a regular grid (81×87), the dimensions of each

pixel in the grid are 36km × 36km. Models-3 provides hourly concentrations for each pixel. We study here

sulfur dioxide and nitric acid. Figure 1 (a) shows the weekly averaged concentrations of SO2 from Models-

3 for the week starting July 11, 1995. Figure 2 (a) shows the weekly values of NHO3 from Models-3.

SO2 is a primary pollutant, so it is emitted directly from its sources, and it tends to be more spatially

heterogeneous than HNO3, or other secondary pollutants, e.g. O3. NHO3, as a secondary pollutant, is the

result of photochemical reactions in the atmosphere. The Clean Air Status and Trends Network (CASTNet)

measures weekly averaged concentrations and fluxes at 50 sites of different pollutants, Figures 1 (a) and

2 (b) show the SO2 and the HNO3 values respectively for the week starting July 11, 1995. We use the

methodology presented in Section 2.1 to evaluate Models-3 and to estimate the bias. We modeled Models-3

in terms of an underlying unobservable process Z with the true values of SO2, but we added an additive

constant bias, a multiplicative constant bias, and a measurement error term. We also modeled CASTNet in

terms of the “true” process Z and we added a measurement error term (see Section 2.1). We modeled the

covariance for Models-3 using equation (12), taking into account the lack of stationarity and the change-of-

support problem (we calculated the covariances involving block averages by drawing a set of 4 locations in

each pixel).

We used inverse gamma priors with infinite variance for all the Matérn covariance parameters, except

for the sill parameter for which we used a uniform prior in the log scale. Figures 4 (a) and (b) show the

posterior distributions of some covariance parameters for the underlying process Z at 6 selected sites. The

sill parameter changes with location as illustrated by the variation in the distributions in Figure 4 (b). Thus,

this indicates a lack of stationarity. The range parameter does not change much with location (Figure 4 (a)).

The smoothing parameter does not change with location either, and is always close to 1/2 (exponential).

We implemented the nonstationary model (10) with weight function K(u− s) = 1
h2 K0

(
u−s

h

)
, where K0(u)
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Figure 4: (a): Posterior distributions for the range parameter (km) of the Matérn covariance for the SO2 concen-

trations of Z, for the week starting July 11, 1995, at 6 selected sites located (starting from the bottom left panel) in

ME, IL, NC, IN, FL and MI respectively. (b): Posterior distributions for the sill parameter of the Matérn covariance

for the SO2 concentrations of Z, for the week starting July 11, 1995, at the 6 selected locations.

is the quadratic weight function

K0(u) =
3
4
(1 − u1

2)+
3
4
(1 − u2

2)+, (17)

for u = (u1, u2). The bandwidth parameter h is defined as l/2 + l/2ε, where l is the distance between the

sample points s1, . . . , sM in (14), and ε is a value between 0 and 1. For ε we used a uniform prior in the

interval [0, 1]. The parameter ε determines the amount of overlapping between the subregions of stationarity

centered at the sampling points s1, . . . , sM, and h can be interpreted as the diameter of the subregions of

stationarity.

The mode of the posterior distribution for the parameter that measures the measurement error for

CASTNet is .8 (ppb), and for Models-3 it is .1 (ppb). The mode of the posterior distribution for the

parameter that measures the multiplicative bias for Models-3 is .5 (ppb) with a standard error of .5 (ppb),

and for the additive bias we have a polynomial of degree 4.

The graph on the left in Figure 5 presents a naive approach for evaluation of Models-3. This graph shows

Models-3 versus CASTNet, without doing any spatial interpolation of Models-3. In this graph we simply
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Figure 5: The graph on the left shows CASTNet measurements for the week starting July 11, 1995, versus the

values of Models-3 for the pixels that are the closest to each CASTNet site, without considering the change

of support. The graph on the right shows the CASTNet measurements versus the modes and 90% credible

intervals of the predictive Bayesian distributions derived from Models-3 at the CASTNet locations.The

dotted lines indicate a 90% confidence region for the CASTNet values.
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Figure 6: CASTNet values of SO2 versus the mean of the predictive posterior distribution for Models-3 at

each site.

have the values of Models-3 for the pixels that are the closest to each CASTNet site, without considering

the change of support. In some areas the atmospheric pollutants vary significantly at scales smaller than

the grid size of the model, therefore comparing the value of the grid cell with a point measurement in the

ground would lead to erroneous conclusions. In Figure 5 the dotted lines indicate a 90% confidence region for

CASTNet (CASTNet values ±1.64 · σe). The graph on the right in Figure 5 shows CASTNet measurements

versus the modes and 90% credible intervals of the predictive Bayesian distributions (eq. (7)) derived from

Models-3 at the CASTNet locations for evaluation of Models-3. Some of the modes in the latter plot do

not fall within the credible bands for CASTNet. The latter plot is much more informative about the fit of

Models-3 to the real data, since we compare values that have the same spatial support instead of comparing

grid cells with point measurements. The uncertainty in the estimated Models-3 values in this figure depends

on location. The 90% credible intervals in Figure 5 show that at some locations, the bias in Models-3 is

not significant. This Bayesian approach gives more reliable prediction errors, by taking into account the

uncertainty in the covariance parameters, and the change of support.

Figure 6 we plot all SO2 CASTNet values versus the means of the predictive distributions of Models-3
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Figure 7: CASTNet values for HNO3 versus the mean of the predictive posterior distribution for Models-3

at each site.

at those locations. The dotted lines in Figure 6 indicate a 90% confidence region for the SO2 CASTNet

measurements, and the solid line has slope 1 and intercept 0. There are 3 sites where Models-3 overestimates

the SO2 values considerably, a site in Indiana, a site in Maryland, and a site in West Virginia. These three

sites are close to power plants. In Figure 7 we have all HNO3 CASTNet values versus the means of the

predictive distributions of Models-3 at those locations. The dotted lines in Figure 7 indicate a 90% confidence

region for the HNO3 CASTNet measurements, and the solid line has slope 1 and intercept 0. For the nitric

acid, the CASTNet values have a smaller measurement error .7 (ppb) versus .8 (ppb) for SO2. However, the

relative standard error (coefficient of variation) is larger for HNO3 than for SO2. The sites where Models-

3 seems to perform worse are located in Illinois and Indiana, these are again sites close to power plants.

Figures 6 and 7 is just an illustration of the powerful application of the technique presented in this paper,

though it does arises some important questions that are currently being discussed with the Models-3 group

regarding the formulation and improvement of the physical models. Some of the main sources of uncertainty

that affect the performance of the models are the following; the photo-chemistry model parameterizations

(which is the treatment of photo-chemistry phenomena varying at scales smaller than the grid size of the
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model), the boundary conditions, the treatment of the land use/land cover at smaller scales than the grid

size, the quality of the emissions input that goes into the air quality models, and the air dispersion modeling

of pollution plumes (at smaller scales than the grid size). The fact that for the SO2 the models perform

worse in areas closer to power plants suggests that the dispersion modeling of pollution plumes in that

areas needs to be improved. The Models-3 output used for the analysis in this paper assumes that the

SO2 diffuses uniformly within each grid cell. New dispersion models are currently being added to Models-3.

For more information about dispersion modeling of pollution plumes, see e.g. Beychok (1995). For the

HNO3, Models-3 seem to also perform worse in areas with high emissions, this probably indicates that the

photo-chemical parameterizations at scales smaller than the grid size of the model need to be improved.

3 A geostatistical aproach

3.1 The SARMAP study

In 1990 several air quality research groups and govenment organizations went together in the SARMAP

project to gather data at a fairly dense network in California’s San Joaquin Valley, in order to evaluate the

output from a model. SARMAP is a multi-acronym, standing for the SJVAQS/AUSPEX Regional Model

Adaptation Project, where SJVAQS stands for the San Joaquin Valley Air Quality Study and AUSPEX

for Atmospheric Utility Signatures, Predictions and Experiments. The SJVAQS focused on determining

the causes of the exceedances in the San Joaquin Valley of the U.S. ozone air quality standard (120 ppb

maximum one hour average4). AUSPEX was intended to develop a comprehensive model addressing ozone,

aerosol, visibility, and acid deposition issues and to obtain a high-quality data base for model evaluation and

application.

Data were available from two summer months in 1990 with hourly samples at 131 stations. Meteorological

variables as well as ozone precursors were also measured in the SARMAP study. In the application by Meiring

et al. (1998) a subset of these data was used to assess some runs of the AUSPEX model. In this case the

models runs were only made available for a few short extreme episodes during the two months.

4A revised maximum eight hour average standard has not been implemented due to legal complications
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A preliminary data analysis indicated that the ozone process is neither temporally stationary nor spa-

tially homogeneous (Guttorp et al., 1994). There is a diurnal cycle with peak ozone concentrations in the

afternoons, and minimal concentrations during the night. This is explained by the fact that ozone formation

is a photochemical reaction, with a variety of ozone sinks (and virtually no production) during the night.

In order to estimate the space-time covariance of the data, we first take out a daily mean from square-root

transformed measurements at each station. The residuals from the mean exhibit temporal autocorrelation, so

an AR 2-model was fit to each station separately. To the residuals from the mean and time series models, we

want to fit a spatial covariance model. Because of the nature of ozone data, we expect this spatial covariance

to vary with the hour of the day (being stronger in the afternoons at times of peak ozone production and

weaker during the night-time depletion), as well as showing a meteorologically and orographically induced

heterogeneity. In other words, the space-time covariance structure is non-separable, spatially heterogeneous

and anisotropic. Assumptions of space-time separability, spatial homogeneity (or stationarity) and isotropy

are commonly made in many geostatistical applications, but are not appropriate here. In the next subsection

we present an approach to nonstationary covariance estimation that is different from the Fuentes approach

in Section 2.

3.2 Bayesian estimation of the spatial deformation model

We assume that temporally independent samples Zit = Z (xi, t) are available at each of N geographic

locations and at the same T points in time: i = 1, 2, . . . , N and t = 1, 2, . . . , T . We consider the following

model for the underlying process:

Z (x, t) = µ (x, t) + ν (x)1/2 E (x, t) + ε (x, t) (18)

where x denotes location and t time. µ (x, t) represents the spatial-temporal mean field. E (x, t) is

a mean zero, variance one, Gaussian spatial process with a correlation function that depends smoothly

on the geographic coordinates. We assume that E (x, t) is mean square continuous in space, namely,

E (E (x + h, t) − E (x, t))2 → 0, as h → 0. ν (x) is a smooth function representing the variance (in time) of

the process observed at location x. ε (x, t) is a white-noise process (i.e. it has mean zero, constant variance

and zero correlation), independent of E (x, t).
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Each of the components of this model requires careful thought and modeling. In this subsection we

consider a flat prior for the space-time mean field, µ (x, t), to remove it from the likelihood. The process

ε (x, t) is a white-noise process representing measurement error and small scale spatial variability. The

variance of the space-time process at points in space, ν (x), is itself modeled as a random field with spatial

structure related to the structure of the process E (x, t), where t simply indexes temporally independent

replicates of the spatial process. This is the focus of our analysis here. Damian et al. (2000) contains

technical details for the case of constant variance field, while Damian et al. (2003) describes the modification

needed for spatially varying variances.

Many spatial processes may be modeled as Gaussian, either directly, or after a suitable transformation.

We thus model E (x, t) as normal, with mean zero, variance 1 (ν (x), the variance of Z (x, t), is considered

separately) and a Sampson-Guttorp correlation function (Guttorp and Sampson, 1994)

Corr (E (x) , E (y)) = ρθ (‖f (x) − f (y)‖) (19)

The process E (x, t) is assumed to be mean square continuous. This assumption is equivalent to the

continuity of ρθ (·) at the origin, that is, ρθ (d) → 1 as d → 0. The correlation function of Z (x, t) does not

necessarily converge to 1. This fact is accounted for by the process ε (x, t). We assume that ρθ (·) belongs

to a known parametric family with unknown parameter(s) θ.

The covariance and correlation functions of the observed process Z (x, t) are easily obtained from the

model (18)

Cov (Z (x, t) , Z (y, t)) =




(ν(x)ν(y))1/2
ρθ (‖f(x) − f(y)‖) x �= y

ν(y) + σ2
ε x = y

(20)

In summary, the elements of the model to be estimated are:

• θ, the parameter(s) of the correlation function

• f , the spatial deformation, represented as a pair of thin-plate splines

• ν (x), the spatial variance, represented as a random field

• σ2
ε , the nugget effect
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• µ (x, t), the mean.

We model the function f as a pair of thin-plate splines because this provides a flexible family of de-

formations that provides a basis for characterizing spatially varying anisotropy in the spatial covariance

structure. In addition, the spline representation provides a convenient parameterization for specifying priors

that penalize deformations that are not smooth. Simple affine transformations play a special role in this

model as they correspond to stationary, but anisotropic models. The parameterization allows us to specify

priors (penalties) for both the degree of anisotropy and the smoothness (“bending energy”) of the non-affine

component of the deformation, which corresponds to the spatial scale at which we represent nonstationarity.

3.3 The geostatistical model assessment approach

In analyzing the SARMAP data (Meiring et al., 1998) the procedure needed to assess the model had the

following steps:

1. Square root transform data

2. Take out station means

3. Prewhiten station by station using an AR(2)-model

4. Fit a nonstationary covariance model hour by hour to the residuals

5. Estimate means at grid squares

6. Predict untransformed grid square values from mean model and postcolored residuals

Model-based hourly grid square calculations can now be compared to the data-based estimates, which

have associated standard errors. Spatial and/or temporal discrepancies indicate areas where the model

does not correspond well to data. Note that it is important, in order to avoid confounding, not to

include the atmospheric variables in the data analysis, since the model also uses these variables.

The analysis in Meiring et al. (1998) indicated difficulties with the model involving the location of

afternoon peaks, and lack of sufficient sinks at nighttime. The latter, often considered unimportant

by modelers, may be particularly troublesome if the model is used to evaluate alternative scenarios
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using proposed control strategies, since this will force the model to operate outside the parameters for

which it was tuned. Hence, regiions in space and/or time where a model consistently fails may be an

indication of structural problems.

4 The Statistical Analysis of Computer Code Output (SACCO)

A complementary approach to comparing model output to data is to perform a statistical analysis of

the model itself. However complex the numerical model we can consider it simply as a function mapping

a set of inputs to a set of outputs. By inputs here we do not only mean the model forcings but also

any uncertain internal parameters. SACCO methods are concerned with the statistical analysis of this

function. In particular we want to know what is the uncertainty on the model outputs given uncertainty

on the inputs. As a consequence of this we can also find which values of the inputs give the best fit to

data (calibration), look at the sensitivity of the outputs to inputs and make model predictions in an

efficient manner.

The basis of these methods is to use what is called an emulator. An emulator is a statistical approxima-

tion to the output of the numerical model. We can either analytically compute the statistical properties

of the emulator or it is simple enough to allow us to use Monte Carlo methods that are computationally

impractical with the full numerical model. In a number of papers OHagan (Haylock and O’Hagan,

1996; O’Hagan and Haylock, 1997; O’Hagan et al 1998; Kennedy and O’Hagan, 2000; Kennedy and

O’Hagan, 2001; Kennedy et al, 2002; Oakley and O’Hagan, 2002; ) has developed Bayesian SACCO

methods. Similar linear Bayes methods have been explored by Goldstein and co-workers (Craig et al,

1996, 1997, 2001). In both approaches the emulator is modelled as a random function. It could be

argued that since our numerical model is deterministic it should not be modelled as a random process.

However until we run the model we are ignorant as to its value and the expensive of obtaining output

means that over most of the models domain we will not know the true value.

We use a Gaussian process to model our initial beliefs. To some extent the use of a Gaussian process is

arbitrary. We could use any other method of modelling a random process. However Gaussian processes
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are adaptable, can fit any function and can be shown to be equivalent to some of the other candidate

methods, for example neural networks. For a good description of Gaussian processes in this context

see Kennedy and OHagan (2001). Thus if our random function is given by η(x) (η(x) ∈ R) where x

is the vector of inputs defined on a subset of Rm. Denote the mean function of η by m(x) and the

covariance function by v(x1,x2).

Our priors on the mean and covariance functions are

m(x) = h(x)Tβ (21)

and

v(x1,x2) = σ2c(x1,x2) (22)

where h(x) is a vector of q regression functions and β is a vector of q parameters.

The form of h(x) is arbitrary. Low order polynomials, or even simply a constant, have proved effective.

In specifying the correlation function stationarity is assumed, i.e. c(x1,x2) = c(‖x1 − x2‖) where

‖x1 −x2‖ is a suitable norm. The form of c is not critical. Most examples so far have used a Gaussian

correlation function

c(x1,x2) = exp(−(x1 − x2)TB(x1 − x2)) (23)

Our prior knowledge can now be expressed in terms of the parameters β, σ2 and B. For a full

Bayesian analysis we would now specify a probability distribution for each of these parameters. However

including the smoothing parameters, B, in such an analysis makes the problem intractable. These are

therefore dealt with in a non-Bayesian way.

We now run the model at a number, n, of values of the inputs x1, . . . ,xn to produce data, d. The

selection of these design points is an important problem and is discussed further below. From the prior

we have that

d|β, σ2 ∼ N(Hβ, σ2A) (24)
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where

d are the model results corresponding to the inputs x1, . . . ,xn

HT = (h(x1), . . . ,h(xn)

and

A =




1 c(x1,x2) · · · c(x1,xn)

c(x2,x2) 1
...

...
. . .

c(x1,xn) · · · 1




Now we can update the distribution of η(.) using the properties of conditional Normal distributions

(Krzanowski, 1988)

η(.)|β, σ2, d ∼ N(m∗(.), σ2c∗(., .)) (25)

where

m∗(x) = h(x)T )β + t(x)T A−1(d − Hβ)

c∗(x, x′) = c(x, x′) − t(x)T A−1t(x′)

t(x)T = (c(x, x1), . . . , c(x, xn))

and

dT = η(x1), . . . , η(xn) (26)

We now need to integrate out β and σ2 Combining and using Bayes theorem we get

β|σ2, d ∼ N(β̂, σ2(HTA−1H)−1) (27)

and

σ2|d ∼ {n − q − 2}σ̂2χ2
n−q (28)

where

β̂ = (HTA−1H)−1HTA−1d (29)

σ̂2 =
dT (A−1 − A−1H(HTA−1H)−1HTA−1)d

n − q − 2
(30)
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Take the product of (22), (25) and (26) to get the distribution of η(x), β, σ2|d and then integrate out

β and σ2. this gives us the marginal distribution of η(x)|d as

η(x) − m∗∗(x)
σ̂{c∗∗(x, x)} 1

2
∼ tn−q (31)

where

m∗∗(x) = h(x)T β̂ + t(x)T A−1(d − Hβ̂) (32)

and

c∗∗(x, x) = c∗(x, x) + (h(x)T − t(x)T A−1H)(HTA−1H)−1(h(x)T − t(x)TA−1H)T (33)

m∗∗(x) gives us a quick approximation, the emulator, to the model. Thus we do not need to run the

full, expensive model in future. We also have the variance for this estimate of the model output. At

the design points, where we have run the model, m∗∗ equals the model output and at points in between

it smoothly interpolates. At first look it is surprising that an emulator for a complex non-linear model

can be so simple. As an example in figure 8 we show the emulation of a simple, but highly non-linear

model the function y=7+x+cos(2x). Using only a linear regression function (i.e. hT (x) = (1x)) and

five model evaluations a very realistic approximation (shown dashed) is made to the function (the solid

line).

The uncertainty distribution

We now consider the distribution of the outputs in terms of some statistical distribution of the inputs.

Consider the inputs x as random variables with a distribution G. Then Y = η(x) is also a random

variable. We call the probability distribution of Y induced by the distribution of x the uncertainty

distribution. Because the model is so complex it is non-trivial to obtain the distribution of Y given the

distribution of x. Before considering the entire distribution we look at the moments of Y. The mean

of the uncertainty distribution, K, is given by

K =
∫

η(x)dG(x) (34)
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Figure 8: The function y=7+x+cos(2x) with an emulator(-.) and its 95% confidence limits (..). The

emulation used only the values of the function at the *’s and a linear prior

Following O’Hagan (1992) it can be shown that

K − K̂

σ̂
√

X
|d ∼ tn−q (35)

where

K̂ =
∫

m∗∗(x)dG(x) = Rβ̂ + TA−1(y − Hβ̂)

R =
∫

h(x)T dG(x)

T =
∫

t(x)T dG(x)

Thus we have the posterior distribution of the mean of the uncertainty distribution. It is not possible

to calculate the full posterior for the variance but it is possible to compute the first two moments.

If we want the full uncertainty distribution rather than simply its moments we can use Monte Carlo

techniques. These are discussed in O’Hagan, Kennedy and Oakley (1998) and Oakley and O’Hagan

(2002). An interesting aspect of these methods is the use of so called sampling design points. Since

the full simulator is expensive to run we wish to minimise the number of runs we need. Oakley and

O’Hagan (2002) supplement the actual simulator runs with runs of the emulator which are then treated
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as if they were simulator runs. Thus we have a two stage sampling process. Before any sampling takes

place we run the simulator according to some design. These points are fixed and the emulator is

forced to have the same value as the simulator at these points. In the first stage of the sampling we

sample from the emulator at the sampling design points. We now fix these points as if they were from

the simulator itself and sample from the uncertainty distribution. the use of sampling design points

improves the efficiency of the sampling of the uncertainty distribution.

There are two outstanding issues with these methods. The first is the specification of smoothing

parameters (B). The second is the dimensionality of the problem.

As we noted above the smoothing parameters are not dealt with in a fully Bayesian way. The methods

we have described assume that they are known. There are two ways they can be estimated. The

first (Oakley and O’Hagan; 2002) is to maximise the posterior probability. The other is to use cross-

validation: exclude each simulator run in turn and use the reduced subset to predict its value. The

value of the smoothing parameters that minimise the squared difference is then used for the rest of the

calculations.

The other major issue is that of dimensionality. The methods described earlier in this section can deal

with many inputs and a single output. We can extend the method to multiple outputs by adding an

index to the inputs. So if we are interested in ten outputs, say, we would add an extra input variable

taking the values one to ten indicating which output we are dealing with. A more important the

problem is the dimension of the simulator itself. Numerical models of environmental process are often

of very large dimension. The size of the matrices we have to deal with increases with the dimensionality

of the problem. Thus the computational burden rises rapidly (although it will still normally be small

compared to running the simulator itself). In addition as the dimension of the input space increases

we will have to make more simulator runs to ensure that the emulator is interpolating rather than

extrapolating the behaviour of the non-linear simulator. These issues are active research topics.

A topic which is likely to be of increasing importance as these methods are applied to increasingly

complex (and higher dimension) problems is the use of hierarchies of simulators. These methods are

described in Craig et al (1996), (1997), (2001), O’Hagan et al (1998) and Kennedy and O’Hagan(2000).
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Simpler versions of the simulator which are faster to run, and possibly have lower dimension, are used

to gain information about the form of the emulator. Used successfully this method can reduce the

number of runs of the full simulator to a handful.

4.0.1 Bayes Linear Methods

Craig et al (2001) present an interesting alternative to the O’Hagan method. They are particularly

interested in combining simulator output, data and expert opinion to make predictions. Their example,

an oil reservoir simulator, is of high dimension (order 100). They conclude that a Bayesian solution to

their problem (similar to the methods described above) is computationally impracticable for anything

but low dimensional problems. They therefore propose a Bayes linear solution. Bayes linear methods

(Goldstein, 1999) produce inferences only on the first two moments of the distribution rather than the

full po. The relevant equations are

EzP
(yF ) = E(yF ) + cov(yF , zP )var(zP )−1(zP − E(zP )) (36)

varzP
(yF ) = var(yF ) − cov(yF , zP )var(zP )−1cov(zP , yF ) (37)

where yF is the future system output and zP are the past system inputs. These include both measured

data and simulator output. As above the simulator is emulated using a Gaussian process but they pay

much more attention to producing a good prior model. Because of the high dimensionality of their

problem they introduce the concept of active inputs. These are those inputs that are most important

in explaining variation in each output and are used to reduce the dimensionality of the function h(x).

To cope with the extra variability from the other inputs an extra error term is added to the emulator so

it is not forced to pass through the simulator output values. Their method produces good predictions

for a problem of large dimension. However since the inferences are limited to the first two moments it

is difficult to make probability statements without, for example, assuming a Normal distribution.
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5 Discussion

Evaluation of the performance of a numerical model is mostly constrained by the amount and quality

of observational data available for comparison with modeling results, and by the ease with which the

models can provide runs that are appropriate to compare to the data.

The simulation models are capable of providing estimates of a larger set of conditions than for which

there is observational data. In many cases the uncertainty associated with such estimates is very

difficult to assess, being related to how well the model can describe the actual physical processes

beyond the conditions for which the model has been optimized.

Furthermore, most models do not provide estimates of directly measurable quantities. For instance,

grid models even if a model provides an estimate of the concentration at a specific location it represents

an average over some volume of air, for example, grid average. In this paper we present statistical

methodologies aimed to deduce the statistical significance of differences seen in model performance in

the face of all these large uncertainties and variation.

The approaches presented here can also be used for a second order model assessment, by comparing the

spatial covariance of the data on the ground with the spatial covariance of the posterior distribution

of the model output. This was not possible in the SARMAP experiment, since there were insufficient

number of model runs, and also not possible in the Models-3 setup since the spatial data density was

too low.
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