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Abstract: A common problem in the analysis of time series is how to deal with a possible trend

component, which is usually thought of as large scale (or low frequency) variations or patterns in the

series that might be best modeled separately from the rest of the series. Trend is often confounded with

low frequency stochastic fluctuations, particularly in the case of models such as fractionally differenced

(FD) processes, that can account for long memory dependence (slowly decaying autocorrelation) and

can be extended to encompass nonstationary processes exhibiting quite significant low frequency com-

ponents. In this paper we assume a model of polynomial trend plus FD noise and apply the discrete

wavelet transform (DWT) to separate a time series into pieces that can be used to estimate both the

FD parameters and the trend. The estimation of the FD parameters is based on an approximate max-

imum likelihood approach that is made possible by the fact that the DWT decorrelates FD processes

approximately. We demonstrate our methodology by applying it to a popular climate dataset.

Keywords: fractionally differenced processes; discrete wavelet transform; trend; approximate Gaus-

sian likelihood; confidence intervals.

1 Introduction

In recent years long memory processes have been used to model natural phenomena in areas such as

atmospheric science, geophysics and hydrology. Such processes are characterized by slowly decaying

autocorrelations that can be hard to model using standard models such as the autoregressive moving
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average (ARMA) processes (Box et al. 1994). One common example of a long memory process,

the fractionally differenced (FD) process (Granger and Joyeux 1980; Hosking 1981), extends existing

(integer) integrated processes. The mathematical tractability of FD processes allows for a varied range

of estimation methods.

Considering the FD process singly, a common method of parameter estimation involves calculating

the exact likelihood and maximizing with respect to the parameters. Beran (1994) gives a review and

evaluation of this. He concludes that the two factors hampering this method in practice are (1) slow

computations (particularly for large N) and (2) inaccuracies due to a large number of computations

(the matrix calculations are O(N 2)). Various approximate likelihood methods have been proposed to

overcome this (Beran 1994). Some of these methods exploit fast transforms of the data such as the fast

Fourier transform (Robinson (1994) – see Moulines and Soulier (2000) for an in depth analysis of this

estimator) or wavelet transforms (Wornell (1995) and McCoy and Walden (1996) consider likelihood

approaches; Abry et al. (1993), Abry et al. (1995), Veitch and Abry (1999) and Bardet et al. (2000)

study least square methods). Vannucci and Corradi (1999) consider Bayesian estimation schemes

for long memory processes, and Jensen (2000) examines a wavelet-based likelihood method for the

estimation of ARFIMA processes.

There is less literature in the case of such a process contaminated by a trend component. The topic

of long range dependence and trends is dealt with in Smith (1989a), Smith (1989b) and Smith (1993).

Teverovsky and Taqqu (1997) consider tests for long memory dependence in the presence of two types of

trend (shifting means and slowly decaying trend). Percival and Bruce (1998) extend the wavelet-based

approximate likelihood estimates of McCoy and Walden (1996) to work in the presence of polynomial

trends. Deo and Hurvich (1998) consider linear trends with fractionally integrated errors. Hurvich

and Chen (2000) provide a spectral estimation method that can handle some nonstationary ARFIMA

processes with a low order polynomial trend component. Giraitis et al. (2001) consider families of tests
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for long memory, observed in the presence of deterministic trends. Leipus and Viano (2003) extend

the work of the previous paper to the case of stochastic trends. Beran and Feng (2002) use variable

bandwidth smoothing to estimate such processes with additive trend.

In this paper we consider estimation of the parameters of a trend contaminated FD process using the

discrete wavelet transform (DWT). Wavelet transforms of such time series are useful for the following

reasons.

1. They approximately decorrelate FD and related processes. We will show the resulting wavelet

coefficients form a near independent Gaussian sequence, simplifying the statistics significantly.

2. Wavelets can separate certain nonlinear trends from noise, thus allowing us to analyze dependent

time series with a trend.

3. Wavelets have excellent time and frequency localization, which can be useful for investigating

local deviations from a statistical model.

We concentrate on polynomial trends, but it is easy using the final two properties to extend these

results to other smooth and nonsmooth trends (see Craigmile, Percival, and Guttorp (2003) for further

details). By using the wavelet coefficients of the transform in a multivariate Gaussian model (with

an assumed simplified correlation structure for the coefficients), we can estimate the parameters using

maximum likelihood. In particular we consider two models:

1. White noise wavelet model – we assume the wavelet coefficients are independent both within and

between wavelet scales;

2. AR(1) wavelet model. We show that there is often a small lag one autocorrelation between

wavelet coefficients on a specific scale. As a model for this, we assume independence between

scales, and an AR(1) model within each scale.

In section 2 we define the DWT. We define the fractionally differenced process in section 3 and

demonstrate the statistical properties of the DWT of these process (with and without trend) in section

3



4. We outline the approximate maximum likelihood scheme for the white noise wavelet model in section

5, and for the AR(1) wavelet model in section 6. We provide theory for these estimators, under the

assumptions that the approximating models are true, in section 7, and obtain approximate confidence

intervals for the model parameters. In section 8, Monte Carlo simulations are used to assess these

methods in practice. We also compare our methods to those of Hurvich and Chen (2000). In section 9

we apply our theory to a northern hemisphere temperature dataset obtained from the Climate Research

Unit, University of East Anglia, UK. We close with a summary and discussion in section 10 (proofs of the

results presented in this paper can be downloaded from http://www.stat.ohio-state.edu/~pfc/).

2 The discrete wavelet transform

Suppose {Xt : t = 0, . . . , N − 1} is our observed time series with N divisible by 2J for some positive

integer J . For an even positive integer L, let {hl : l = 0, . . . , L − 1} denote the Daubechies wavelet

filter of unit l2 norm. The squared gain function for the wavelet filter is given by

H1,L(f) = 2 sinL(πf)

L/2−1∑

l=0

(L/2−1+l
l

)
cos2l(πf). (1)

For a particular choice of L there are multiple filters, {hl}, that share this squared gain function. This

is because the transfer function, H1,L(f) =
∑L−1

l=0 hle
−i2πfl, associated with the squared gain function

via H1,L(f) = |H1,L(f)|2, is not unique. Daubechies (1992) distinguishes between two (of the possible)

choices:

1. the extremal phase, D(L), filters are the ones that exhibit the smallest delay (have maximum

cumulative energy) over other choices of scaling filter;

2. the least asymmetric, LA(L), filters (which differs from the D(L) filters when L=8, 10, . . . ) are

the closest approximations to linear phase filters.

We now define the level j wavelet coefficients in terms of a filtering of our data, {Xt} (in practice, we

can calculate the wavelet coefficients efficiently using a cascade algorithm rather than filtering the data
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directly (Mallat 1989; Percival and Walden 2000)). For Lj = (2j − 1)(L − 1) + 1, the level j wavelet

filter, {hj,l : l = 0, . . . , Lj − 1} can be defined as the inverse Fourier transform of its transfer function,

Hj,L(f) = e−i2π(Lj−1−1)f H1,L(2
j−1f)

j−2∏

k=0

H1,L(1/2 − 2kf), (2)

which in turn defines the jth level squared gain function Hj,L(f) = |Hj,L(f)|2. This filter is an

approximate bandpass filter with a passband given by |f | ∈ [1/2j+1, 1/2j ]. Then for Nj = N/2j , the

level j wavelet coefficients are

Wj,k =

Lj−1∑

l=0

hj,lX2j(k+1)−1−l mod N , k = 0, . . . , Nj − 1. (3)

These coefficients are associated with changes in averages on scale 2j−1 and with times spaced 2j

apart. The first Bj = min(d(L−2)(1−2−j)e, Nj) wavelet coefficients are affected by circularly filtering

data; that is, the coefficients {Wj,k : k = 0, . . . , Bj − 1} combine data from the start and end of

the sequence. We refer to these as the boundary coefficients. The remaining Mj = Nj − Bj are

unaffected by boundaries and we call them the nonboundary (nb) coefficients, {(Wnb)j,k ≡ Wj,Bj+k :

j = 1, . . . , J ; k = 0, . . . ,Mj − 1}. The statistical properties of the boundary coefficients can be quite

different from those of the nonboundary coefficients.

3 Fractionally differenced processes

The FD process is a long memory dependence model that has become popular in recent years, mainly

due to its tractable mathematical properties. The process was originally proposed by Granger and

Joyeux (1980) and Hosking (1981) as an extension to ARIMA(0, d, 0) models to allow for fractional

values of d.

For d ∈ [−1/2, 1/2) and σ2 > 0, the stationary Gaussian process {Xt : t ∈ Z} is an FD(d) (or

ARFIMA(0, d, 0)) process if it has a spectrum

S(f) = σ2 |2 sin(πf)|−2d, |f | ≤ 1/2. (4)
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Here d is known as the fractional difference parameter and σ2 is the innovations variance. For d ∈

(−1/2, 1/2) the process is stationary and invertible, and is a white noise (i.e., uncorrelated) process for

d = 0. For d = −1/2 the process is stationary, but noninvertible. We can extend this model by letting

d ≥ 1/2 in equation (4), and obtain a class of non-stationary processes that become stationary after

differencing bd + 1/2c times (Yaglom 1958). Taking differences of the process, we can let d ≤ −1/2

to obtain a stationary, but noninvertible, process. For d ∈ [−1/2, 1/2) the covariance sequence can be

shown to be (Beran (1994), Hosking (1981) for the d = −1/2 case)

sk = σ2 (−1)k Γ(1− 2d)

Γ(1− d+ k) Γ(1− d− k) . (5)

Fast simulation of FD processes is possible using the Davies–Harte algorithm (Davies and Harte 1987;

Wood and Chan 1994; Craigmile 2003). Further properties along with an extensive history of the FD

process can be found in, e.g., Beran (1994) and Samorodnitsky and Taqqu (1994), sections 7.13 and

14.7.

4 The nonboundary wavelet coefficients of an FD process

Suppose we observe a realization of a Gaussian FD(d) process, {Xt : t = 0, . . . , N − 1}. By the

linearity of the DWT the wavelet coefficients of the realization are Gaussian. By definition of the level

j wavelet filter, {hj,l},
∑

l hj,l = 0 (e.g., Percival and Walden (2000), Table 154), and it follows that

the wavelet coefficients have zero expectation. We now investigate the second moment properties of

the nonboundary (nb) wavelet coefficients. By equation (348a) of Percival and Walden (2000) we have

cov((Wnb)j,k, (Wnb)j′,k′) =

∫ 1/2

−1/2
ei2π[2j′ (k′+1)−2j(k+1)]f Hj,L(f) H

∗
j′,L(f) σ

2(2 sin(πf))−2d df,

where ∗ denotes the complex conjugation operator. Between scales the DWT acts as a whitening

transform for an FD process; that is, for j 6= j ′, cov(Wj,k,Wj′,k′) ≈ 0. This approximation improves

with increasing L. In fact as L→∞ the covariance tends to zero, as the next result states.
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Theorem 4.1 Let (Wnb)j,k and (Wnb)j′,k′ be the level j and j
′ wavelet coefficients for an FD process,

{Xt}, based upon a wavelet filter {hl} of width L. Then cov(Wnb)j,k, (Wnb)j′,k′) → 0 as L → ∞ when

j 6= j.

Thus for sufficiently long wavelet filters we can bound the covariance between different wavelet levels

by some small ε. In practice we would like to use longer wavelet filters to decorrelate between wavelet

scales, but this also has the effect of decreasing the number of nonboundary wavelet coefficients. This

results ignores what effect longer wavelet filters will have upon within scale correlations, which is the

subject of the next theorem.

Theorem 4.2 When d < (L + 1)/2 the nonboundary wavelet coefficients within a given level j are a

portion of a zero mean stationary process with autocovariance sequence given by

σ2 sj,τ (d) =

∫ 1/2

−1/2
ei2πfτSj(f) df, (6)

where Sj(f) = 2−j
∑2j−1

k=0 Hj,L(2
−j(f + k))(2 sin(π2−j(f + k)))−2d.

Thus within a particular wavelet scale the nonboundary wavelet coefficients of an FD process are

also approximately uncorrelated if Sj(·) is close to the spectrum for a white noise process; that is,

Sj(·) is approximately flat. Figure 1 illustrates that this is a good approximation for an FD(0.45)

process with σ2 = 1 analyzed using a LA(8) wavelet filter. The top left panel shows the spectrum

of the process along with the approximate passbands that correspond to the first five wavelet levels.

The top right panel shows Sj(·) for j = 1, . . . , 5. The lower panels illustrate the approximations to

these spectra used in the paper. If we assume that the wavelet coefficients are uncorrelated per each

wavelet level, we obtain the flat spectra given in the lower left panel. Clearly the lower right panel

show spectra that better model the true spectra of the wavelet coefficients. In this case we assume that

the wavelet coefficients on each level follow an AR(1) model, where the AR parameters are given by

φj(d) = sj,1(d)/sj,0(d) with variance η2
j (d) = σ2(1− φ2

j(d)) and hence depend on d alone.
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Now let Yt = Tt +Xt and perform a DWT on these data (Craigmile et al. 2003). By the linearity

of the transform the wavelet coefficients are Gaussian. Because a Daubechies wavelet filter of order

L has L/2 embedded differencing operations we can zero out a trend of polynomial order K in the

nonboundary wavelet coefficients if K ≤ L/2 − 1; that is, only the boundary wavelet coefficients will

contain the trend component. The above results apply and the nonboundary wavelet coefficients can

be regarded approximately as either uncorrelated or following an AR(1) model on each level.

5 The white noise model

We now consider the simplest model for estimating the parameters of the FD process using the wavelet

coefficients (the next section explores the refinement given by the AR(1) model). Assume that the

nonboundary wavelet coefficients {(Wnb)j,k : j = 1, . . . , J, k = 0, . . . ,Mj − 1} form an independent

sample with (Wnb)j,k ∼ N(0, sj,0(d)σ
2). The likelihood function for this model is

LM (d, σ2|(Wnb)j,k) =

J∏

j=1

Mj−1∏

k=0

(2πsj,0(d)σ
2)−1/2 exp

(
−

(Wnb)
2
j,k

2sj,0(d)σ2

)
.

If we let Rj =
∑Mj−1

k=0 (Wnb)
2
j,k denote the sum of squares of the level j nonboundary wavelet coefficients

and M =
∑J

j=1Mj, then maximizing the likelihood is equivalent to minimizing twice the negative of

the log likelihood; that is,

−2 lM (d, σ2|(Wnb)j,k) = M log(2πσ2) +

J∑

j=1

Mj log(sj,0(d)) +

J∑

j=1

Rj

sj,0(d)σ2
. (7)

For a given d, the above is a function of σ2 that is minimized when

σ̂2
M (d) =

1

M

J∑

j=1

Rj

sj,0(d)
. (8)

Substituting this estimator into equation (7), we obtain a function of d alone, known as the profile log

likelihood (McCullagh and Nelder 1989):

−2 lM (d, σ̂2
M (d)|(Wnb)j,k) = M

(
log(2πσ̂2

M (d)) + 1
)
+

J∑

j=1

Mj log(sj,0(d)). (9)

Maximizing with respect to d yields the maximum likelihood estimator, d̂M .
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6 The first order autoregressive model

In Figure 1 we illustrated that within scales, a good approximation to the spectrum of the nonboundary

wavelet coefficients is to assume an AR(1) model per scale. We now investigate this in further detail.

We assume {(Wnb)j,k : k = 0 . . .Mj − 1} is a portion of an AR(1) process; that is,

(Wnb)j,k = φj(d)(Wnb)j,k−1 + (Znb)j,k (10)

where {(Znb)j,k ∼ i.i.d. N(0, ηj(d)σ
2) : j = 1 . . . J, k = 0 . . . Mj − 1}. The parameters of the AR(1)

process on each wavelet level j depend on just the FD parameter d – we do not fit a separate AR

process to each scale. For any given level j, the Yule–Walker equations (see e.g. Box, Jenkins, and

Reinsel (1994)) yield

φj(d) = sj,1(d)/sj,0(d) and ηj(d) = sj,0(d)(1 − φ2
j (d)). (11)

Assuming again independence between coefficients on different scales, it follows from Box, Jenkins, and

Reinsel (1994) that the equivalent of Equation (7) is

−2 lM (d, σ2|(Wnb)j,k) = M log(2πσ2) +

J∑

j=1

[
Mj log(ηj(d)) − log(1− φ2

j (d))
]

+

J∑

j=1

[
(Wnb)

2
j,0(1− φ2

j (d)) +
∑Mj−1

k=1 {(Wnb)j,k − φj(d)(Wnb)j,k−1}2

σ2ηj(d)

]
. (12)

If we minimize with respect to σ2, we obtain

σ̂2
M (d) = M−1

J∑

j=1

[
(Wnb)

2
j,0(1− φ2

j (d)) +
∑Mj−1

k=1 {(Wnb)j,k − φj(d)(Wnb)j,k−1}2

ηj(d)

]
,

and the profile log likelihood is proportional to

−2 lM (d, σ̂2
M (d)|(Wnb)j,k) = M

[
log(2πσ̂2

M (d)) + 1
]
+

J∑

j=1

[
Mj log(ηj(d)) − log(1− φ2

j (d))
]
.
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7 Properties of the wavelet-based estimators

In this section we provide theory for the estimators under the models discussed in Sections 5 and 6. In

particular this theory provides approximate confidence intervals for the FD parameter. These results

give an illustration of the large sample properties of what we can think of as “wavelet-based models

for long memory” (Li and Oh 2002). We examine further properties of these estimators by simulation

in section 8.

For a wavelet filter of width L, let ΘL ≡ {θ = (d, σ2)T ∈ R2 : d < (L + 1)/2 and σ2 > 0} denote

the parameter space of interest. Suppose that θ0 = (d0, σ
2
0)

T ∈ ΘL denotes the true values of the

parameters, which are estimated by θ̂M = (d̂M , σ̂
2
M (d̂M ))T under the white noise or AR(1) wavelet

model. Also, let mj = limM→∞(Mj/M) and for any differentiable function, g, define the operator

∆1(g(x)) =
d
dxg(x)

g(x)
. (13)

The following two theorems provide the large sample properties of the estimators under the white noise

and AR(1) wavelet models respectively.

Theorem 7.1 Suppose that the white noise model is the true model for the nonboundary wavelet coef-

ficients within each level. Then the following holds.

(a) (Consistency) With probability converging to one there exist solutions, θ̂M , of the likelihood equa-

tion such that θ̂M →p θ0, as M →∞.

(b) (Joint asymptotic normality)
√
M(θ̂M − θ0)→d N(0,Σ|−1

0 (θ0)), as M →∞, where

Σ| 0(θ) =
1

2




∑J
j=1mj ∆

2
1(sj,0(d)) σ−2

ε

∑J
j=1mj ∆1(sj,0(d))

σ−2
ε

∑J
j=1mj ∆1(sj,0(d)) σ−4

ε


 .

(c) (Marginal asymptotic normality of d̂M )
√
M(d̂M − d0)→d N(0, ψ2

0(d0)), as M →∞, where

ψ2
0(d) = 2



( J∑

j=1

mj ∆
2
1(sj,0(d))

)
−
( J∑

j=1

mj ∆1(sj,0(d))
)2



−1

.
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(d) (Exact distribution of σ̂2
M (d0)) σ̂

2
M (d0) =d σ2χ2

M/M , where χ
2
M denotes a chisquared random

variable with M degrees of freedom.

To calculate ∆1(sj,0(d)) in the above theorem, we need to know d
ddsj,τ (d). We have that

s′j,τ (d) = d
ddsj,τ (d) = −4

∫ 1/2

0
[log sin(πf)]Hj,L(f) cos(2

j+1πfτ)(2 sin(πf))−2d df. (14)

This derivative is obtained via Leibnitz’s rule that allows us to interchange differentiation and integra-

tion.

Theorem 7.2 Suppose that the AR(1) model is the true model for the nonboundary wavelet coefficients

within each wavelet level. Then the following holds.

(a) (Consistency) With probability converging to one there exist solutions, θ̂M , of the likelihood equa-

tion such that θ̂M →p θ0, as M →∞.

(b) (Joint asymptotic normality)
√
M(θ̂M − θ0)→d N(0,Σ|−1

1 (θ0)), as M →∞, where

Σ| 1(θ) =
1

2




∑J
j=1mj ∆

2
1(ηj(d)) σ−2

ε

∑J
j=1mj ∆1(ηj(d))

σ−2
ε

∑J
j=1mj ∆1(ηj(d)) σ−4

ε


 .

(c) (Marginal asymptotic normality of d̂M )
√
M(d̂M − d0)→d N(0, ψ2

1(d0)), as M →∞, where

ψ2
1(d) = 2



( J∑

j=1

mj∆
2
1(ηj(d))

)
−
( J∑

j=1

mj∆1(ηj(d))
)2



−1

.

In the above theorem, we calculate ∆1(ηj(d)) =
d
ddηj(d)/ηj(d) by taking derivatives of equation (11)

with respect to d. In particular:

d

dd
φj(d) =

s′j,1(d)

sj,0(d)
− φj(d)∆1(sj,0(d))

d

dd
ηj(d) = s′j,0(d)(1 − φ2

j (d)) + 2sj,0(d)φj(d)

(
d

dd
φj(d)

)
.
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Table 1 tabulates ψ2
k(d) from the above theorems for various widths L, under either the white noise

(k = 0) or the AR(1) model (k = 1) within each wavelet scale. For fixed L, the asymptotic variance

decreases with increasing d. It also decreases with increasing L for stationary d < 1/2, but increases

with L for non-stationary d ≥ 1/2. As a result, ψ2
k(d) becomes more uniform across d as L increases.

We can obtain approximate 100(1−α)% confidence intervals (CIs) for d based upon the approximate

DWT models and their profile likelihoods via the log likelihood ratio statistic

2 log λ(d, σ̂2
M (d)) = 2

[
lM (d̂, σ̂2

M (d̂))− lM (d, σ̂2
M (d))

]
,

(the Wald or Rao test statistics could also be used to provide a confidence interval). Standard statistical

theory (Lehmann 1998) suggests that an approximate 100(1 − α)% confidence interval is given by

{d : 2 log λ(d, σ̂2
M (d)) ≤ q1(1−α)}, where here q1(1−α) denotes the (1−α)th quantile of a chisquared

random variable with 1 degree of freedom.

8 Monte Carlo Studies

Our aim of this section is to investigate how well the estimators perform in practice for the white noise

and AR(1) wavelet models. We also compare the AR(1) model estimator to estimators in Hurvich

and Chen (2000). All realizations of FD processes are created using the Davies–Harte algorithm with

σ2 = 1 (there is no lose of generality with this arbitrary choice).

8.1 Estimation of the long memory parameter

We first investigated how well wavelet-based estimators of the difference parameter, d, performed in

practice. We simulated 1024 replications of FD(d) processes of length N = 256, 512 and 1024 for

values of d ranging from 0 to 1.50 in steps of 0.25. Each time series was analyzed using the DWT

with the Haar, D(4) and LA(8) wavelet filters. The number of levels we analyzed to, J , was dependent

on the wavelet filter and the sample size N , namely J = log2(N) − L/2. We estimated d via the
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white noise and AR(1) wavelet models. Each study, carried out in the statistical software package

R (R Development Core Team 2003), was performed by minimizing the negative log-profile likelihood

for values of d ranging in [−1,3] (an arbitrary choice). We used two methods for calculating sj,τ (d)

(defined in equation (6)):

1. Exact form: Use numerical integration with a Gauss rule, calculating Hj,L(f) using the modulus

squared of equation (2).

2. Bandpass approximation: Hj,L(f) is approximated by the squared gain function for a bandpass

filter with passband [1/2j+1, 1/2j ], yielding, e.g., sj,0(d) ≈ 2j+1
∫ 1/2j

1/2j+1 [2 sin(πf)]
−2d df .

Figure 2 shows a plot of the root mean square error (RMSE) of the estimates for each case. The

standard errors for the RMSEs (calculated using 512 bootstrap samples) are bounded by 0.0025; that

is, approximately the height of the plotting symbols. For the Haar case we only plotted results for

d ≤ 1.25 (since the condition d < (L + 1)/2 does not hold for d = 1.5). In all cases of wavelet filter

and model we can see that estimation is best for small values of d. For d > 0 the RMSEs tend to

be smaller for the exact sj,τ (d) calculation compared to the bandpass approximation. This difference

increases with d, but decreases with increasing wavelet filter order because Hj,L(·) converges to an ideal

bandpass filter as L → ∞ (Lai 1995). The empirical value of the RMSE is worse in general for the

white noise as compared with the autoregressive model. This is because, as shown in Figure 1, the

AR(1) model gives us a better approximation to the correlation structure of the wavelet coefficients

than the white noise model does (the white noise approximation deteriorates with increasing d). The

RMSEs increase with wavelet order, and decrease for longer time series.

The estimation bias is not shown in these Figures. In general the bias decreases as we increase the

wavelet order, and for d 6= 0 is bounded by ±0.01 (with a maximum standard deviation of 0.003). This

is because we obtain better decorrelation between wavelet scales when we use longer wavelet filters.

The bias is smaller for the exact sj,τ (d) calculation compared to the bandpass approximation, and for
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the AR(1) wavelet model compared to the white noise wavelet model (the biases for the white noise

model using an LA(8) filter with a bandpass variance calculation are displayed in Table 2). Because of

the relatively low biases the variance largely determines the MSE of these estimators.

By the inherent differencing of the wavelet filter, we obtain the same simulation results if we add a

polynomial trend of order K as long as K ≤ L/2− 1 as well as d < (L+ 1)/2.

We now evaluate the theory of Section 7 (where we assume an approximating model for the wavelet

coefficients) on the basis of the simulation results. In particular, Figure 3 compares the theoretical

RMSE for the AR(1) model, with the estimated RMSE obtained using the above simulation. The

theoretical RMSE is
√
ψ2

1(d)/M , and is calculated using the equation in Theorem 7.2. We used exact

variance calculations for sj,τ (d). The theoretical and simulated values are closest for longer filter widths

L, smaller d, and larger N . This is as expected since the theoretical RMSE is an asymptotic value

that is calculated under the assumption of perfect decorrelation between scales (which by Theorem

4.1 occurs for longer filter widths L), using an approximating model within scale, which fits better for

values of d closest to zero.

8.2 Comparisons with the Hurvich–Chen estimator

We now compare our estimator of the FD parameter d with that of Hurvich and Chen (2000). In their

paper the authors propose a complex valued taper which can be used to estimate d in the presence

of a lower order polynomial trend when d ∈ (−0.5, 1.5). This estimator is based on the Gaussian

semiparametric estimator due to Künsch (1987), which can be used when d ∈ (−0.5, 0.5). The method

takes a periodogram of the data {Xt : t = 0, . . . , N − 1} and estimates d using only a fraction of the

Fourier frequencies of the spectral estimate. More precisely for fj = j/N such that 0 < fj ≤ 1/2, let

F (p)(fj) =
1√
N

N−1∑

t=0

Xt e
−i2πfj t (15)

denote the (orthonormal) discrete Fourier transform of the data (see chapter 3 of Percival and Walden

(2000)), and let S(p)(fj) = |F (fj)|2 denote the periodogram of the data. Then the Künsch (1987) form
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of the estimator is to choose some m < N/2 and minimize the following with respect to d ∈ (−0.5, 0.5)

and σ2 > 0:

Q(d, σ2) =
1

m

m∑

j=1

[
log(σ2) + log(gj(d)) +

S(p)(fj)

σ2gj(d)

]
,

where gj(d) = (2 sin(πfj))
−2d. The minimizer of Q with respect to σ2 (which depends on d) is

σ2
Q(d) =

1

m

m∑

j=1

S(p)(fj)

gj(d)
,

and after substitution,

Q(d, σ2
Q(d)) = log(σ2

Q(d)) +
1

m

m∑

j=1

log(gj(d)) + 1.

Minimizing this with respect to d is equivalent to minimizing

Q∗(d, σ2
Q(d)) = log(σ2

Q(d)) − 2d


 1

m

m∑

j=1

log(2 sin(πj/N))


 , (16)

say, over the range d ∈ (−0.5, 0.5). The refinement due to Hurvich and Chen (2000) is first to difference

the data, thus turning a realization of a process with d ∈ (−0.5, 1.5) into one with a difference parameter

in the range (−1.5, 0.5). This yields the Gaussian semiparametric estimator (GSE). However the

estimator is not good for low values of d as we have overdifferenced the time series. To compensate for

this, Hurvich and Chen (2000) use a complex spectral taper given by

ht =
1

2

[
1− exp

(
i2π(t+ 1/2)

N

)]
,

for t = 0, . . . , N − 1 (this is basically an extension of Tukey’s cosine bell taper to the complex plane).

They provide a direct formula to obtain the spectral estimator under this taper from equation (15):

F (hc)(fj) =
1√
2

(
F (p)(fj)− e−iπ/NF (p)(fj+1)

)
.

Letting S(hc)(fj) =
∣∣F (hc)(fj)

∣∣2, minimization of expression (16) with S (p)(fj) replaced by S(hc)(fj) in

the expression for σ2
Q(d) yields an estimator denoted as GSET (‘T’ stands for tapered). The authors
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indicate this estimator is consistent and has a Gaussian limit distribution under a set of conditions

given in their paper. They also indicate that a good choice of m is given by N 4/5/4.

We now compare GSE and GSET with our wavelet-based estimator. We conducted a simulation

study similar to Hurvich and Chen (2000), for which they consider time series of length 513 for an

FD(d) process with d = 0 to 1.4 in steps of 0.2. For the wavelet-based estimator, we used the AR(1)

model with exact sj,τ (d) calculations in conjunction with a level J = 6 LA(8) DWT of the first 512 point

of each simulated series. The bias, variance and RMSEs of the sample of estimates for 500 replications

of each method are shown in three parts of Table 2. We see that the wavelet-based estimator clearly

outperforms the other two estimators in terms of RMSE, variance and (with the single exception of

d = 0.8) magnitude of bias. The reason for the disparity in the results is because the GSE and GSET

methods use a trim factor m. In this simulation study, the estimate of d for these spectral methods are

based on 37 periodogram bins. For the wavelet-based method we use 480 wavelet coefficients. If we

reduce the number of wavelet levels that we use to estimate d, then the results become more comparable.

To demonstrate this, the last columns of Table 2 display the bias, variance and RMSE for an AR(1)

model fit using only levels j = 3, . . . , 6 (this choice means that the range of frequencies collectively

covered by the wavelet coefficients is approximately the same as covered by GSE and GSET). The

bias for this subset AR(1) model is smaller than for the GSET method (except again at d = 0.8), but

the variance is larger (except for d = 0). Trimming of periodogram bins or wavelet levels is useful in

practice if we want to estimate d in the presence of the short range dependence (see, e.g., Hurvich and

Chen (2000) and Bardet et al. (2000)).

9 A northern hemisphere temperature series

Figure 4 shows a time series plot of a deseasonalized version of the monthly deviations in the average

Northern hemisphere temperature (in units of degrees Celsius) from 1854 to 1998, relative to the

monthly average over the period 1961 to 1990. The data come from the Climate Research Unit,
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University of East Anglia, UK. This is a newly updated version of the dataset that incorporates

combinations of grid data (over the sea and land) from 1000 extra sites, new reference periods and an

increased resolution. We deseasonalized the time series via a harmonic analysis, fitting the model

Yt = A1 cos(0.994 × 2πt∆t) +B1 sin(0.994 × 2πt∆t)

+A2 cos(1.001 × 2πt∆t) +B2 sin(1.001 × 2πt∆t) +Xt,

for t = 0 . . . N − 1, where ∆t = 1/12 year is the sampling interval, and here N = 1664. This least

squares model is valid for long memory dependence by Yajima (1988). Visually there is an indication

of an upward trend and increased variability at the start of the series.

There has been much interest in earlier versions of this time series. These data only went up to 1989

and were averaged over a different reference period (1950–1979). Smith (1993) illustrates the problem

of trying to fit an auto-regressive model to the data. Using an estimate of d based on a spectral

estimate, he concludes significant long memory behavior of the series, with d ranging from 0.290 to

0.403 (depending on the choice of two key parameters in the estimator). He finds a significant linear

trend, adapting for long memory. Alternatively, using a kernel smoother Beran and Feng (2002) obtain

an ML estimate for d of 0.33 with a 95% CI of [0.19,0.46]. At the 5% level there is no significant trend

(the authors also analyze the land and sea averages individually and concludes the former has a trend,

and the latter does not). We now analyze the updated series using our proposed methodology, which

allows us to estimate d even if data is contaminated by a low order polynomial (as might be the case

here). We first assess whether an FD(d) process is reasonable for this series.

Figure 5 shows a periodogram of the data. If we take the log of the spectrum (equation 4) we have

log(SX(f)) = log(2σ2)− 2d log(2 sin(πf∆t)),

for 0 < f < 1/(2∆t), where ∆t = 1/12 year is the sampling rate. For small x, sin(x) ≈ x and thus

log(SX(f)) ≈ log(2σ2)− 2d log(2πf∆t). (17)
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Hence an FD process is a good model if the log spectrum versus log frequency is approximately a

straight line for small f , as in this case. By calculating the slope of the line for small enough f we

obtain an estimate of d. For this dataset we obtain an estimate of 0.445 for f ≤ 1.5, indicating evidence

of long memory.

Using an LA(8) wavelet filter (which can handle a cubic polynomial trend) and analyzing to level

J = 7, we obtain the DWT decomposition of the deseasonalized deviations shown in Figure 6. The

thick gray vertical lines denote the partition between the boundary (outside) and nonboundary wavelet

coefficients (inside) on each wavelet level. The nonboundary wavelet coefficients on lower scales (j =

1, 2, 3) are more variable in earlier years, which violates an assumption behind our proposed method

for estimating d. We can also look at normal Q-Q plots, ACFs, PACFs and periodogram for the

nonboundary wavelet coefficients on each scale (not shown). The Gaussian assumption for the data

seems reasonable, although the non-constant variance is evident in the lower wavelet levels by the over-

dispersion in the Q-Q plots. Lag 1 auto-correlation on levels 4 and 5 imply that the AR(1) wavelet

model is more appropriate than the white noise model. If we ignore the non-constant variance problem

(as has also been done in the earlier analyses cited above), we obtain an estimate of d̂M = 0.361 (with

a 95% CI of [0.317,0.408]) and σ̂2(d̂M ) = 0.045 using the AR(1) model.

To assess the affect of non-constant variance, we repeated our analysis using just the last 96 years

of data (removing the peak around f = 1 again). In this case the heteroscedacity in the boundary-

independent wavelet coefficients reduces, and we obtain using the AR(1) wavelet model d̂M = 0.368

(with a 95% CI of [0.323, 0.415]) and σ̂2
M (d̂M ) = 0.032. The increased variability at the start of series

has little effect on the estimate of d, but σ̂2
M (d̂M ) is reduced somewhat.

An alternative procedure to handle the periodicity at around one year is to analyze the yearly

averages. A periodogram similar to Figure 5 show evidence of long memory in this case. We perform a

DWT on these data using a D(6) filter to level J = 4 (the lower values of L and J are dictated by the
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decrease in sample size). The equivalent diagnostic plots show few problems in the distribution of the

boundary-independent wavelet coefficients (probably due to the small sample sizes – note that we can

only handle a quadratic trend now). When we use the AR(1) wavelet model, we obtain d̂M = 0.343

(with a 95% CI of [0.101, 0.648]) and σ̂2
M (d̂M ) = 0.020, comparable with the previous results. The

smaller value of the innovations variance is due to the averaging involved.

Thus, independently of the possible presence of a low order polynomial trend of order K (as long

as L/2 ≥ K + 1), there is evidence of significant long memory. For the deseasonalized deviations the

long memory process is stationary (since the CI for d does not contain values greater than or equal

to 0.5), but we cannot conclude stationarity for the yearly averaged series (due to the reduction in

sample size). These deductions support the ideas of Smith (1993) and Beran and Feng (2002), that we

should be cautious in testing for a significant trend in this series, unless we can adequately account for

the long memory dependence (we investigate the question of the significance of a trend in Craigmile,

Percival, and Guttorp (2003)).

10 Discussion and summary

The key property of the DWT that we have exploited in our work is that it approximately decorrelates

FD processes. The degree to which this approximation holds must be assessed by considering the

correlations between wavelet coefficients on the same scale and on different scales. As the wavelet

filter width L increases, the correlation between coefficients on different scales necessarily decreases

to zero (Craigmile and Percival 2003); however, the same cannot be said for within-scale correlations.

Since coefficients within scale are correlated, we consider an AR model to capture this dependency

structure. The combination of a moderate filter width (L = 8) and the AR model is sufficient to give

a very good description of FD processes in the wavelet domain. We have demonstrated through our

Monte Carlo experiments that the large sample theory that is based upon this wavelet-based description

is reasonably accurate, even for modest sample sizes (N = 256). While it should be possible to derive
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a large sample theory that would take into account the correlations between the wavelet coefficients

not accounted for by our approximations, the justification for this nontrivial extension would have to

be as an interesting mathematical exercise: the theory that we have developed here is sufficient for all

practical purposes.

Since our theory agrees with our simulations best for smaller values of d, a useful strategy in

practice is to difference the process when there is evidence that d ≥ 0.5 (i.e., the FD process is

nonstationary). The theory developed in this paper will then apply to estimation of the long parameter

for the differenced series (since our theory applies to the estimation of FD processes for d < 0).

The results presented here for FD processes can be extended naturally to, for example, ARFIMA

processes by modeling the autoregressive and moving average component in the spectrum of the process.

Estimation via likelihood follows naturally, with equivalent limit theorems. The limit variance of the

difference parameter will then depend on the other parameters in the model. When extending the

results to other error processes we need to assess the extent to which we can decorrelate the error

process, and thus whether the white noise or AR(1) wavelet model fits to the nb wavelet coefficients in

this case. Plots allow us to investigate this question theoretically (see, e.g., Figure 1) and in practice

(by looking at normal Q-Q plots, ACFs, PACFs and periodograms for the nb wavelet coefficients).

In summary, we have investigated estimation of the parameters of trend contaminated FD processes

using the DWT. Our proposed method is valuable in the case of low order polynomial trend (relative to

the wavelet order), since it provides for an elegant partitioning of the noise and trend components. This

leads to an computationally efficient estimator of d (the wavelet transform is O(N), and the solution

of the profile likelihood equation is fast if we use division schemes such as the bisection method, or a

Newton-Raphson algorithm). We can also improve estimation by modeling the within wavelet scale

correlations using an AR(1) model, and using exact wavelet variance calculations rather than the

bandpass approximation.
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Table 1: Calculation of ψ2
k(d) for various filter widths L, under either the white noise (k = 0) or the

AR(1) model (k = 1) within each wavelet scale. We set J = 6 in each case.

d

L Model 0 0.25 0.50 0.75 1.00 1.25 1.50

2 White Noise 1.260 1.036 0.896 0.781 0.664 0.541 –

2 AR(1) 1.260 1.020 0.886 0.795 0.664 0.433 –

4 White Noise 1.060 0.982 0.921 0.867 0.816 0.764 0.712

4 AR(1) 1.060 0.961 0.884 0.828 0.793 0.778 0.761

8 White Noise 0.991 0.956 0.923 0.893 0.864 0.836 0.809

8 AR(1) 0.991 0.936 0.884 0.838 0.800 0.771 0.755

16 White Noise 0.966 0.943 0.921 0.900 0.880 0.862 0.844

16 AR(1) 0.966 0.925 0.886 0.850 0.817 0.788 0.764

Table 2: Monte Carlo comparison of four methods to estimate d. In each case we simulated N = 513

FD(d) series, 500 times in each case, and estimated d using the basic Gaussian semiparametric method

(GSE), the tapered version (GSET), the AR(1) wavelet model (with 6 wavelet levels), and the AR(1)

wavelet model (using levels j = 3, . . . . , 6, which we call the subset AR(1) model). Both wavelet

estimators use an LA(8) wavelet filter decomposition of the first 512 time points.

GSE GSET AR(1) Subset AR(1)

d bias var. MSE bias var. MSE bias var. MSE bias var. MSE

0.0 0.287 0.039 0.122 0.075 0.014 0.020 0.018 0.001 0.001 0.048 0.005 0.007

0.2 0.119 0.024 0.038 0.052 0.014 0.017 -0.003 0.002 0.002 -0.011 0.015 0.015

0.4 0.040 0.015 0.016 0.034 0.014 0.015 -0.003 0.002 0.002 -0.017 0.017 0.016

0.6 0.008 0.011 0.011 0.017 0.014 0.014 -0.003 0.002 0.003 -0.009 0.016 0.016

0.8 -0.006 0.011 0.011 0.001 0.014 0.014 -0.003 0.003 0.003 -0.009 0.016 0.016

1.2 -0.009 0.011 0.011 -0.025 0.014 0.015 -0.003 0.003 0.003 -0.012 0.017 0.017

1.4 -0.012 0.009 0.009 -0.043 0.011 0.013 -0.003 0.003 0.003 -0.013 0.018 0.018
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Figure 1: Going from left to right, top to bottom, plots show the spectrum of an FD(0.45) process

(dotted vertical lines indicate the approximate passbands for the first five wavelet levels), the spectra

of the LA(8) nonboundary (nb) wavelet coefficients, and the spectra assumed in the white noise and

AR(1) models.
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Figure 2: Root mean squared error in estimating the difference parameter using either the white noise or

autoregressive wavelet models, for various wavelet filters, sample lengths, N , and difference parameters.

The different symbols denote the different wavelet models and whether an exact or bandpass variance

was used. The standard deviations of the RMSEs are bounded by 0.0025.
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Figure 3: Comparisons of the theoretical RMSE,
√
ψ2

1(d)/M with the root mean squared error in

estimating the difference parameter using the AR(1) method with exact variance calculations. The

standard deviations of the RMSEs are bounded by 0.0025.
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Figure 4: A time series plot of the monthly deseasonalized deviations in the northern hemisphere

temperatures.
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Figure 5: A periodogram of the monthly deseasonalized deviations. The spectrum (in decibels) is

shown versus the log (base 2) frequency. The line on the figure denotes the least squares fit for f ≤ 1.5.
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Figure 6: Wavelet coefficients from DWT decomposition of the northern hemisphere series using an

LA(8) wavelet filter analyzing to level J = 7. The thick gray vertical lines denote the partition between

the boundary (outside) and non-boundary wavelet coefficients (inside) on each wavelet level.
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