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SUMMARY

Since the introduction of the stream health index for the Puget Sound Lowland

(SHIPSL) (Chiu and Guttorp, 2004), new issues regarding this and other multi-

metric indices have arisen. Among them is the comparison between an unbounded

continuous metric scale to one that is discrete and/or with bounds. One major

issue stems from biases that result from the non-parametric bootstrap in the con-

text of simulating new field samples of benthic organisms. We examine why it is

doubtful that such biases are entirely absent in real-life repeated sampling. The

discussion of these and other issues leads to two possible variants of SHIPSL to im-

prove practicality and performance. The first involves universal “gold standards”

in the metric scoring scheme to improve SHIPSL’s tractability over time and space.

The second redefines conventional count-valued taxa richness metrics as percent-

ages. Both ideas are possibly applicable to other common multimetric indices,

and are shown to perform comparably to what has been demonstrated by Chiu

and Guttorp (2004) for SHIPSL and the benthic index of biotic integrity (B-IBI).

KEYWORDS: bioassessment, biomonitoring, index performance, metric scoring,

multimetric index, taxa richness
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1 INTRODUCTION

The stream health index for the Puget Sound Lowland (SHIPSL) (Chiu and Gut-

torp, 2004) is the sum of scores of the same 10 metrics that define the benthic

index of biotic integrity (B-IBI) for the Puget Sound Lowland (PSL) (Karr, 1998).

These scores are computed by standardization (across all sites in the study) of

metric values from averaging over replicate field samples. The resulting SHIPSL

index value has an exactly zero mean across sites, and no lower or upper bound for

its range. A similar standardization technique is used to construct the composite

index of leading economic indicators (Zarnowitz and Boschan, 1975) and similar

NBER-BEA composite indices (Zarnowitz, 1992), in whose context time points

instead of field sites are compared to each other. However, the SHIPSL scoring

scheme was not inspired by any economic index.

Since the introduction of SHIPSL, comments on the index have been provided

by general audiences of statisticians, and by ecologists involved in environmental

management. We have revisited various issues concerning the performance of this

and other multimetric indices of water quality based on those comments. Further

developments of SHIPSL have since resulted, and are discussed in this article.

2 A NEED FOR STANDARDIZED

SUBJECTIVITY

The attempt by Chiu and Guttorp (2004) to remove subjective input in the con-

struction of a stream health index is largely due to the lack of universal protocols

for administering subjectivity. Different definitions of, say, a set of field sites or

metrics that effectively reflect the entire spectrum of biotic integrity may result

in health indices that are highly incomparable. Furthermore, ideas of what values

of certain variables indicate a “healthy” ecosystem could be influenced by local

policy preferences (Lackey, 2003), thereby differing across geographical regions.
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While protocols which are equally applicable nationwide (continent-wide) are still

being developed, existing measures of biotic integrity should perhaps be modified

to include protocol-free definitions. Chiu and Guttorp (2004) suggest one such

scheme which assigns metric scores to a site relative to all other sites in the study,

and not relative to a set of predetermined reference sites. While they do not ad-

dress subjectivity involved in choosing the metrics, their results provide insight to

the performance of a protocol-free metric scoring scheme compared to that of a

scheme which (1) requires painstaking input in defining scoring criteria, and (2) is

often applicable only to a certain geographical region.

However, SHIPSL index values, which reflect biological conditions relative to

other sites being studied concurrently, become ambiguous when one wishes to

monitor a single site over time. For this purpose, repeated use of a single historical

dataset is suggested by Chiu and Guttorp (2004). A similar approach involves

using “gold standard” values for the metric mean and standard deviation (SD)

which appear in the scoring formula. Much like the speed of light relative to

which the world’s fastest traveling objects are gauged, gold standard mean and

SD provide pivot points upon which metric values can be weighed. Such gold

standards may be computed using, say, observations from a randomly chosen

year made on “reference” sites randomly chosen from a census-enumeration-type

database. These gold standards may then be reused over time or computed from

resampled year-site combinations, neither of which involves subjective definition of

reference. The idea of gold standards is not restricted to SHIPSL but possibly to

other multimetric indices. Section 5 below examines the performance of SHIPSL

defined using gold standards.

3 EQUAL OR UNEQUAL METRIC

WEIGHTS?
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Many different water quality indices are IBI’s modified to suit local manage-

ment criteria. Currently, we are not aware of any version in use that is an un-

equally weighted sum of metric scores. In the context of measuring water quality,

ideal weights would reflect the relative importance of metrics with respect to their

ability in reflecting underlying overall biological conditions.

One way to introduce unequal weights is by conducting a principal component

analysis (PCA) on the metric values. However, as the PCA is designed to put more

weight on metrics (subject to rotation and translation) with larger variability, the

resulting importance ranking of metrics becomes distorted by the different metric

scales. Therefore, a PCA on standardized metric scores (such as those of SHIPSL)

would provide weights that are more biologically meaningful.

Figure 1 shows the loadings (weights) from the first PCA axis of SHIPSL metric

scores for the 1997 and 1998 PSL data (taken from Chiu and Guttorp, 2004). By

and large, the weights are close to being identical. In essence, SHIPSL can be

regarded as the first PCA of standardized metric scores, which accounts for the

most information that can be extracted from the ten metrics. (The respective

first PCA axes explain 69% and 68% of the total variability among the scores.)

The issue of weighting was previously addressed by Auerbach (1982) in the

context of a leading economic index. His findings indicate that equal weighting

tends to smooth out fluctuations of the relationships between similarly standard-

ized index components and underlying economic conditions. Perhaps the same

justification applies to an equal weighting of biological metric scores used by such

indices as SHIPSL and existing versions of the IBI.

4 OTHER METRIC SCORING METHODS

A thorough comparison of performance between six schemes of scoring metrics

appears in Blocksum, 2003. There, all schemes are applied to the seven metrics of
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the macroinvertebrate biotic integrity index (MBII). Three of these schemes lead

to continuous scales for metric scores, while the remaining three lead to discrete

scales. Both types of scales are calibrated using observations made either on

predetermined reference sites or on all sites that have yielded field samples. All six

schemes involve the definition of an upper and/or lower bound for the metric score,

made based on predetermined non-trivial (i.e. neither 0th or 100th) percentiles of

the distribution of raw metric values across calibration sites. For easy comparison,

the index corresponding to each scheme is multiplied by 100 and divided by its

largest possible value so that the resulting scaled indices have a range within 0

and 100. (However, this scaling may be somewhat unfair, as the minimum score

value is 1 for two of the discrete scales, and 0 for the other four scales. Thus,

scaled indices that correspond to the former two scales have minimum possible

values of 7× 100÷ 35 instead of 0.) Performance of the scaled indices is judged in

a similar fashion to that of Fore et al., 1994. In particular, bootstrap simulations

are used to assess the indices’ precision and related properties, such as power for

detecting a pairwise difference.

Blocksum’s results indicate that, with one exception, indices with a discrete

scoring scheme have larger variability than those with a continuous scheme. The

two schemes (continuous) which involve all sites in its calibration yield indices

that are more precise than those of the remaining schemes which are calibrated

using reference sites. One of these two schemes compresses only the upper tail of

the metric value distribution (via a non-trivial percentile) for defining the metric

score’s range, and is observed to produce an index with least variability and most

power, or, “an index that is closest to ideal.” Blocksum argues that the high

performance of this scoring scheme can be attributed to (1) better depiction of

data by avoiding gaps in metric scores associated with discrete scoring schemes,

and (2) less distortion of data due to compression of the tails of the metric value

distribution. Altogether, Blocksum’s results appear to provide justification for
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the entirely bound-free continuous scaling of SHIPSL metrics, and the merit of

basing on sites other than reference sites when calibrating the scoring scheme.

However, the issue of bias is not addressed by Blocksum, 2003. In particular,

the conclusions for variability and power may not be entirely valid if the indices’

SD’s have different biases. In this case, a measure of “intrinsic variability” such

as that of Chiu and Guttorp, 2004, is required for a fair comparison. Section 5

below revisits this comparison between SHIPSL and the PSL B-IBI. Included in

the comparison is the version of SHIPSL based on gold standard values of metric

means and SD’s.

5 PERFORMANCE OF SHIPSL WHEN

GOLD STANDARDS ARE USED

Let yij denote the value of metric j for site i that has been averaged over its

replicate samples, i = 1, 2, . . . , n and j = 1, 2, . . . , 10. Then, the statistically

standardized metric score is

zij =
yij − yj

sj

(1)

where yj and sj are the mean and sample SD, respectively, of y1j, y2j, . . . , ynj.

When the aforementioned gold-standard approach is desired, one may replace

yj and sj of (1) by their respective predetermined gold standards, denoted by µj

and σj. The resulting metric score is

z
(g)
ij =

yij − µj

σj

. (2)

“Gold-standard” SHIPSL, or GS-SHIPSL, for site i is then w
(g)
i =

∑
j z

(g)
ij .

In practice, the major difference between (1) and (2) is that µj and σj of the

latter may be reused in a new study (possibly involving different sites), whereas

yj and sj must be recomputed based on yij’s which vary due to sampling vari-

ability or a different set of studied sites. Ideally, µj and σj would be national
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or universal standards, so that GS-SHIPSL values from any geographical region

would represent local stream health relative to a universal standard.

Here, as in Chiu and Guttorp, 2004, we study the performance of w(g) via its

bootstrap distribution using the 1997 PSL data. As universal values are currently

rare in practice, we treat {yj, sj} of the original field sample from 1997 as {µj, σj}

in the bootstrap version of (2). These are then reused throughout the 10,000

bootstrap samples. That is, for each of the 10,000 resamples,

z
(g)∗
ij =

y∗ij − yj

sj

(3)

is the (i, j)-th bootstrap GS-SHIPSL metric score, where “∗” denotes a bootstrap

value (as opposed to an observed value from the field, denoted without “∗”).

5.1 Bias due to limitations of the bootstrap

For their bootstrap study based on the same field data, Chiu and Guttorp (2004)

obtain the following results. (1) For B-IBI, both sample mean and sample SD sig-

nificantly underestimate the underlying center and variability across sites. (2) For

SHIPSL, the sample mean is unbiased by definition, and the sample SD has no sig-

nificant bias. (3) Correlation between site-wise bias and stream health is negative,

and is significant if the B-IBI is used, but not so when SHIPSL is used.

How, then, does GS-SHIPSL perform with respect to these types of biases?

The “BEFORE” column of Table 1 and the “before” curves of Figure 2 summarize

the comparison among B-IBI and the two versions of SHIPSL with respect to

sample mean and SD. Here, GS-SHIPSL is seen to behave more similarly to B-IBI

than the original SHIPSL. In particular, each of its sample mean and SD has a

significant negative bias. As a measure of variability, GS-SHIPSL’s sample SD is

half as precise as that of SHIPSL (standard error (SE) is twice as big).

Also note from the “BEFORE” column of Table 2 and the gray o’s of Fig-

ure 3 that negative correlation between health and site-wise bias is significant for
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both B-IBI and GS-SHIPSL. As the spread of the bootstrap B-IBI or SHIPSL

distribution differs from site to site, we also examine the studentized site-wise

bias, i.e. site-wise bias divided by the SD of the bootstrap distribution. Here, the

negative trend between bias and health remains. Fore et al. (1994) attributes this

phenomenon for B-IBI to heavy compression of extreme metric values into those

categories corresponding to the scores of 1 and 5. However, it does not explain

the correlation for GS-SHIPSL. This is because, for either version of SHIPSL,

all ten metrics are allowed to move freely in either direction of the unbounded,

continuous scale for metric scores.

A closer look at the bootstrap resampling mechanism reveals that all seven

taxa richness (count) metrics exhibit severe negative bias in its mean and SD

(Table 3, “count” columns). In contrast, the corresponding biases are virtually

non-existent for two of the three percentage metrics (one-sided p-values ≈ 0.5).

To understand this phenomenon, compare the behavior of a taxa richness metric

to that of a percentage metric. For example, either a single organism or 500

organisms belonging to a certain predatory taxon contributes one count to the

metric total number of taxa (#Tx), while the corresponding contribution to the

percentage of predatory individuals (%Pred) can drastically differ. On the other

hand, adding a single organism to a zero count for the same taxon increases #Tx

by one, but may have virtually no effect on %Pred.

Now, a zero count in the observed field sample for any taxa richness metric

always produces zero bootstrap counts. Consequently, bootstrap values for such

a metric can never exceed the observed field count, and their range is severely

reduced. In the context of resampling from field samples, this limitation of the

bootstrap significantly distorts the randomness that occurs across samples in prac-

tice. To better mimic the randomness in metrics resulting from sampling variabil-

ity among actual field data, we correct for the bootstrap bias in mean and SD

for each taxa richness metric. All three health indices are then recomputed for
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the 1997 bootstrap data after this bias adjustment. Details of the bias correction

procedure appear in Section 7.

The “AFTER” columns of Tables 1 and 2, together with the “after” curves

of Figure 2 and the black +’s of Figure 3 show the behavior of the health indices

after bias adjustment for the seven metrics. GS-SHIPSL now behaves much more

closely to SHIPSL than B-IBI. Note also that although biases in B-IBI’s sample

mean and SD are no longer significant, the negative correlation between site-wise

bias and index value remains significant. Furthermore, we see from Figure 4 that

the intrinsic variability (c.f. Chiu and Guttorp, 2004) of B-IBI remains higher

than either version of SHIPSL. It also has a larger SE, i.e. the sample SD is a less

effective measure of variability for B-IBI than for GS-/SHIPSL.

Our results here indicate that, once artificial biases due to the bootstrap mech-

anism have been corrected for, the conclusions of Chiu and Guttorp, 2004 — with

the exception of the biases in B-IBI’s sample mean and SD — can be general-

ized to include either version of SHIPSL. Consequently, assuming that current

protocols for collecting and identifying benthic organisms from the field produce

metrics which effectively depict the underlying population conditions, both ver-

sions of SHIPSL have statistical properties that are (1) highly comparable, and

(2) generally more desirable than those exhibited by the B-IBI. However, it is

unclear how one could verify this assumption.

5.2 Redefining SHIPSL metrics

One way to possibly remove negative bootstrap bias (in mean and SD) for a taxa

richness metric is to have it redefined as percentage richness. (The concept of per-

centage richness is similar to that of zooplankton proportions in Billheimer and

Guttorp, 1995.) As no single taxa richness count can exceed the value of #Tx, all

such metrics (except #Tx itself) can be converted to a percentage via division by

#Tx/100. This conversion should retain most biological information contained
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in the original integer-valued metric. Indeed, this is a way to standardize taxa

richness metrics onto a common scale of 0 to 100. One advantage is that a per-

centage richness of, say, 15 may now have similar biological meanings in different

geographical locations, whereas its integer-valued counterpart of, say, 3 taxa may

not. In the context of the bootstrap, both numerator and denominator in the

definition of percentage richness are similarly affected by negative bias; hence, the

ratio between them should be relatively unaffected. Consequently, nine out of ten

SHIPSL metrics should show little negative bias in its bootstrap mean and SD.

In turn, the corresponding biases in SHIPSL should be reduced to a minimum.

Table 4 compares how informative are the count- and percentage-valued taxa

richness metrics relative to each other. The two are highly correlated (all but one

are greater than 0.8; see first column), suggesting that they contain comparable

biological information about the streams. Moreover, for those cases in which

this correlation is close to 0.9 or above (PleTx, LLTx, IntolTx, and ClingTx),

there is little difference in correlation with urbanization between the two richness

measures. For the other two cases (EphTx and TriTx), however, correlation with

urbanization is greatly improved when percentage richness is used. This suggests

that percentage richness may be generally more effective than count-valued taxa

richness in reflecting human influence on the ecosystem being monitored. Such

a characteristic is highly desired for metrics used to define health indices for

biomonitoring purposes (see, for instance, Morley, 2000). Indeed, the correlation

between SHIPSL and urbanization is higher when percentage richness metrics are

used (−0.82 vs. −0.76, the latter of which also equals the correlation for B-IBI).

We now investigate performance issues of the two versions of SHIPSL using

percentage richness metrics, based on the 10,000 bootstrap samples. Note that

B-IBI is no longer considered in the comparison, as its metric scoring criteria are

not available for percentage richness.

Recall the speculation that the new definition of richness should reduce nega-
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tive bias among all taxa richness metrics except #Tx. The “percentage” columns

of Table 3 show that this is generally true, except for %EphTx, %LLTx, and

%IntolTx. The latter two have negative biases that are borderline significant at

a 5% level. Interestingly, the former is the only percentage richness metric show-

ing a positive bias, and it is highly significant. This phenomenon is explained in

Section 5.3 below.

Does improved behavior of taxa richness metrics give rise to a more effective

SHIPSL? The “o.v.” columns of Table 1 show that variability in SHIPSL is re-

duced by using percentage richness. As in the case of count-valued taxa richness

(before bias adjustment), GS-SHIPSL has bootstrap sample SD’s that are, on av-

erage, comparable to those for ordinary SHIPSL (see “mean” columns). Judging

by the left-most and right-most columns of p-values, bias in sample SD is virtually

removed for GS-SHIPSL, although bias in sample mean remains significant. The

bias in SD for ordinary SHIPSL is slightly worsened but remains insignificant.

However, Table 2 (“percentage” columns) shows that site-wise bias is now signifi-

cantly correlated with stream health (5% level) for either version of SHIPSL. We

investigate this undesirable property in the next section.

5.3 Taxon abundance and bootstrap bias

While SHIPSL based on percentage richness is demonstrated to be more accurate

and precise than that based on count-valued richness, a few concerns remain:

(i) The severe negative bias in #Tx unquestionably contributes to the negative

bias of SHIPSL even when all other taxa richness metrics have been converted to

percentages; (ii) instead of removing bias for %EphTx, the conversion now adds

positive bias to this metric; and (iii) the significant correlation between site-wise

bias and stream health even when percentage richness is used remains unexplained.

Scatterplots of metric bias vs. observed SHIPSL using percentage richness

appear in Figure 5. They can be regarded as a plot of site-wise bias vs. SHIPSL,
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broken down by metric. The points labeled “a” and “b” correspond respectively

to the sites MI1 (Miller Creek) and TH1 (Thornton Creek), and are influential

values across all metrics. Upon their removal, we immediately see that (iii) above

is a result of the high negative correlation between metric and SHIPSL for the

metrics #Tx, %ClingTx, %LLTx, and %IntolTx.

Of the ten SHIPSL metrics, ClingTx, IntolTx, and LLTx have the lowest

abundance. That is, each taxon classified as clinger, intolerant, or long-lived

yields zero to very few individuals in an observed field sample regardless of the

site’s overall health conditions. Therefore, many such taxa are often entirely

missing in a bootstrap sample, potentially causing a large negative bias in the

count-valued richness for the bootstrap sample. In turn, #Tx (which comprises

all these taxa) is also subject to a large negative bias. More specifically, let N be,

say, #LLTx and D be #Tx, respectively, of the observed sample. Let εn, εd ≤ 0 be

bootstrap biases in N and D, respectively. Then, the bootstrap bias in %LLTx is

B =
N − |εn|

D − |εd|
−
N

D
.

Now, for a healthy site, N is not small, although it’s contribution is from one or

two individuals observed to belong to each long-lived taxon. The bootstrap then

easily misses these taxa, so that |εn| ≈ N . Note that D is large for a healthy

site. Hence,

B ≈
0

D − |εd|
−
N

D
< 0 . (4)

However, low abundance can cause a positive bias also. For a degraded site, N

is very small, and zero counts for many long-lived taxa imply εn ≈ 0. Also, D is

small, and |εd| ≥ |εn|. Thus,

B ≈
N

D − |εd|
−
N

D
≥ 0 . (5)

Of course, (4) and (5) hold for any low abundance metric, and the value of B

generally varies from positive to negative as the health conditions vary from bad
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to good. This explains the severe negative correlation between metric bias and

health for %ClingTx, %IntolTx, and %LLTx, and in turn, for #Tx.

A similar argument explains the positive bias in %EphTx. Of the three groups

of flies, Ephemeroptera is up to twice as abundant as Plecoptera and Trichoptera.

Thus, using the same notation as above, εn ≈ 0 while εd < 0. Hence, (5) also

applies to %EphTx. However, note that had #Tx not been negatively biased,

%EphTx would not have been positively biased. In practice, high abundance of

Ephemeroptera should not be a disadvantage.

For studying statistical properties of SHIPSL properly, however, we need to

adjust for the distortion of #Tx, %EphTx, %ClingTx, %IntolTx, and %LLTx.

Indeed, upon their removal in the computation of SHIPSL, the bias in sample

mean and SD and the negative correlation between studentized site-wise bias and

health virtually disappear (Table 5). For comparison, B-IBI scores are recomputed

with the (count-valued versions of the) same five metrics removed. Table 5 shows

that although biases in B-IBI mean and SD are no longer significant, negative

correlation between bias and health remains. While removing these metrics for

SHIPSL or B-IBI may be unwise in practice, this exercise demonstrates that:

(a) the negative biases in B-IBI sample mean and SD become insignificant after

adjusting for metric biases (Section 5.1), or after removing very low / high

abundance metrics;

(b) the negative correlation for B-IBI between site-wise bias and health remains

despite bias adjustments for or removal of metrics;

(c) (a) and (b) suggest that bias-related issues for the B-IBI are largely due to

the compression of tail values in its metric scoring scheme, particularly for

high abundance metrics (#Tx and #EphTx);

(d) such issues for either version of SHIPSL are mainly due to the bootstrap
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in the presence of very low abundance metrics, and not to any inherent

limitations of the scoring mechanism;

(e) SHIPSL based on percentage richness have properties that are more desirable

than when count-valued taxa richness is used.

6 DISCUSSION

Prompted by reactions to the introduction of SHIPSL by Chiu and Guttorp (2004),

this article has tried to address recently arisen issues which concern the use of

SHIPSL and other health indices for bioassessment of fresh water systems. We

have pointed out the need for a set of universal protocols under which the process

of quantifying health conditions — from the notion of pristine and degraded wa-

ters, to the choice of index metrics and their scoring, to the collection of data, to

the interpretation of index values — should ideally be agreeable upon regardless

of local geography and policies. To this end, GS-SHIPSL and the notion of per-

centage richness have been introduced in this article. Of course, the choice of a

health index is merely one element of an intricate biomonitoring scheme. However,

the comparison among SHIPSL, GS-SHIPSL, and B-IBI brings to light how this

choice may help to achieve part of the grand goal of developing a sound system

for ecological assessment.

In particular, both versions of SHIPSL involve unbounded metric scoring scales

that prevent negative correlation between bias in index and stream health. In

practice, GS-SHIPSL is more tractable over time / space, and likely more bio-

logically meaningful than ordinary SHIPSL. This is because GS-SHIPSL utilizes

an invariable “gold standard” that can be made universal for gauging metrics.

Provided that field sampling protocols yield samples that effectively reflect un-

derlying biological conditions, GS-SHIPSL is statistically comparable to SHIPSL.

Furthermore, the use of percentage instead of count-valued taxa richness metrics is
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shown to increase the precision of both versions of SHIPSL, and to better reflect

human impact. Thus, percentage richness is highly recommended for B-IBI and

similar health indices which comprise many taxa richness metrics.

However, two issues remain unresolved. Firstly, we have observed how boot-

strap results can be distorted by the presence of very low abundance metrics. In

practice, repeated sampling of benthic organisms may be similarly affected. For

instance, consider a taxon unobserved in a field sample replicate. Although future

replicates are not restricted to yield zero counts as would bootstrap resamples,

how may one determine whether organisms of this taxon actually exist at this

sampled site? If they do not, there is no variability or bias whatsoever for the

taxon frequency. However, if they do but are low in abundance, it may take

many replicates before a non-zero frequency is observed, and bias among a small

to moderate number of replicates is almost undoubtedly negative. Therefore, for

some sites, conditions gauged by such metrics are possibly irreproducible in a

handful of field samples. It may appear that the practicality of metrics involving

low abundance taxa as indicators of biological conditions is questionable.

Secondly, current biomonitoring practices remain highly geographically depen-

dent. Any effort for enhancing the universality of a health index would be made in

vain unless a common “language” for describing and quantifying health is available

to different geographical regions.

7 TECHNICAL DETAILS

First, some notation is needed for discussing the bias correction procedure of

Section 5.1. For metric j that measures taxa richness, let

yijk = metric value observed for i-th site’s k-th field replicate

yjk =

{
metric’s observed sample mean
over sites for replicate k

}
=
1

n

n∑

i=1

yijk
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sjk =

{
metric’s observed sample SD
over sites for replicate k

}
=

1

n− 1

n∑

i=1

(yijk − yjk)
2

y∗ijk,r = r-th boostrap metric value for i-th site’s replicate k

y ∗
jk,r =

{
metric’s sample mean over sites
for r-th bootstrap replicate k

}
=
1

n

n∑

i=1

y∗ijk,r

s∗jk,r =

{
metric’s sample SD over sites
for r-th bootstrap replicate k

}
=

1

n− 1

n∑

i=1

(y∗ijk,r − y ∗
jk,r)

2

Now, bias for this metric (j) is corrected for each replicate, as follows. (See

Remarks I below for notes on bias correction when metric values are averaged

over replicates.) Let

y
∗

jk =

{
bootstrap estimate of metric mean

for k-th replicate

}
=

1

10 000

10 000∑

r=1

y ∗
jk,r

u∗jk =

{
estimate of bias in metric mean

for k-th replicate

}
= y

∗

jk − yjk

s ∗jk =

{
estimate of expected value of metric SD

for k-th replicate

}
=

1

10 000

10 000∑

r=1

s ∗jk,r

v∗jk =

{
correction factor for bias in metric SD

for k-th replicate

}
=

sjk

s ∗jk

t ∗ijk,r =





bias-corrected metric value
for i-th site’s replicate k
in r-th bootstrap sample



 =

v∗jk(y
∗
ijk,r − y ∗

jk,r)
+

(y ∗
jk,r − ujk)

(6)

Subsequently, bootstrap values for all three stream health indices are recomputed

using t∗ijk,r’s. In particular, suppress the subscript r and see that t
∗

ij replaces y
∗
ij

in (3) for each bootstrap replicate.

The non-parametric bootstrap with bias adjustment as described above be-

comes semi-parametric in that the first two moments of the bootstrap distribution

are coerced to coincide with those of the observed replicate.
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Remarks I

One may wish to reduce computation by using a u∗j and a v∗j which are not

replicate-specific. Possible definitions would involve estimating bias in the mean

and SD (over sites) of the metric values already averaged over replicates. Unless

with care, however, such correction factors could lead to circular definitions of z ∗
ij,r

and z
(g) ∗
ij,r , thereby defeating the purpose of separately defining a gold-standard

SHIPSL. On the other hand, circularity is avoided by using (6), as averaging the

term v∗jk(y
∗
ijk,r − y ∗

jk,r) over k in the definition of z
(g) ∗
ij,r unlikely leads to canceling

of many terms.

Remarks II

Here, calculations of metric values, bias estimation, and bias adjustment alto-

gether become very computationally intensive for the non-parametrically boot-

strapped field samples. Indeed, it is possible to employ a different type of boot-

strap than that used by Fore et al. (1994), Blocksum (2003), and Chiu and Gut-

torp (2004). For example, values of metric j can be semi-parametrically boot-

strapped from, say, a Poisson(λ̂j) distribution (for taxa richness; see Billheimer

and Guttorp, 1995), or a log-normal(µ̂j, σ̂
2
j ) distribution (for a percentage metric),

where λ̂j and {µ̂j, σ̂
2
j} are estimates based on the original field samples. Note that

metrics are correlated. Hence, resampling metric values must involve a model for

the dependence structure among metrics. It is, however, beyond the scope of this

article to develop a suitable dependence model for such a purpose.
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count richness percentage richness

BEFORE bias adjustment AFTER bias adjustment

o.v. bootstrap bootstrap o.v. bootstrap
mean bias SE p mean bias SE p mean bias SE p

SHIPSL

sample mean 0 0 0 0 NA 0 0 0 NA 0 0 0 0 NA
sample SD 8.17 8.12 −0.05 0.12 0.33 identical to 0.33 7.16 6.94 −0.22 0.22 0.16

3 decimal places

GS-SHIPSL

sample mean 0 −1.68 −1.68 0.18 0.00 −0.05 −0.05 0.18 0.40 0 −0.39 −0.39 0.22 0.04
sample SD 8.17 7.69 −0.48 0.24 0.02 8.13 −0.04 0.26 0.43 7.16 7.06 −0.10 0.44 0.41

B-IBI

sample mean 27.67 26.95 −0.72 0.26 0.00 27.60 −0.07 0.31 0.41 NA
sample SD 9.06 8.46 −0.60 0.35 0.04 8.65 −0.41 0.35 0.12

Table 1: Bias in sample mean and sample SD. “o.v.” denotes observed value from field samples. p-values
are one-sided, computed based on normal approximations to the bootstrap distributions.
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count richness percentage richnesss
BEFORE bias adjustment AFTER bias adjustment

index 1-sided 1-sided 1-sided
corr(bias, health) p-value corr(bias, health) p-value corr(bias, health) p-value

SHIPSL −0.227 0.18 −0.228 0.18 −0.639 0.00
[−0.214] [0.20] [−0.214] [0.20] [−0.546] [0.01]

GS-SHIPSL −0.763 0.00 −0.209 0.20 −0.412 0.04
[−0.805] [0.00] [−0.188] [0.23] [−0.617] [0.00]

B-IBI −0.632 0.00 −0.493 0.02 —— ——
[−0.603] [0.00] [−0.493] [0.02] —— ——

Table 2: Correlation between bias and health. Entries under “corr(bias, health)” are correlation coeffi-
cients between site-wise bootstrap bias and observed index value. (See Figure 3.) Entries in square brackets
([ ]) are computed for studentized site-wise biases.
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count richness percentage richness

taxa richness observed bootstrap p observed bootstrap p

metric bias bias

total # taxa mean 23.26 −2.23 0.00
(#Tx) SD 6.65 −0.32 0.01 −−−−−−−−−−−−−−−−−

Ephemeroptera mean 4.74 −0.28 0.00 19.93 1.09 0.00
taxa (EphTx) SD 1.76 −0.12 0.00 4.31 −0.06 0.42

Plecoptera mean 3.89 −0.37 0.00 15.58 −0.06 0.42
taxa (PleTx) SD 1.66 −0.12 0.01 5.78 0.20 0.27

Trichoptera mean 4.00 −0.39 0.00 16.88 −0.18 0.34
taxa (TriTx) SD 1.37 −0.06 0.19 2.83 0.51 0.19

long-lived mean 3.02 −0.37 0.00 11.94 −0.41 0.08
taxa (LLTx) SD 1.47 −0.15 0.00 5.38 −0.14 0.26

intolerant mean 0.20 −0.05 0.02 0.71 −0.14 0.07
taxa (IntolTx) SD 0.49 −0.10 0.04 1.61 −0.22 0.14

clinger mean 12.26 −1.19 0.00 50.35 −0.31 0.27
taxa (ClingTx) SD 4.46 −0.32 0.00 11.55 0.49 0.32

non-taxa richness observed bootstrap p

metric bias

% predatory mean 5.34 0.00 0.50
individuals (%Pred) SD 3.76 0.00 0.33

% tolerant mean 74.49 0.00 0.50
individuals (%Tol) SD 14.24 0.00 0.46

% individuals in 3 most mean 38.21 −0.01 0.06
dominant taxa (%Dom3) SD 11.36 0.00 0.20

Table 3: Bias in mean and SD of SHIPSL metrics. One-sided p-values are
based on (1) normal approximations to the bootstrap distributions of metric mean
and SD, and (2) unrounded observed and bootstrap values. Numbers in bold are
significant biases at a 5% level.
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taxa richness correlation between
metric # and % # and urbanization % and urbanization
EphTx 0.83 −0.21 −0.47
PleTx 0.93 −0.75 −0.73
TriTx 0.73 −0.58 −0.74
LLTx 0.93 −0.86 −0.83
IntolTx 0.99 −0.40 −0.41
ClingTx 0.88 −0.76 −0.73

Table 4: Correlations involving percentage richness. First “correlation”
column is that between the count- (#) and percentage-values (%) of the taxa
richness metric indicated under “richness.” Second and third columns are corre-
lation between taxa richness (# or %, as indicated by the column heading) and
the percentage of urbanized area from Morley, 2000.
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bootstrap 1-sided corr(bias, health) 1-sided
bias SE p-value p-value

SHIPSL (% richness) −0.38 0.06
sample mean 0 0 NA
sample SD 0.02 0.19 0.46

GS-SHIPSL (% richness) 0.11 0.33
sample mean −0.12 0.19 0.26
sample SD 0.23 0.35 0.25

B-IBI (# richness) −0.62 0.00
sample mean −0.18 0.19 0.18
sample SD −0.30 0.24 0.10

Table 5: Biases after Tx, ClingTx, IntolTx and LLTx are removed. Entries under “corr(bias, health)”
are based on studentized site-wise biases.
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Figure 1: First PCA loadings of standardized metrics. 1997 loadings are in
white, and 1998 loadings are in gray. See Table 3 for full metric names.
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Figure 2: Effect of bias correction for count-valued taxa richness met-
rics on bootstrap sample mean and SD. (Also see Table 1.) Displayed are
bootstrap distributions of sampled mean (left) and sampled SD (right) before and
after bias correction. Vertical lines in gray denote values observed from 1997 field
samples. Note that bias correction has virtually no effect on the sample SD for
ordinary SHIPSL.
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Figure 3: Effect of bias correction for count-valued taxa richness metrics
on site-wise bias. (Also see Table 2.) Displayed are scatterplots of site-wise
bias vs. observed index value for the 1997 data, before (“o”) and after (“+”) bias
correction.
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Figure 4: Intrinsic variability. Displayed are bootstrap distributions for sample
SD of B-IBI’s (—), SHIPSL’s (- - -), and GS-SHIPSL’s (. . .), after (1) biases
in count-valued taxa richness metrics have been corrected for, and (2) resulting
index values have been rescaled to allow sensible comparison between the indices’
precision. (See Chiu and Guttorp, 2004 for (2).) The means of the respective
distributions are marked by “ ^ ”, “+”, and “ | ”.
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Figure 5: Metric bias and stream health. Displayed are scatterplots of (site-
wise) metric bias vs. observed SHIPSL based on percentage richness. (See Table 3
for full metric names.) Points labeled “a” and “b” correspond respectively to
Miller Creek and Thornton Creek.
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