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Using transforms to analyze space-time processes1

Peter Guttorp, Montserrat Fuentes and Paul Sampson

Introduction

Transform tools, such as power spectra, wavelets, and empirical orthogonal functions, are useful
tools for analyzing temporal, spatial and space-time processes. In this chapter we will develop some
theory and illustrate its use in a variety of applications in ecology and air quality.

Harmonic (or frequency) analysis has long been the one of the main tools in time series analysis.
Application of Fourier techniques work best when the underlying process is stationary, and we
develop and illustrate it here for stationary spatial and space-time processes. However, spatial
stationarity is rather a severe assumption for air quality models, and we show how the theory can
be generalized beyond that assumption. In some circumstances we can develop formal tests for
stationarity.

Wavelets are another set of transform tools that recently have found much use in time series
analysis. We illustrate here how wavelets can be used to estimate temporal trends, and to develop
different models of nonstationary spatial processes.

In geophysics and meteorology, variants of principal components called empirical orthogonal
functions (EOFs) have long been used to describe leading modes of variability in space-time
processes. Here we use smoothed EOFs to model the spatio-temporal mean field of a random
field, while yet a third type of spatially nonstationary model is used to describe the random part
of the field.

Finally, we return to the frequency analysis of space-time processes, and describe a spectral
representation and a parametric class of space-time covariances. We also show how to test for
separability of a space-time covariance, another frequently made but rather severe assumption in
the types of applications we discuss.

1 Spectral analysis of spatial processes

Spectral methods are a powerful tool for studying the spatial structure of random fields and gen-
erally offer significant computational benefits. In Section 1 of this chapter we offer a review of
the Fourier transform and its properties, we introduce the spectral representation of a stationary
spatial process, and we also present Bochner’s theorem to obtain a spectral representation for the
covariance. We later describe some commonly used classes of spectral densities, and we introduce
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the periodogram, a nonparametric estimate of the spectrum, and we study its properties. We also
present an approximation to the Gaussian likelihood using spectral methods.

1.1 Fourier Analysis.

In this section we present a review of the Fourier transform and its properties, we also discuss the
aliasing phenomenon in the spectral domain. This aliasing effect is a result of the lost of information
when we take a discrete set of observations on a continuous process.

1.1.1 Continuous Fourier transform

A Fourier analysis of a spatial process, also called a harmonic analysis, is a decomposition of the
process into sinusoidal components (sines and cosines waves). The coefficients of these sinusoidal
components are the Fourier transform of the process.

Supposed that g() is a real or complex-valued function,
Define

G(ω) =
∫

Rd

g(s) exp {iωts}ds (1)

The function G in (1) is said to be the Fourier transform of g. Then, g has the representation

g(s) =
1

(2π)d

∫
Rd

G(ω) exp {−iωts}dω (2)

so that |G(ω)| represents the amplitude associated with the complex exponential with frequency ω.
The right-hand side of Equation (2) is called the Fourier integral representation of g. The function
g and G are said to be a Fourier transform pair.

The Fourier transform of g(s) is often also defined as

G(ω) =
∫

Rd

g(s) exp {i2πωts}ds (3)

and the inverse Fourier transform of G(ω) as

g(s) =
∫

Rd

G(ω) exp {−i2πωts}dω (4)

It is often useful to think of functions and their transforms as occupying two domains. These
domains are referred to as the upper and the lower domains in older texts, “as if functions circulated
at ground level and their transforms in the underworld” (Bracewell, 1999). They are also referred to
as the function and transform domains, but in most physics applications they are called the time (or
space) and frequency domains respectively. Operations performed in one domain have correspond-
ing operations in the other. For example, the convolution operation in the time (space) domain
becomes a multiplication operation in the frequency domain, that is, f(x) ∗ g(x) → F (s)G(s). The
reverse is also true, as we will see in the next section of this chapter, F (s) ∗G(s) → f(x)g(x). Such
theorems allow one to move between domains so that operations can be performed where they are
easiest or most advantageous.
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1.1.2 Properties of the Fourier Transform

Scaling Property
If F{f(x)} = F (s) is a real, nonzero constant function, where F denotes the Fourier transform,

then

F{f(ax)} =
∫ ∞

−∞
f(ax) exp(iπ2sx)dx

=
1
|a|

∫ ∞

−∞
f(β) exp(iπβ2s/a)dβ

=
1
|a|F (s/a).

(5)

From this, the scaling property, it is evident that if the width of a function is decreased while
its height is kept constant, then its Fourier transform becomes wider and shorter. If its width is
increased, its transform becomes narrower and taller.

A similar frequency scaling property is given by

F
{

1
|a|f(x/a)

}
= F (as).

Shifting Property
If F{f(x)} = F (s) and x0 is a real constant, then

F{f(x− x0)} =
∫ ∞

−∞
f(x− x0) exp(i2πsx)dx

=
∫ ∞

−∞
f(β) exp(i2πs(β + x0))dβ

= exp(iπ2x0s)
∫ ∞

−∞
f(β)exp(iπ2sβ)dβ

= F (s) exp(i2πx0s).

(6)

This shifting property states that the Fourier transform of a shifted function is just the transform
of the unshifted function multiplied by an exponential factor having a linear phase.

Likewise, the frequency shifting property states that if F (s) is shifted by a constant s0, its
inverse transform is multiplied by exp(−iπ2xs0)

F{f(x) exp(−i2πxs0)} = F (s− s0).

Convolution Theorem
We now derive the previously mentioned convolution theorem. Suppose that g(x) = f(x)∗h(x).
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Then, given that F{g(x)} = G(s), F{f(x)} = F (s), and F{h(x)} = H(s),

G(s) = F{f(x) ∗ h(x)}

= F
{∫ ∞

−∞
f(β)h(x− β)dβ

}

=
∫ ∞

−∞

[∫ ∞

−∞
f(β)h(x− β)dβ

]
exp(iπ2sx)dx

=
∫ ∞

−∞
f(β)

[∫ ∞

−∞
h(x− β) exp(iπ2sx)dx

]
dβ

= H(s)
∫ ∞

−∞
f(β) exp(iπβ2s)dβ

= F (s)H(s).

(7)

This extremely powerful result demonstrates that the Fourier transform of a convolution is
simply given by the product of the individual transforms, that is

F{f(x) ∗ h(x)} = F (s)H(s).

Using a similar derivation, it can be shown that the Fourier transform of a product is given by
the convolution of the individual transforms, that is

F{f(x)h(x)} = F (s) ∗H(s)

Parseval’s Theorem
Parseval’s Theorem states that the power of a signal represented by a function h(t) is the same

whether computed in signal space or frequency (transform) space; that is,∫ ∞

−∞
h2(t)dt =

∫ ∞

−∞
|H(f)|2df

(see Bracewell, 2000). The power spectrum, P (f), is given by

P (f) = |H(f)|2,
for −∞ ≤ f ≤ +∞.

1.1.3 Aliasing

If we decompose a continuous process Z into a discrete superposition of harmonic oscillations, it is
easy to see that such a decomposition cannot be uniquely restored from observations of Z in ∆Z

2

(this an infinite lattice with spacing ∆), where ∆ is the distance between neighboring observations,
and Z

2 the integer lattice. The equal spacing in the space domain of the observations introduces
an aliasing effect for the frequencies. Indeed,

exp{iωx∆} = exp{i(ω + y2π/∆)x∆} = exp{iωx∆} exp{i2πyx}
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Figure 1: Example of aliasing due to undersampling in space.

for any x and y in Z
2. We simply cannot distinguish an oscillation with an angular frequency ω

from all the oscillations with frequencies ω + 2πy/∆. The frequencies ω and ω′ = ω + 2πy/∆
are indistinguishable and hence are aliases of each other. The impossibility of distinguishing the
harmonic components with frequencies differing by an integer multiple of 2π/∆ by observations in
the integer lattice with spacing ∆ is called aliasing effect.

Then, if observation of a continuous process Z is carried out only at uniformly spaced spatial
locations ∆ units apart, the spectrum of observations of the sample sequence Z(∆x), is concentrated
within the finite frequency band −π/∆ ≤ ω < π/∆. Every frequency not in that interval band
has an alias in the band, termed its principal alias. The whole frequency spectrum is partitioned
into bands of length 2π/∆ by fold points (2y + 1)π/∆, with y ∈ Z

2, and the power distribution
within each of the bands distinct from the principal band −π/∆ ≤ ω < π/∆, is superimposed on
the power distribution within the principal band. Thus, if we wish that the spectral characteristics
of the process Z to be determined accurately enough from the observed sample, then the Nyquist
frequency π/∆ must necessarily be so high that still higher frequencies ω make only a negligible
contribution to the total power of the process. This means that we observe a dense sample of Z
(small ∆). The Nyquist frequency is also called the folding frequency, since higher frequencies are
effectively folded down into the band −π/∆ ≤ ω < π/∆.

It should be noted that aliasing is a relatively simple phenomenon. In general, when one takes
a discrete set of observations on a continuous function, information is lost. It is an advantage of
the trigonometric functions that this loss of information is manifest in the easily understood form
of aliasing. Figure 1 shows an example of aliasing. In the figure, the high-frequency sinusoid is
indistinguishable from the lower frequency sinusoid due to aliasing. We say the higher frequency
aliases to the lower frequency. Undersampling in the frequency domain gives rise to space-domain
aliasing.

1.2 Spectral representation

In this Section we introduce the spectral representation of a stationary spatial process using sine
and cosine waves. We also present Bochner’s theorem to obtain a spectral representation for the
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covariance.

1.2.1 The spectral representation theorem

Consider a weakly stationary process Z with mean 0 and covariance C. Before we can apply the
ideas of Fourier series and Fourier integrals we must first ask: Can we represent a typical realization
as a Fourier series? The answer to this question is clearly “No”, since we have no reason to suppose
that a realization of a general stationary process will be periodic in any way.

The next question is: Can we represent a typical realization as a Fourier integral? “No”. Maybe
we can not distribute the power over a continuous range of frequencies, but over a set of frequencies
with discontinuities. This will lead to a Fourier type integral called Fourier-Stieltjes.

Z(s) =
∫
eisω

T
dY (ω),

where Y measures the average contributions from all components with frequencies less than or
equal to ω.

The spectral representation theorem
To every stationary Z(s) there can be assigned a process Y (ω) with orthogonal increments,

such that we have for each fixed s the spectral representation:

Z(s) =
∫

R2

eis
T ωdY (ω) (8)

Y (ω) is defined up to an additive random variable. The Y process is called the spectral process
associated with a stationary process Z. The random spectral process Y has the following properties:

E(Y (ω)) = 0

(since mean of Z is 0), the process Y has orthogonal increments:

E[(Y (ω3) − Y (ω2))(Y (ω1) − Y (ω0))] = 0,

when (ω3,ω2) and (ω1,ω0) are disjoint intervals. If we define F as

E|dY (ω)|2] = dF (ω)

F is a positive measure, and

E[dY (ω)dY (ω′)] = δ(ω − ω′)dF (ω)dω′

where δ(ω) is the Dirac δ-function.
The spectral representation theorem may be proved by various methods; using Hilbert space

theory, or by means of trigonometric integrals. A good reference is Cramer and Leadbetter (1967).
Bochner’s theorem
We derive the spectral representation of the autocovariance function C :

C(s) =
∫

R2

eis
T ωdF (ω)
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Bochner’s theorem says that a function C is nonnegative definite if and only if it can be repre-
sented in the form above where F is real, never-decreasing, and bounded. Thus, the spatial structure
of Z could be analyzed with a spectral approach or equivalently by estimating the autocovariance
function, see Cramer and Leadbetter (1967) for more detail.

If we compare the spectral representation of C(s) and Z(s)

C(s) =
∫

R2

eis
T ωdF (ω)

Z(s) =
∫

R2

eis
T ωdY (ω)

it will be seen that the elementary harmonic oscillations are respectively eis
T ωdF (ω), eis

T ωdY (ω)
If we think of Y (ω) as representing the spatial development of some concrete physical systems,

The spectral representation gives the decomposition of the total fluctuation in its elementary har-
monic components. The spectral d.f. F (ω) determines the distribution of the total average power
in the Z(s) fluctuation over the range of angular frequency ω. The average power assigned to the
frequency interval A = [ω1,ω2]2 is F (A), which for the whole infinite ω range becomes

E|Z(s)|2 = C(0) = F (R2)

Thus, F determines the power spectrum of the Z process. We may think of this as a distribution
of a spectral mass of total amount C(0) over the ω axis. F only differs by a multiplicative constant
from an ordinary d.f.

If F has a density with respect to Lebesgue measure, this density is the spectral density,
f = F ′, defined as the Fourier transform of the autocovariance function:

f(ω) =
1

(2π)2

∫
R2

exp(−iωTx)C(x)dx.

Spectral moments
The spectral moments

λk =
∫

ωkdF (ω)

may or may not be finite. As a consequence of Bochner’s theorem, the moment λ2k is finite if and
only C(x) has all partial derivatives of order 2k at the origin.

A process Z is m-times mean square differentiable if and only if C(2m)(0) exists and is finite
and, if so, the autocovariance function of Z(m) is (−1)mC(2m) (eg. Stein (1999), p. 21). Therefore,
Z is m-times mean square differentiable if and only if the momment λ2m is finite.

1.3 Some spectral densities

We describe in Section some commonly used classes of spectral densities. We consider in this section
a real process, then the spectral density is an even function. We also assume that the covariance is
isotropic, so that the spectral density is a function of a single frequency (Matérn, 1960).
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1.3.1 Triangular model

For a spatial process with a triangular isotropic covariance:

C(x) = σ(a− |x|)+

for σ and a positive, the corresponding spectral density is

f(ω) = σπ−1{1 − cos(α|ω|)}/|ω|2,

The oscillating behavior of the spectral density would be probably quite unrealistic for many phys-
ical processes. There is usually no reason to assume the spectrum has much more mass near
the frequency (2n + 1)π than near 2nπ for n large, which is the case for the spectral density
{1 − cos({ω)}/|ω|2. Some kriging predictors under this model have strange properties as a conse-
quence of the oscillations of the spectral density at high frequencies.

1.3.2 Spherical model

One of the most commonly used model for isotropic covariance functions in geological and hydro-
logical applications is the spherical

C(x) =

{
σ
(
1 − 3

2ρ + 1
2ρ3

|x|3
)

r ≤ ρ

0 r > ρ
(9)

for positive constants σ and ρ. This function is not a valid covariance in higher dimensions than 3.
The parameter ρ is called the range and is the distance at which correlations become exactly 0. This
function is only once differentiable at r = ρ and this can lead to problems when using likelihood
methods for estimating the parameters of this model. In three dimensions, the corresponding
isotropic spectral density has oscillations at high frequencies similar to the triangular covariance
function in one dimension. Stein and Handcock (1989) show that when using the spherical model
in three dimensions, certain prediction problems have rather pathological behavior.

1.3.3 Squared exponential model

The density of a a spatial process with an isotropic squared exponential covariance:

C(x) = σe−α|x|
2

is
f(ω) =

1
2
σ(πα)−1/2e−ω2/(4α)

Note that C and f both are the same type of exponential functions when γ = 2. The parameter σ
is the variance of the process and α−1 is a parameter that explains how fast the correlation decays.
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1.3.4 Matérn-Whittle class

A class of practical variograms and autocovariance functions for a process Z can be obtained from
the Matérn class of spectral densities

f(ω) = φ(α2 + |ω|2)(−ν− d
2 ) (10)

with parameters ν > 0, α > 0 and φ > 0 (the value d is the dimension of the spatial process Z).
Here, the vector of covariance parameters is θ = (φ, ν, α). The parameter α−1 can be interpreted
as the autocorrelation range. The parameter ν measures the degree of smoothness of the process
Z, the higher the value of ν the smoother Z would be, and φ is proportional to the ratio of the
variance σ and the range (α−1) to the 2νth power, φ = σα2ν .

The corresponding covariance for the Matérn class is

Cθ(x) =
πd/2φ

2ν−1Γ(ν + d/2)α2ν
(α|x|)νKν(α|x|), (11)

where Kν is a modified Bessel function. For instance when ν = 1
2 , we get the exponential covariance

function,
Cθ(x) = πφα−1 exp(−α|x|).

When ν is of the form m+ 1
2 with m a nonnegative integer, the Matérn covariance function is of the

form e−α|x| times a polynomial in |x| of degree m, (Abramowitz and Stegun (1965), Stein (1999)
p. 31).

Handcock and Wallis (1994) suggested the following parametrization of the Matérn covariance
that does not depend on d:

C(x) =
σ

2ν−1Γ(ν)α2ν
(2ν1/2|x|/ρ)νKν(2ν1/2|x|/ρ), (12)

but the corresponding spectral density does depend on d:

f(ω) =
σg(ν, ρ)

(4ν/ρ2 + |ω|2)ν+d/2

where
g(ν, ρ) =

Γ(ν + d/2)(4ν)ν

πd/2ρ2νΓ(ν)

with σ = var(Z(s)), the parameter ρ measures how the correlation decays with distance, and
generally this parameter is called the range. The parameter α−1 has a very similar interpretation
to ρ. But both parameters have different asymptotic properties under an infill asymptotic model.
If we consider the limit as ν → ∞ we get the squared exponential covariance

K(x) = σe−|x|2/ρ2 .

The smoothness of a random field, the parameter ν in the Matérn class, plays a critical role
in interpolation problems. This parameter is difficult to estimate accurately from data. A number
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of the commonly used models for the covariance structure, including spherical, exponential and
squared exponential structures assume that the smoothness parameter is known a priori.

As an alternative to the Matérn covariance sometimes the powered exponential model could be
used.

C(x) = σe−α|x|
γ

with α > 0 and γ ∈ (0, 2]. The parameter γ (when γ < 2) plays the same role as 2ν in the Matérn,
and for γ = 2 it corresponds to ν = ∞. However, for values of 1 ≤ ν < ∞ the powered exonential
has not elements providing similar local behavior as the Matérn.

Figure 2 shows two Matérn covariances, a squared exponential covariance and a exponential
covariance. The squared exponential is more flat the the origin, this indicates that the spatial
process is very smooth. On the other hand, the exponential is almost linear at the origin, indicating
that the corresponding spatial process is not very smooth, in fact this process is not even once mean
square differentiable.

Figure 3 shows other two Matérn covariances with ν = 1/2 (exponential) and with ν = 3/2,
which corresponds to a process that is once differentiable. Figure 4 shows the corresponding spectral
densities.

1.4 Estimating the spectral density

The periodogram, a nonparametric estimate of the spectral density, is a powerful tool for studying
the properties of stationary processes observed on a d-dimensional lattice. Use and properties
of spatial periodograms for stationary processes have been investigated by Stein (1995), Guyon
(1982,1992), Ripley (1981), Rosenblatt (1985), and Whittle (1954) among others. Pawitan and
O’Sullivan (1994) proposed a nonparametric spectral density estimator using a penalized Whittle
likelihood for a stationary time series. Guyon (1982) studied the asymptotic properties of various
parameter estimation procedures for a general stationary process on a d-dimensional lattice, using
spectral methods.

This Section is organized as follows. First, we introduce the periodogram, a nonparametric
estimate of the spectral density. Then, by using spectral tools we present an expression for the
likelihood function that in practice is very easy to calculate. This version of the likelihood was
proposed by Whittle (1954) and avoids computing the determinants an inverses of large matrices.

1.4.1 Periodogram

Consider a spatial stationary process Z(·) with covariance parameter θ which is assumed here to
be known. We observe the process at N equally spaced locations in a regular grid D (n1 × n2),
where N = n1n2. The distance between neighboring observations is ∆. The periodogram is a
nonparametric estimate of the spectral density, which is the Fourier transform of the covariance
function. We define IN (ω0) to be the periodogram at a frequency ω0,

IN (ω0) = ∆2(2π)−2(n1n2)−1

∣∣∣∣∣
n1∑
s1=1

n2∑
s2=1

Z(∆s) exp{−i∆sTω}
∣∣∣∣∣
2

. (13)
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Figure 2: Covariance models: Exponential and squared exponential.
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Matern Covariances
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Matern Spectral Densities
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If the spectral representation of Z is

Z(s) =
∫

R2

eiω
T xdY (ω),

we define J(ω), a discrete version of the spectral process Y (ω), which is the Fourier transform of
Z,

J(ω) = ∆(2π)−1(n1n2)−1/2
n1∑
x1=1

n2∑
x2=1

Z(∆x) exp{−i∆xTω}.

Using the spectral representation of Z and proceeding formally,

C(x) =
∫

R2

exp(iωTx)F (dω) (14)

where the function F is called the spectral measure or spectrum for Z. F is a positive finite
measure, defined by

E{d|Y (ω)|2} = dF (ω). (15)

Thus, we get

IN (ω) = |J(ω)|2, (16)

this expression for IN is consistent with the definition of the spectral distribution F in (15), as a
function of the spectral processes Y . The periodogram (15) is simply the discrete fourier transform
of the sample covariance.

In practice, the periodogram estimate for ω is computed in the set of Fourier frequencies
(2π/Delta)(f/n) where f/n =

(
f1
n1
, f2n2

)
, and f ∈ JN , for

JN = {�−(n1 − 1)/2�, . . . , n1 − �n1/2�} × {�−(n2 − 1)/2�, . . . , n2 − �n2/2�} . (17)

where �u� denotes the largest integer less or equal than u.

1.4.2 Theoretical properties of the periodogram

The expected value of the periodogram at ω0 is given by

E(IN (ω0)) = (2π)−2(n1n2)−1

∫
Π2

∆

f∆(ω)W (ω − ω0)dω,

where Π2
∆ = (−π/∆, π/∆)2 , and

W (ω) =
2∏
j=1

sin2
(njωj

2

)
sin2

(ωj

2

)
for ω = (ω1, ω2) = (2π/Delta)(f/n) and f ∈ JN\{0}, and f∆(ω) is the spectral density of the
process Z on the lattice with spacing ∆. The side lobes (subsidiary peaks) of the function W can
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lead to substantial bias in IN (ω0) as an estimator of f∆(ω0) since they allow the value of f∆ at
frequencies far from ω0 to contribute to the expected value. Figure 1.4.4 shows a graph of W along
the vertical axis. If the side lobes of W were substantially smaller, we could reduce this source
of bias for the periodogram considerably. Tapering is a technique that effectively reduces the side
lobes associated with the spectral window W . We form the product h(x)Zi(x) for each value of
x = (x1, x2), where {h(x)} is a suitable sequence of real-valued constants called a data taper, and
then we compute the periodogram for the tapered data.

The periodogram values are approximately independent, and this facilitates the use of techniques
such as non-linear least squares (NLS) to fit a theoretical spectral model to the periodogram values.

Asymptotic properties of the periodogram
Theorem 1 (Brillinger, 1981):
Consider a Gaussian stationary process Z with spectral density f(ω) on a lattice D. We assume

Z is observed at N equally spaced locations in D (n1 × n2), where N = n1n2, and the spacing
between observations is ∆. We define the periodogram function, IN (ω), as in (34).

Assume n1 → ∞, n2 → ∞, n1/n2 → λ, for a constant λ > 0.
Then, we get:

(i) The expected value of the periodogram, IN (ω), is asymptotically f∆(ω).

(ii) The asymptotic variance of IN (ω) is f2
∆(ω).

(iii) The periodogram values IN (ω), and IN (ω′) for ω �= ω′, are asymptotically independent.

By Part (i) the periodogram IN using increasing domain asymptotics is asymptotically an
unbiased estimate of the spectral density, f∆ on the lattice. Note, that if f is the continuous
process Z, and f∆ the spectral density on the lattice, then using increasing-domain asymptotics,
IN is not asymptotically an unbiased estimate of f but of f∆ the spectral density of the sampled
sequence Z(∆x). By Theorem 1 part (ii) the variance of the periodogram at ω is asymptotically
f2
∆(ω). The traditional approach to this inconsistency problem is to smooth the periodogram across

frequencies.
By Theorem 1 part (iii), the periodogram values are approximately independent. This property

allow us to easily fit in the spectral domain a parametric model to the periodogram values. However,
in the space domain, the correlation among the empirical covariance or variogram values thwarts
the use of least squares.

Asymptotic distribution of the periodogram
If the process Z is stationary, such that the absolute value of the joint cummulants of order k

are integrable (for all k), then the periodogram has asymptotically a distribution that is multiple of
a χ2

2. More specifically, the periodogram IN (ωj) where ωj is a Fourier frequency has asymptotically
a f(ωj)χ2

2/2 distribution.

1.4.3 Examples of spectral analysis of 2-d processes

A simulated example
In order to get a feel for how bivariate spectra look, we borrow an example from Renshaw and

Ford (Renshaw and Ford (1983)). The process is in essence a weighted avarage of cosines with
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random phase. Figure 5 shows the random field, which is generated by

Z(s) =
16∑
i=0

15∑
j=−16

gijcos(2π
(
is1
m

+
js2
n

)
+ Uij)

where
gij = exp(− |i+ 6 − j tan(20◦)|).

The resulting spectrum, Figure 1.4.3 shows a single ridge in the 20◦ direction, going from I0,−6

to I16,0.
A forestry example
The main topic of the paper by Renshaw and Ford (Renshaw and Ford (1983)) is the analysis

of canopy heights in a managed forest of scots pine at Thetford Forest, U.K. The forest was
about 40 years old when the measurements were taken, and had about 1000 tress per hectare. The
horizontal extent of individual tree crowns was measure along parallel transects at 1m intervals, and
the crown height, location, and perimeter crown height of each tree was determined. Intermediate
crown heights were estimated by geometric projection. We focus on a 32 by 32 submatrix of canopy
heights. The spectrum is given in Figure 1.4.3.

The spectrum shows a low frequency ridge in the positive quadrat from (1,0) to (8,4), with large
elements at (4,1) and (8,2), corresponding to an angle of 76◦. Separated from this ridge by a single
row is a ridge of high frequency elements with peak value at (12,4), or 72◦. This strong directional
feature was not obvious when observing the canopy from above. There is also a ridge in the negative
quadrant from (4,-4) to (15,1). The high values are clustered around 90◦ and constitute a basic
row effect.

When looking at the entire data set of 36 by 120 meters, there is clear evidence of a changing
spectral structure by looking at partially overlapping submatrices. The high frequency components
remain relatively stable, but the low frequency features shift between dominating for negative values
of omega2 to positive values as one moves along the forest. This is probably related to a thinning
that was less severe around a measurement mast used for microclimate measurements in the middle
of the study area. Where there has been least thinning, the wave-like aggregation of tree crowns
is strongest. Thus, for the entire data set, a model allowing for nonstationary spectral analysis is
needed.

1.4.4 Nonlinear WLS estimation in the spectral domain

Consider modeling the spatial structure of Z by fitting a spectral density f to the periodogram
values. We could use a weighted non-linear least squares (WNLS) procedure, that gives more
weight to higher frequency values because high frequencies are important for interpolation. An
approximate expression for the spectral density of the Matérn class for high frequency values is
obtained from (33) by letting |ω| go to ∞:

f(ω) = φ(|ω|2)(−ν− d
2 ) (18)

Thus, the degree of smoothness, ν, and φ are the critical parameters (and not the range α−1).
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Figure 5: A simulated process with a strong directional component. From Renshaw and Ford
(1983).
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Figure 6: The periodogram for the process in Figure 5. From Renshaw and Ford (1983).
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Figure 7: The spectrum of a 32 by 32 submatrix of the Thetford forest canopy heights. The notation
(p, q) corresponds to our (ω1, ω2). From Renshaw and Ford (1983).
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Thus, we propose using the high frequency parametric model for f as in (18) and the weights
f(ω)−1 to give higher weight to higher frequencies. This is reasonable since for large N the ap-
proximate standard deviation of the periodogram IN is f(ω).

Thus, the proposed weights f(ω)−1 also stabilize the variance of the periodogram values. This
is similar to the weighted least squares method used in the space domain to fit a variogram model
(Cressie, 1985). We recommend to use weighted least squares in the spectral domain rather than
in the space domain, because periodogram values are approximately independent while variogram
values are not.

An alternative approach would be to fit in the log scale a linear model:

log(f(ω)) = β0 + β1X (19)

where X = log(ω), β0i = log(φ) and β1 = 2
(−ν − d

2

)
.

1.4.5 Likelihood estimation in the spectral domain

For large datasets, calculating the determinants that we have in the likelihood function can be often
infeasible. Spectral methods could be used to approximate the likelihood and obtain the maximum
likelihood estimates (MLE) of the covariance parameters: θ = (θ1, . . . , θr).

Spectral methods to approximate the spatial likelihood have been used by Whittle 1954, Guyon
1982, Dahlhaus and Küsch, 1987, and Stein 1995, 1999, among others. These spectral methods are
based on Whittle’s (1954) approximation to the Gaussian negative log likelihood:

N

(2π)2
∑

logf(ω) + IN (ω)f(ω)−1 (20)

where the sum is evaluated at the Fourier frequencies, IN is the periodogram and f is the spectral
density of the lattice process. The approximated likelihood can be calculated very efficiently by
using the fast Fourier transform. This approximation requires only O(Nlog2N) operations. Sim-
ulation studies conducted by the author seem to indicate that N needs to be at least 100 to get
good estimated MLE parameters using Whittle’s approximation.

The asymptotic covariance matrix of the MLE estimates of θ1, . . . , θr is⎧⎨
⎩ 2
N

[
1

4π2

∫
[−π,π]

∫
[−π,π]

∂logf(ω1)
∂θj

∂logf(ω2)
∂θk

dω1dω2

]−1
⎫⎬
⎭
jk

(21)

this is much easier to compute that the inverse of the Fisher information matrix.
Guyon (1982) proved that when the periodogram is used to approximate the spectral density

in the Whittle likelihood function, the periodogram bias contributes a non-negligible component
to the mean squared error (mse) of the parameter estimates for 2-dimensional processes, and for
3-dimensions this bias dominates the mse. Thus, the MLE parameters of the covariance function
based on the Whittle likelihood are only efficient in one dimension, but not in two and higher
dimensional problems. Though, they are consistent. Guyon demonstrated that this problem can
be solved by using a different version of the periodogram, an “unbiased peridogram”, which is the
discrete Fourier transform of an unbiased version of the sample covariance. Dahlhaus and Künsch
(1987) demonstrated that tapering also solves this problem.

20



Frequencies

S
pe

ct
ra

l W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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the vertical axis shows the spectral window along the vertical axis for the periodogram (without
tapering), for n2 = 500.
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1.5 Model for nonstationary processes

1.5.1 Convolution of locally stationary processes

In this section, we propose a class of nonstationary processes, based on a convolution of local
stationary processes (Fuentes, 2001, 2002, Fuentes and Smith, 2001). This model has the advantage
that the model is simultaneously defined everywhere, unlike moving window approaches (Haas,
1998), but it retains the attractive property that, locally in small regions, it behaves like a stationary
spatial process.

We model a nonstationary process Z observed on a region D as a convolution of weakly sta-
tionary processes (Fuentes, 2001, Fuentes, 2002):

Z(x) =
∫
D
K(x − s)Zθ(s)(x)ds, (22)

where K is a kernel function and Zθ(s)(x), x ∈ D, is a family of independent stationary Gaussian
processes indexed by θ(s).

The covariance function C(x1,x2; θ) of Z is a convolution of the covariance functions Cθ(s)(x1 − x2)
of the stationary processes Zθ(s) :

C(x1,x2; θ) =
∫
D
K(x1 − s)K(x2 − s)Cθ(s)(x1 − x2)ds. (23)

The covariance function of Zθ(s) is stationary with parameter θ(s), and we assume that θ(s) is a
continuous function on s. The process Zθ(s) could have a Matérn isotropic covariance function of
the form

Cθ(s)(x) =
πd/2φs

2νs−1Γ(νs + d/2)α2νs
s

(αs|x|)νsKνs(αs|x|), (24)

where Kνs is a modified Bessel function, and d is the dimension of s, θ(s) = (νs, αs, φs). The
parameter α−1

s can be interpreted as the autocorrelation range, φs is a scale parameter, and the
parameter νs measures the degree of smoothness of the process Zθ(s).

In (23) every entry requires an integration. Since each such integration is actually an expectation
with respect to a uniform distribution, we could use Monte Carlo integration or other numeric
scheme to approximate the integral (23). We propose to draw an independent set of locations si,
i = 1, 2, ..., k, on D. Hence, we replace C(x1,x2; θ) with

Ĉ(x1,x2; θ) = k−1
k∑
i=1

K(x1 − si)K(x2 − si)Cθ(si)(x1 − x2). (25)

In this notation, the ‘hat’ denotes an approximation that can be made arbitrarily accurate and has
nothing to do with the data Z. The kernel function K(x− si) centred at si could be positive for all
x ∈ D, or could have compact support. In the latter case, K(x − si) would be only positive when
x is in a subregion Si centred at si, and this would simplify the calculations.

The size of the sample, k, is selected using the following iterative algorithm. We first start
with a systematic sample of size k, where k is small, and we increase k by adding a new sample
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point at a time. At each step of the iterative approach we draw a new sample point in between
two neighbouring points in the current sample sequence. Thus, in each iteration we decrease
by half the distance between two neighbouring draws. We iterate this process until an Akaike
information criterion (Akaike, 1974) or Bayesian information criterion (BIC) suggests no significant
improvement in the estimation of the nonstationary covariance of Z by increasing k, equivalent to
decreasing the distance between draws in the sample sequence.

Throughout the rest of this Section we simplify the notation by writing Zi to denote Zθ(si), and
wi(x) to represent K(x − si), the kernel or weight function centred at si.

1.5.2 The spectrum for the convolution model

The nonstationary process Z is modelled here as a mixture of weakly stationary processes Zi,
i = 1, . . . , k, with cov{Zi(x), Zj(y)} = 0 for i �= j:

Z(x) =
k∑
i=1

Zi(x)wi(x), (26)

and we choose k using the BIC (or AIC) approach discussed in the previous Section.
Each stationary process Zi has the representation,

Zi(x) =
∫

R2

exp(ixTω)dYi(ω), (27)

where the Yi are random functions with uncorrelated increments.
Thus, the spectral representation of Z is Z(x) =

∫
R2 exp(ixTω)dY (ω), where

Y (ω) =
k∑
i=1

F{wi} ∗ Yi(ω), (28)

F{wi} is the Fourier transform of wi, and ∗ denotes the following convolution function:

F{wi} ∗ Yi(ω) =
∫

R2

F{wi}(h)Yi(ω − h)dh.

The covariance function of Z can be defined in terms of the covariance function of the orthogonal
stationary processes Zi :

cov{Z(x1), Z(x2)} =
k∑
i=1

wi(x1)wi(x2)cov{Zi(x1), Zi(x2)}. (29)

This is a valid nonstationary covariance function. Then, the corresponding spectral density is,

f(ω1,ω2) =
k∑
i=1

fi∗{F{wi}(ω1)F{wi}(ω2)}, (30)

where
fi∗{F{wi}(ω1)F{wi}(ω2)} =

∫
R2

fi(ω)F{wi}(ω1 − ω)F{wi}(ω2 − ω)dω.

23



1.5.3 Nonparametric spectral estimation

We present here an asymptotically unbiased nonparametric estimator, ĨN , of the spectral density
f of a nonstationary process Z. We model Z as in (26). Thus, a natural way of defining ĨN is as a
convolution of the periodograms Ii,N of the stationary processes Zi with domain D:

ĨN (ω1,ω2) =
k∑
i=1

Ii,N ∗ {F{wi}(ω1)F{wi}(ω2)}, (31)

where ∗ denotes the convolution

Ii,N ∗ {F{wi}(ω1)F{wi}(ω2)} =
∑

ω∈JN

Ii,N (ω)F{wi}(ω1 − ω)F{wi}(ω2 − ω),

with JN the set of the Fourier frequencies (17). The weights wi have compact support (they are only
positive in the corresponding subregion Si of stationarity) and they help to identify the processes
Zi that are being used. By the definition of f in (30) as a function of the spectral densities fi,
i = 1, . . . , k, and the fact that the periodograms Ii,N are asymptotically unbiased estimators of fi,
we obtain that Ĩ is asymptotically unbiased. The asymptotic variance of ĨN (ω1,ω2) can be easily
obtained because the processes Zi are orthogonal. Thus, when ni → ∞, for i = 1, 2, ∆ → 0 and
∆n1 → ∞, ∆n2 → ∞, the variance of ĨN (ω1,ω2) becomes

k∑
i=1

f2
i ∗{F{wi}2(ω1)F{wi}2(ω2)}.

Furthermore, since ĨN is a convolution of independent stationary periodograms, we obtain
cov{ĨN (ω1,ω2), ĨN (ω′

1,ω2′)} = 0 asymptotically.
In practice, we compute Ii,N as the periodogram of the observed values of Z in the subregion

of stationarity Si,

1.5.4 Parametric spectral estimation

Suppose again that Z takes the form (26), so that we use the expression in (30) for f . The spectral
density f is modelled then as a function of the spectral densities fi, i = 1, . . . , k.

A parametric estimator f̂ of the spectral density is easily obtained from parametric estimators
of the spectral densities fi, i = 1, . . . , k:

f̂(ω1,ω2) =
k∑
i=1

f̂i∗{F{wi}(ω1)F{wi}(ω2)}. (32)

We study now parametric models for the fi. A class of practical variograms and autocovariance
functions for the stationary processes Zi can be obtained from the Matérn class of spectral densities

fi(ω) = φi(α2
i + ‖ω‖2)(−νi− d

2 ) (33)

with parameters νi > 0, αi > 0 and φi > 0, where d is the dimensionality of Zi. Here, the vector
of covariance parameters is θi = (φi, νi, αi).
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1.5.5 An example in air quality

In the air pollution example presented here the main objective is to understand and quantify the
weekly spatial structure of air pollutants using the output of a regional scale air quality models,
known as Models-3. Models-3 estimates hourly concentrations and fluxes of different pollutants.
We study here the nitric acid. The spatial domain D (Figure 9) is a regular 81×87 grid, where
the dimensions of each cell on the grid are 36km × 36km. The 81×87 lattice for Models-3 is a
two-dimensional grid that takes account of the earth’s curvature. Models-3 provides the estimated
concentration for the middle point of each cell. In this example we analyse the spatial structure of
the hourly averaged nitric acid concentrations for the week starting July 11, 1995. We fit model (22),
taking K to be the Epanechnikov kernel K(u) = 2

π (1 − ||u||2/h2) with h an arbitrary bandwidth,
and replacing the integral over D by a sum over a grid of cells covering the observation region.

In practice, the choice of h is crucial. The bandwidth should be small to preserve the general
‘shape’ of the data (Clark, 1977). In a regression setting, reducing the size of the bandwidth reduces
the bias but increases the variance. In our spatial setting, since the variance might change with
location we do not gain much by increasing h. The shape of the process is represented by the
parameter θ, which accounts for the lack of stationarity of Z. Thus, we need to choose h as small
as possible to preserve this general shape. However, we also need to ensure that for all x ∈ D
there is at least one si, with K(x − si) > 0, where the {si} are the k draws on D to calculate the
covariance (25). In this application we choose the smallest value of h that satisfies this condition.
When the distance between neighbouring points of the sample sequence s1, . . . , sk varies, we could
also allow the bandwidth to change with location. If we have k draws from a systematic sample
with a distance l between sampling points, then the recommended value for h is l/

√
2. Note that

the value of h depends on k.
In this example k = 9, which is the optimal value for k based on the AIC criterion. The sample

points s1, . . . , s9 are a systematic sample and they are plotted in Fig. 5. The distance l between
the sampling points is 972 km. The value of h in this application is h = l/

√
2 = 687 km. We used

a likelihood approach to estimate the parameters of the nonstationary covariance matrix, which
is a mixture of 9 stationary Matérn models of the form (33). Since the kernel function K has
compact support, the covariance matrix of Z is approximately a block matrix, which simplifies the
calculations; otherwise the evaluation of the likelihood function requires us to compute the inverse
and determinant of a 7, 209 × 7, 209 matrix.

Figure 10 shows the Matérn fitted models (using the likelihood function of Z in the spectral
domain and in the subregions Si’s) for the spectral densities, fi, of the stationary processes Zi,
for i = 1, . . . , 9. The nonstationary spectral density f(ω1,ω2), defined in (30), is obtained as
a convolution of the densities fi, i = 1, . . . , 9. Table 1 shows the estimated parameters for the
spectral densities fi and the corresponding standard errors.
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Process Sill Range Smoothness
Z1 2.9 (1.1) 566 (282) 0.74 (0.03)
Z2 2.1 (0.5) 315 (131) 0.98 (0.10)
Z3 1.8 (0.1) 231 (18) 1.01 (0.05)
Z4 1.1 (0.3) 480 (193) 0.63 (0.03)
Z5 1.22 (0.07) 150 (20) 1.19 (0.22)
Z6 1.17 (0.01) 476 (17) 0.91 (0.01)
Z7 1.4 (0.3) 500 (139) 0.46 (0.03)
Z8 15 (3) 975 (292) 0.67 (0.01)
Z9 3 (0.2) 252 (45) 0.84 (0.08)

TABLE 1. This table shows the estimated parameters for the spectral densities of the processes Zi.

The values in parenthesis are the standard errors of the estimated parameters. The parameters have been
estimated using a likelihood approach.

The smoothing parameter represents the rate of decay of the spectral density at high frequencies;
this is an indication of how smooth the corresponding process is. The smoothing parameter is
approximately 0.5 corresponding to the exponential model, for the processes Z1, Z4, Z7 and Z8;
these processes explain the spatial structure of the nitric acid concentrations on the eastern part of
our domain; see the location of the sampling points in Fig. 6. We observe a relatively faster rate of
decay at high frequencies for the processes Z5, Z6, Z9, Z2 and Z3, with a smoothing parameter of
approximately 1, corresponding to the Whittle model. These processes explain the spatial structure
of the nitric acid concentrations on the western part of our domain, mainly over water; the nitric
acid seems to be a smoother process over water than over the land surface. The nitric acid is a
secondary pollutant, in being the result of photochemical reactions in the atmosphere rather than
being emitted directly from sources on the surface. It therefore usually remains in the atmosphere
for long periods of time and travels long distances across water.

When the range parameter is large, e.g. for process Z8, there is a faster decay of the spectral
density at short frequencies. We can appreciate this phenomenon by comparing the spectral density
of Z6, large range, to the spectral density of Z5, small range. In general we observe larger ranges
of autocorrelation on the western part of the grid. Furthermore, on the eastern part we should not
expect large ranges because of the discontinuity of the nitric acid concentration that results from
transition from land to ocean.

The variance of the process, also called the sill parameter, is the integral of the spectral density
function,

∫
R2 f(ω)dω. In this example, the sill is relatively large for Z8. There is higher spatial

variability, large sill, mainly on the Great Lakes area, process Z8, since the area is downwind from
sources of pollution, primarily Chicago.
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Figure 9: Output of EPA Models-3, showing the estimated concentrations of nitric acid (ppb) for
the week starting July 11, 1995. The resolution is 36 km.
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1.6 Testing for stationarity

We present now a formal test for stationarity of a spatial process. This test is a generalization of
the test for stationarity of time series presented by Priestley and Rao (1969) to spatial processes.
We first need to introduce an estimate of the spatial spectral density for a nonstationary process.

1.6.1 Nonparametric estimation of a spatial spectrum

Assume we observe the process Z at N equally spaced locations in a regular grid D (n1×n2), where
N = n1n2, and the spacing between observations is ∆. In this Section we propose a nonparametric
estimate of the spectral density (in a neighborhood of x), fx. We allow the spectrum to vary from
part to part of our domain, by having a spectral density that is a function of location. This estimate
is simply a spatial periodogram with a filter function to give more weight to neighboring values of
x. We first define Jx(ω0),

Jx(ω0) = ∆
n1∑
u1=0

n2∑
u2=0

g(x − ∆u)Z(∆u) exp{−i∆uTω0}, (34)

where u = (u1, u2), and {g(s)} is a filter satisfying the following conditions

B.1 {g(s)} is square integrable and normalized filter, so that

(2π)2
∫ +∞

−∞

∫ +∞

−∞
|g(s)|2ds =

∫ +∞

−∞

∫ +∞

−∞
|Γ(ω)|2dω = 1

Here

Γ(ω) =
∫ +∞

−∞

∫ +∞

−∞
g(s) exp{−isTω}ds

denotes the Fourier transform of {g(s)}.
B.2 {g(s)} has finite “width” Bg defined by

Bg =
∫ +∞

−∞

∫ +∞

−∞
|s||g(s)|ds

where Bg is smaller than BZ .

We refer to |Jx(ω)|2 as the spatial periodogram at a location x for a frequency ω.
The spectral estimate |Jx(ω)|2 is an approximately unbiased estimate of fx(ω) (see Theorem 1

in Fuentes (2005a)), but as its variance may be shown to be independent of N it will not be a very
useful estimate in practice. We therefore estimate fx(ω) by “smoothing” the values of |Jx(ω)|2
over neighboring values of x. More precisely, let Wρ be a weight function or “window”, depending
on the parameter ρ, which has integral 1 and the squared of W is integrable.

We write

wρ(λ) =
∫ +∞

−∞

∫ +∞

−∞
exp{isTλ}Wρ(s)ds
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Figure 10: This figure shows the Matérn spectral densities, obtained using Whittle’s approximation
to the likelihood, for the 9 equally-dimensioned regions shown in Figure 1. Region 1 represents the
lower left subarea (TX) of Figure 1.
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We assume that there exists a constant C such that

limρ→∞

{
ρ2

∫ +∞

−∞

∫ +∞

−∞
|wρ(λ)|2dλ

}
= C

The parameter ρ determines the bandwidth of {Wρ} and it is chosen, such that it is larger than
the width Bg.

Then, we estimate fx(ω0) by

f̂x(ω0) =
∫ ∞

−∞

∫ ∞

−∞
Wρ(x − s) |Js(ω0)|2 ds (35)

We evaluate (35) by Monte Carlo integration.
In the application presented in this Section we consider {g(s)} for s = (s1, s2) to be a multi-

plicative filter, i.e. the tensor product of two one-dimensional filters, g(s) = g1(s1)g1(s2), where g1
is of the form

g1(s) =
{

1/{2√hπ} |s| ≤ h
0 |s| > h

(36)

corresponding to the Barlett window. Then, Γ(ω) = Γ1(ω1)Γ1(ω2) for ω = (ω1, ω2). We also choose
Wρ to be of the form Wρ(s) = W1,ρ(s1)W1,ρ(s2), where

W1,ρ(s) =
{

1/ρ −1/2ρ ≤ s ≤ 1/2ρ
0 otherwise

(37)

corresponding to the Daniell window.
The asymptotic properties of f̂x(ω0) using a shrinking asymptotics model are studied by Fuentes

(2005a).

1.6.2 Testing for stationarity

We calculate our estimate of the spatial spectral density fsi(ω) atm nodes s1, . . . , sm that constitute
a systematic sample on D.

We write
U(si,ω) = log f̂si(ωj = log fsi(ω) + ε(si,ω).

We obtain that asymptotically E(ε(si,ω)) = 0 and var{ε(si,ω)} = σ2 where

σ2 = (C/ρ2)
{∫ +∞

−∞

∫ +∞

−∞
|Γ(θ)|4dθ

}
, (38)

for ω /∈ ∂Π2
∆, where Π∆ = [−π/∆, π/∆] and ∂Π2

∆ denotes the boundary of the region Π2
∆. The

variance σ2 is clearly independent of x, and ω.
Now, we evaluate the estimated spatial spectra, f̂si(ω), at the m nodes s1, . . . , sm and a set of

frequencies ω1,ω2, . . . ,ωn that cover the range of locations and frequencies of interest. Assuming
the si and ωj are spaced “sufficiently wide apart,” then the ε(si,ωj) will be approximately uncor-
related. This result is based on asymptotic properties of f̂si(ωj). The spatial periodogram values
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f̂x(ω) and f̂y(ω′) are asymptotically uncorrelated, if either ‖ω ± ω′‖ � bandwidth of |Γ(θ)|2 or
‖x − y‖ � bandwidth of the function {Wρ(u)}. In the application presented in this Section we
used the distance between the “half-power” points on the main lobe of |Γ(ω)|2 to approximate the
bandwidth.

The logarithmic transformation brings the distribution of a smoothed spatial periodogram closer
to normality (Jenkins, 1961). Thus, we may treat the ε(xi,ωj) as independent N(0, σ2). We write

Uij = U(si,ωj), log fsi(ωj) = fij , and εij = ε(si,ωj).

Then we have the model

Uij = fij + εij . (39)

Equation (39) becomes the usual “two-factor analysis of variance” model, and could be rewritten
in the more conventional form:

H1 : Uij = µ+ αi + βj + γij + εij

for i = 1, . . . ,m and j = 1, . . . , n. Then, we test for stationarity of Z by using the standard
techniques to test the model

H0 : Uij = µ+ βj + εij

against the more general model H1. Since we know the value of σ2 = var{εij}, we can test for
the presence of the interaction term, γij , with one realization of the process. If the model H0 is
rejected, then there is a significant difference between the parameters αi, for i = 1, . . . ,m, which is
evidence of lack of stationarity for Z at the m nodes. Thus, the complex and challenging problem
of testing for nonstationarity is reduced to a simple two-factor analysis of variance.

The parameters {αi}, {βj} represent the main effects of the space and frequency factors, and
{γij} represents the interaction between these two factors. A test for the presence of interaction is
equivalent to testing if Z is a uniformly modulated process, this means log fx(ω) is additive in terms
of space and frequency, then fx(ω) is multiplicative, i.e. fx(ω) = c2(x)f(ω), so the process Z is of
the form: Z(x) = c(x)Z0(x), where Z0 is stationary with spectral function f and c is a function of
space. If the interaction is not significant, we conclude that Z is a uniformly modulated process. If
the interaction is significant, we conclude that Z is non-stationary, and non-uniformly modulated.
We can study if the non-stationarity of Z is restricted only to certain frequency components, by
selecting those frequencies, e.g. {ωj1 , . . . ,ωjk} and testing for stationarity at these frequencies.

If Z is an isotropic process, then fx(ω) depends on its vector argument ω only through its length
‖ω‖. Then, we could test for isotropy by selecting a set of frequencies with the same absolute values,
say {ωj1 ,ωj2} where ωj1 �= ωj2 but ‖ωj1‖ = ‖ωj2‖, and examine whether the ”main-effect” effect
β is significant.

We could test for “complete randomness”, this means constant spectra for the spectral density on
the lattice, by testing the “main-effect” β, either at all locations on the lattice when the interaction
term is not significant, or at a particular subset of locations. All these comparisons are based on a
χ2 rather than F-tests, because σ2 is known.
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1.6.3 An example in air quality
For the purpose of illustrating the techniques presented in this Section, we take a systematic sample
of locations inD, the sample points x1, . . . ,x9 are the centroids of the 9 equally-dimensioned regions
S1, . . . , S9, in our domain of interest (Figure 9).

x
∖
ω ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

x1 4315.92 31.49 5.35 28.01 9.18 0.20 3.89 5.12 1.02
x2 3376.27 35.46 3.30 35.81 8.73 4.67 4.58 6.29 4.31
x3 2670.07 38.01 6.54 40.99 12.38 10.68 7.36 2.86 2.14
x4 1617.05 13.28 3.52 14.90 2.98 2.08 1.24 4.91 3.20
x5 1256.20 38.80 5.69 30.58 13.56 3.05 9.66 3.30 2.64
x6 1765.69 14.20 0.52 13.93 7.29 1.45 1.16 2.36 4.79
x7 2016.57 12.97 2.55 17.88 0.69 3.27 0.37 0.13 2.21
x8 13597.65 70.37 10.67 75.72 23.63 8.20 12.55 6.89 6.36
x9 4618.01 63.28 12.09 56.93 21.94 7.71 10.32 1.23 1.21

Table 1. Values of f̂x(ω).
Now, we implement our test for stationarity. We select values of locations x and frequencies ω

that are sufficiently apart. The estimates, f̂x(ω) (Table 1) were obtained using expression (35) in
which Wρ(u) is given by (37) with ρ = 20 units (1 unit = 36 km), and g(u) is of the form (36)
with h = 3. The window |Γ(ω)|2 has a bandwidth of approximately π/h = π/3. The distance
between the “half-power” points on the main lobe of |Γ(ω)|2 was used as an approximation of
the bandwidth. The window {Wρ(x)} has a bandwidth of ρ = 20. Thus, in order to obtain
approximately uncorrelated estimates, the points ωj and xi should be chosen so that the spacings
between the ωj are at least π/3 and the spacings between the xi are at least 20 units, the sample
points x1, . . . ,x9 are the centroids of the 9 equally-dimensioned regions S1, . . . , S9, covering the
domain shown in Figure 1.4.4. The ωj were chosen as follows ωj = (ωj1 , ωj2) = (πj/20, πj2/20)
with j1 = 1 (7) 15, j2 = 1 (7) 15, corresponding to a uniform spacing of 7π/20 (which just exceeds
π/3). The values of f̂x(ω) are shown in Table 1, where ω1 = (π/20, π/20), ω2 = (8π/20, π/20),
ω3 = (15π/20, π/20), ω4 = (π/20, 8π/20), ω5 = (8π/20, 8π/20), ω6 = (15π/20, 8π/20), ω7 =
(π/20, 15π/20), ω8 = (8π/20, 15π/20), and ω9 = (15π/20, 15π/20).

We need to calculate σ2 (see Equation (38)) to perform the test of stationarity for Z. In this
application σ2 = 16h2/(9ρ2) = 0.04.

Item Degrees of freedom Sum of squares χ2 = (sum of squares/σ2)
Between spatial points 8 26.55 663.75
Between frequencies 8 366.84 9171
Interaction + residual 64 30.54 763.5
Total 80 423.93 10598.25

Table 2. Analysis of variance.
The interaction is significant (χ2 is very large compared to χ2

64(0.05) = 83.67) confirming
that we do not have a uniformly modulated model, and both the “between spatial points” and
“between frequencies” sums of squares are highly significant (χ2 is extremely large compared to
χ2

8(0.05) = 15.51), confirming that the process is non-stationary and that the spectra are non-
uniform.
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If isotropy is a reasonable assumption then columns 3 and 7 in Table 1 should have similar
values. We present now an approach to test if there is any significant difference between columns
3 and 7 in Table 1.

The next table (Table 3) presents an analysis of variance to study the significance of the differ-
ence between columns 3 and 7 in Table 1. The spatial points are the same as in Table 2, x1, . . . ,x9,
and the frequency values used here are ω3 and ω7, both having the same absolute value.

Item Degrees of freedom Sum of squares χ2 = (sum of squares/σ2)
Between spatial points 8 15.96 399.18
Between frequencies 1 0.12 3.17
Interaction + residual 8 2.87 71.99
Total 17 18.95 473.75

Table 3. Analysis of variance.
The “between frequencies” effect is not significant (χ2 is smaller than χ2

1(0.05) = 3.84), suggest-
ing that then there is no evidence of anisotropy. This is not surprising, since for air pollution the
lack of anisotropy is usually detected at higher spatial resolutions (here the resolution of the models
is 1296 km2.) However, the “between spatial locations” sums of squares is highly significant (χ2 is
extremely large compared to χ2

8(0.05) = 15.51), confirming that the process is non-stationary.
We could test for stationarity within the subregions S1, . . . , S9, by drawing a larger systematic

sample in D with more than one sample point within each subregion. Further testing suggests that
θ(x) does not change significantly within the subregions S1, . . . , S9.

2 Wavelet analysis

Wavelet analysis, as opposed to frequency analysis, attempts to decompose the variability of a
process both in time and frequency. It is generally an orthogonal expansion. In this section we first
describe the continuous and discrete wavelet transforms, following Percival and Walden (Percival
et al. (2000)). While wavelets can be applied to spatial fields, we focus first for simplicity on a
description for a temporal process. Then we describe how one can use the discrete wavelet transform
to estimate temporal trends, and derive confidence bands and formal tests. Finally we look at a
wavelet transform in the plane, and show how it can be used to create a nonstationary spatial
covariance function.

2.1 The continuous wavelet transform

Consider a real-valued time series x(t). For a scale λ and a time t look at the average

A(λ, t) =
1
λ

t+λ/2∫
t−λ/2

x(u)du
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Essentially, wavelet analysis looks at how much such averages change over time. Let

D(λ, t) = A(λ, t+ λ
2 ) −A(λ, t− λ

2 )

= 1
λ

t+λ∫
t

x(u)du− 1
λ

t∫
t−λ

x(u)du

The difference D at scale λ = 1 and time t = 0 can be written

D(1, 0) =
√

2

∞∫
−∞

ψ(H)(u)x(u)du

where

ψ(H)(u) =

⎧⎪⎨
⎪⎩

− 1√
2
, −1 < u ≤ 0

1√
2
, 0 < u ≤ 1

0, otherwise

is the Haar wavelet. We get a family of Haar wavelets by translation

ψ
(H)
1,t (u) = ψ(H)(u− t)

and scaling

ψ
(H)
λ,t (u) =

1√
λ
ψ(H)(

u− t

λ
).

Then the continuous Haar wavelet transform of the process x(t) is

�

W (λ, t) =

∞∫
−∞

ψ
(H)
λ,t (u)x(u)du ∝ D(λ, t).

Figure 2.1 shows the signal x(t), the wavelet ψ(H)(t) and the integrand in the wavelet transform
(i.e., the product of the signal and the wavelet).

A general (mother) wavelet is a function which integrates to zero and square integrates to one.
A family of wavelets is generated by translation and scaling; ψa,b(x) = 1√

a
ψ((x − b)/a). There is

an additional technical constraint, namely that

Cψ =
∫

|u|−1|F(ψ)(u)|2du.

A few different classes of wavelets are given in a later subsection. The general continuous wavelet
transform for a wavelet ψ is

Ŵ (λ, t) =

∞∫
−∞

ψλ,t(u)x(u)du

.
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Figure 11: The Haar wavelet (left), a time series (middle) and the product of the two (right). The
latter is what is integrated to calculate the wavelet transform at the scale of this wavelet.

The continuous wavelet transform is equivalent to the original process x. We get the process
back from the transform by the formula

x(t) =
1
Cψ

∞∫
0

⎡
⎣ ∞∫
−∞

Ŵ (λ, u)ψλ,t(u)du

⎤
⎦ dλ
λ2

where Cψ is the finite constant given above.
Like the Fourier transform, the wavelet transform decomposes energy, in the sense (for a mean

zero process x) that
∞∫

−∞

x2(t)dt =

∞∫
0

∞∫
−∞

Ŵ 2(λ, t)
Cψλ2

dtdλ.

Here we think of the lefthand side as the total energy, while the integrand on the righthand side
corresponds to the energy at time t and frequency λ.

2.2 The discrete wavelet transform

Usually we do not get to observe our process x(t) continuously. Rather, we observe it at discrete
times (for spatial processes, at a grid). Hence we can consider dyadic scales λ = τj = 2−j and times
restricted to the integers. The discrete wavelet transform then has coefficients Wj,k ∝ Ŵ (τj , k).
We write W = (Wj,n) for the wavelet coefficients, and W for the wavelet transform, so

W = WY.
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In many cases we want (τj,n)∞n=1 be an orthogonal basis for each j, so that W−1 = WT . This puts
some further restrictions on the choice of wavelets, as we will see in the next subsection.

Following Tukey, we can think of rn =
J∑
j=1

Wj,n as the rough of the series, while sn = xn − rn

is the smooth. A multiwavelet analysis shows the details or the wavelet coefficients for each scale
j < log2(N) where N is the number of observation, as well as the smooth. Each of the details
describe the variability of the time series at the corresponding scale.

Example
Cole, Dunbar, McClanahan, and Muthiga (Cole et al (2000)) studied a 194 year record of the

δ18O oxygen isotope measured from a 4m high coral colony growing at a depth of 6m (at low tide)
in Malindi, Kenya. The purpose of the study was to measure changes in sea surface temperature
over time.

A decrease in the oxygen value corresponds to an increase in the sea surface temperature (SST)
(roughly a change of -0.24 pppm concentration corresponds to an SST increase of 1◦C). The issue
is whether there is a significant decadal trend after we adjust for the variability in the process.
Figure 2.2 shows a multiscale analysis of the negative of these data, computed using the pyramid
scheme (Mallat, Mallat (1989)) with the LA8 wavelet (see next subsection). We see a tendency
towards increase in the smooth of the series towards the end of the period, corresponding to a
possible increase in SST.

2.3 Some wavelets

The requirement that a wavelet needs to generate an orthogonal basis affects what functions one
can use. There is of course a variety of basis functions. For computational reasons it is desirable
that the wavelet has compact support. It turns out that the orthogonality requirement and the
compact support together force the wavelet to be asymmetric (if it is not the Haar wavelet). In
this subsection we first present a wavelet family without compact support, and then a family with
compact support.

2.3.1 Mexican hat

The Mexican hat is proportional to the second derivative of the Gaussian density function, i.e.,
ψ(x) ∝ (1 − x2) exp(−x2/2). Its name comes from the effect of rotating this function around the
origin, thus creating a two-dimensional wavelet that has been popular in image analysis. Figure
2.3.1 shows this wavelet.

2.3.2 Daubechies’ least asymmetric compactly supported wavelet

The least asymmetric compactly supported wavelet can be written as a low-pass filter supported on
2L points. The calculation of the wavelet is done according to a recipe in Daubechies (Daubechies
(1992)). Figure 2.3.2 shows the wavelet corresponding to L = 8, commonly called the LA(8)-
wavelet. It is the default wavelet in software packages such as waveslim in R (R Development Core
Team (2004)).
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Figure 12: Multiscale analysis of the Malindi time series of oxygen isotope. The smooth is on top,
followed successively by the wavelet coefficients at scale 16, 8, 4 and 2 years. The bottom graph
shows the time series.
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2.4 A nonparametric trend estimator and its properties

The scaling part of the wavelet transform is in essence a nonparametric trend estimator, where
the trend corresponds to variability at a larger scale than what is captured in the details. In this
subsection we outline how Craigmile et al. (Craigmile et al. (2004)) have developed tests for
polynomial trends and simultaneous confidence bands for a trend estimator which is related to the
scaling part of the wavelet transform. The statistical properties are valid even when the underlying
time series exhibits long term memory. We consider the usual model Xt = Tt + Yt where T = (Tt)
is the trend, assumed non-stochastic, and Y = (Yt) is the error process.

2.4.1 Fractional difference model for long term memory

Many atmospheric and climatological time series exhibit long term memory, i.e., the autocovariance
function decays very slowly. This creates difficulties for Fourier analysis, in that the convenient
lack of correlation between periodogram values at different Fourier frequencies no longer holds, but
turns out to be handled rather well by wavelet analysis.

We will focus here on a simple class of Gaussian long term memory models, namely the fractional
difference class. It is a mean zero Gaussian time series, with Fourier density

f(ω) = σ2 |2sin(πω)|−2δ . (40)

One can think of this as an ARIMA(0,δ,0)-process, where δ is not necessarily an integer. The
parameter can be estimated from the time series (see e.g. Craigmile et al. (2004)). General
description and theory of long term memory processes can be found in Beran’s book (Bera (1994)).

Using the representation 40, and taking logarithms on both sides, we see that for small values
of ω we have

log f(ω) ≈ c− 2δ log(πω)

so if we plot log f agains logω we should get a straight line for small values of ω. Figure 2.4.1
shows this plot for the Malindi data.

2.4.2 The trend estimator

Using one of Daubachies’ wavelets with compact support, we can divide the wavelet coefficients
into those that are affected by boundary values and those that are not. In fact, we can write

W = Ws + Wb + Wnb

where Ws has the scaling coefficients and zeros elsewhere, Wb has the wavelet coefficients affected
by the boundary, and zeros elsewhere, while Wnb are the non-boundary wavelet coefficients. Noting
that X = WT W we can write

X = WT (Ws + Wb) + WT Wnb = T̃ + Ỹ

where T̃ is an estimate of trend and Ỹ is a tapered estimate of error. If the true trend is polynomial
of degree K, and we use a wavelet filter of length L >= 2(K + 1), then nonboundary wavelet
coefficients will not contain the trend. We can then use Ỹ to estimate parameters of the error
process, and these will be uncorrelated with the trend estimate.
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Figure 15: Spectral density function for the Malindi oxygen isotope series on a log-log scale.

2.4.3 Testing for polynomial trend

In order to test the null hypothesis of no trend (T = 0 we use, for a FD error process with parameter
δ, the test statistic

P (δ) =

∥∥∥T̃∥∥∥2

∥∥∥Ỹ∥∥∥2 =
‖AW‖2

‖(I − A)W‖2 =
‖X‖2

‖(I − A)W‖2 − 1

where A contains the indicators of boundary and scaling coefficients. For a given value of δ
we can simulate the distribution of P (δ). In order to take into account the variability in the
parameter estimates, we repeatedly simulate FD processes from random samples of the limit law of
the parameter estimates, and then compute the test statistic for each simulated path. In the case of
the Malindi data, the estimated parameters are σ̂ = 0.0667 and δ̂ = 0.359, with a confidence band
for δ of (0.143,0.597), indicating that the series does indeed have long term memory. We cannot rule
out nonstationarity. Performing the simulation as outlined above, the resulting P-value is below
0.000, indicating strong evidence of a non-constant mean value (in order to look at non-zero mean,
one can look at anomalies, i.e., first take out the overall mean of the series).

2.4.4 Computing simultaneous confidence band for the trend estimator

The rejection of a constant mean value only gives part of the story. Ideally we would like to derive
a simultaneous confidence band for the trend. Let v = (varT̃0, ..., varT̃N−1) and write U = T̃−T.
We want to find λ so that

1 − α = P (T̃ − λv ≤ T ≤ T̃ + λv) = 1 − 2P(U > λv).
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Figure 16: 95% confidence limits for the trend of the Malindi oxygen isotope series.

Given the process parameters, U has a known multivariate normal distribution, and conditionally
we can do a bootstrap. In order to get a confidence band that takes into account the estimation of
process parameters, we do again a parametric bootstrap from the limiting distribution. The result
for the Malindi data is seen in Figure 2.4.4, where we see that the temperatures are high in the
later years, but also somewhat low in the earlier years of the study.

2.4.5 Some spatial wavelets

In order to create spatial wavelets we can start with two wavelet funcions, the “mother wavelet” ψ
and the “father wavelet” φ. We then create the following functions

S(x1, x2) = φ(x1)φ(x2)
H(x1, x2) = ψ(x1)φ(x2)
V (x1, x2) = φ(x1)ψ(x2)
D(x1, x2) = ψ(x1)ψ(x2)

where S stands for smooth, H for horizontal, V for vertical and D for diagonal. Figure 2.4.5 shows
the four functions. The horizontal, vertical and diagonal are called detail functions.
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Figure 17: The four wavelet functions for spatial analysis: (a) the smooth S; (b) the horizontal
detail H; (c) the vertical detail V ; and (d) the diagonal detail D. From Nychka et al, (2002).
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The key idea behind the wavelet transform is recursion. At each step an image of size say, n1×n2

is decomposed through four finite length separable, linear filters into four equal submatrices of
smooth, horizontal, vertical and diagonal terms. The three matrices for the H, V and D components
at this level of resolution are saved. The submatrix of (n1/2) × (n2/2) smoothed coefficients now
becomes the image for the next step and the filtering is repeated. This process continues until one
reaches a smoothed image of a particular size.

Technically we create a set of basis functions by starting with a coarsest level of resolution, say
J . A basis of 32 functions is displayed in Figure 2.4.5. The first J basis functions are similar to the
father wavelet translated to J equally spaced locations. These are given in plot (a) of Figure 2.4.5
for J = 4. The father wavelet only appears in this first J set and all subsequent basis functions
are similar in form to the mother wavelet. The next J basis functions are the mother wavelets
translated in the same manner and are in plot (b). The next generation of basis functions has twice
the resolution and twice as many members (8) and is similar to a scaling and translation of the
mother wavelet. Plot (c) of Figure 2.4.5 shows this generation. This cascade continues with the
number of members in each subsequent generation and the resolution increasing by a factor of two.
Plot (d) completes the basis of size 32.

2.5 A nonstationary covariance structure

The Karhunen-Loève expansion of a Gaussian process Z(s) is given by

Z(s) =
∞∑
i=1

√
λiAiψ(s)

where
Cov(Z(s1), Z(s2)) = C(s1, s2)

=
∞∑
i=1

λiψi(s1)ψi(s2)

and the Ai are iid N(0,1) random variables. Instead of using the eigenfunctions of the covariance,
Nychka et al. (2002) suggested using the wavelet basis described in the previous subsection. This,
of course, would lead to dependent coefficients Ai. Specifically, we can write the covariance

Σ = ΨDΨT;D = Ψ−1Σ(ΨT)−1. (41)

Letting the vector Ψ consist of the wavelet functions evaluated on a grid and stacked into a column
vector, the matrix D, which in the eigenfunction expansion would be diagonal, is no longer so.
However, one may be able to approximate the covariance by an expansion of type 41 with a nearly
diagonal D. Something nearly diagonal will be needed, since even for a small grid Σ is huge.

Assume now that a random field Z is observed at m points on a regular grid, and that we haveK
independent replications. Typically m would be much larger than K. Write the data Z as an m×K
matrix, and remove the spatial mean for each time point. Then we can estimate Σ by the sample
covariance, and consequently we have D̂ = (1/K)(Ψ−1Z)(Ψ−1Z)T. It is convenient to work with
the square root H of D, i.e. a matrix such that H2 = D. Using the singular value decomposition
of (Ψ−1Z) we can then write Ĥ = VΛ1/2VT, where Λ contains the singular values and V is the
left singular vector. Numerical studies indicate that if Ĥ has a small number of nonzero values one
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Figure 18: Family of 32 basis functions based on an approximate translation and scaling of father
(a) and mother (b)-(d) wavelets. See text for details. From Nychka et al, (2002).
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can achieve a good approximation across a family of covariance values (Nychka et al, (2002)). Once
the nonzero elements are determined, one can further decimate them by smoothing over spatially
adjacent values.

Example
To illustrate this process, Nychka et al. (2002) apply it to the output of a model for tropospheric

ozone, the regional oxidant model (ROM), studied on a 48 by 48 grid over Illinois and Ohio in the
summer of 1987. Each grid square is 16 km by 16 km, and since the correlation of ozone decays
at about 300 km, we start with a 3 by 3 grid father wavelet at the coarsest resolution. In this
application the leading 12 by 12 block of Ĥ was decimated by 90%, and the diagonal elements were
retained for the remaining levels. The resulting covariance structure is shown in Figure 2.5, and is
highly nonstationary. This shows isocovariance curves for four different locations (each marked by
an x). In particular, we notice that the sites (a) and (b) have covariances that are longer ranged to
the west, presumably related to the dominant meteorological structure of weather systems moving
from west to east.
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Figure 19: Estimated covariance surface at 4 sample locations for the ROM output. The image
plots indicate the estimated covariance between points in the domain and the point location denoted
by an x. Contour levels are at (40, 60, 80, 100, 120). From Nychka et al, (2002).
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3 Analyzing space-time processes

3.1 Empirical orthogonal function analysis

In geophysics and meteorology, variants of principal components called empirical orthogonal func-
tions (EOFs) have long been used to describe leading modes of variability in space-time processes.
Here we use smoothed EOFs to model the spatio-temporal mean of a random field viewed as spa-
tially varying systematic temporal trends. In contrast to the following section (3.2), which also
concerns space-time modeling, this section does not require the data to derive from a regular grid
for spectral modeling; on the other hand, it is not concerned with temporal correlation structure
or, more generally, the modeling of nonseparable spatio-temporal correlation structure.

It is common in the space-time modeling literature to decompose observations into the sum of
a systematic trend component and residuals

Z(x, t) = µ(x, t) + ε(x, t). (42)

We saw such a decomposition for the purely temporal case in section 2.4 where the trend was
denoted Tt and modeled nonparametrically using wavelets. By contrast, the temporal trend for
hourly averaged ozone fluxes in the application of section 3.2.5 is a simple trigonometric model,
which was fitted and removed at the regular grid of locations for the spatio-temporal air quality
model predictions. The trend in that application was believed to be constant in space, although
that assumption is not generally necessary. The trigonometric model is one of the most common
examples of the decomposition of temporal trend in terms of a series of orthogonal basis functions.
Where details of the trend structure vary spatially, we write such a decomposition more generally,
with spatially varying coefficients, as

µ(x, t) = βx0 +
J∑
j=1

βxjfj(t), (43)

the {fj(t)} being a set or orthogonal temporal basis functions. Our focus is on applications with
smooth seasonal (or, as in sect 3.2.5, diurnal) trends. Many air quality parameters display a
dominant seasonal trend structure that is not conveniently represented by sums of trigonometric
basis functions. In these cases we seek a parsimonious set of nonparametric basis functions, {fj(t)}
where the first basis function, f1(t) typically represents the dominant or average trend over the
spatial region of interest and subsequent basis functions, computed to be orthogonal to the first,
along with the spatially indexed parameters βxj , permit the shape and amplitude of the spatial
structure to vary. We illustrate these empirical trend characteristics and a simple approach to
computation of useful basis functions using maximum 8-hour average daily ozone observations at
94 monitoring sites in southern California for the 8-year period 1987-1994.

Carrying out spatial analysis, including predictions of air quality concentrations Z(x0, t) at
unmonitored locations x0 requires spatial prediction of both the trend and the temporal deviations
about the trend. The former can be achieved by more-or-less conventional geostatistical kriging of
the multivariate spatial data set defined by the spatial dataset of vectors of trend coefficients. The
latter is addressed here using the Sampson-Guttorp spatial deformation model for nonstationary
spatial covariance structure, first introduced in Sampson and Guttorp (1992), but implemented
here using the Bayesian framework of Damian et al. (2001, 2003).
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3.1.1 Computation of temporal trend basis functions from incomplete data using an
SVD

Assuming a complete data matrix of T observations on each of N monitoring sites, and letting
Z, M, and E represent the T ×N matrices corresponding to the terms of (42), the decomposition
can be written

Z = M + E (44)

where

M = FB (45)

F = [f0(t) f1(t) · · · fJ(t)] being a T × J matrix with columns the T−vectors of values of the basis
functions fj(t), j = 1, 2, . . . , J , with f0(t) ∝ 1. Without loss of generality we can scale these basis
functions to norm one, fj(t)

′fj(t) = 1. The matrix B is the J ×N matrix of trend coefficients for
the N sites,

B =

⎡
⎢⎢⎢⎣
β01 β02 · · · β0N

β11 β12 · · · β1N
...

... · · · ...
βJ1 βJ2 · · · βJN

⎤
⎥⎥⎥⎦ (46)

As M is of rank J , we obtain the most parsimonious set of basis functions for a least squares
approximation of the data matrix Z by taking F to be the matrix of the first J left singular vectors
in the singular value decomposition (SVD) Z = UDV′. To the extent that a large number of sites
share similar temporal (seasonal) patterns, the left singular vectors will represent these patterns.
There are, however, two problems in proposing these as the empirical orthogonal function basis for
this trend modeling problem. First: although the first singular vector does usually represent the
dominant shared seasonal pattern, based on observational data with substantial variation about the
trend, it turns out to be a noisy representation of this pattern. Second: air quality data matrices
always contain substantial numbers of missing observations, so the usual SVD routines cannot be
applied directly.

The SVD can be computed using an iterative algorithm in which the left singular vectors are
computed by regressions in which smoothness is imposed directly. However, it has proven adequate
to simply compute smoothed versions of the left singular vectors and then compute the coefficient
matrix B by ordinary least squares regressions of the columns of Z on the set of J smoothed
columns of F. To deal with missing data, we use a simple, “EM-like” iterative algorithm for the
SVD. This algorithm can be explained as follows:

1. Specify a dimension (rank), J , for the EOF model

2. Scale the observations at each monitoring site (columns of Z) to norm (variance) one; call
this matrix Z̃

3. Fill in the missing observations in the data matrix Z̃ using elements of an initial rank-one
approximation provided by a regression through the origin of each column of Z̃ on the vector
u1 computed as the average over sites of the columns of Z̃.
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4. Compute the rank-J SVD-approximation of the now complete data matrix Z̃

5. Replace the missing values in Z̃ by the elements of the rank-J SVD approximation.

6. Return to step 3 and iterate to convergence.

Following this calculation we use an ordinary spline smoother to smooth the plots of the left
singular vectors against time t = 1, 2, . . . , T . As the imputation of missing values in this algorithm
depends explicitly on the assumed rank of the model, one must fit models of varying dimension and
then choose a preferred model based on conventional measures like the percent of summed squared
variation in Z̃ explained, along with graphical analysis of the fitted trend models.

3.1.2 Spatial deformation modeling of the nonstationary spatial covariance structure
of the detrended space-time residuals

Sampson and Guttorp (1994) introduced an approach to nonstationary spatial covariance modeling
in which the geographic coordinates are deformed to create a geography (the disperion plane, or
D-plane) in which the covariance structure is approximately isotropic. This approach is usually
applied to detrended residuals. We assume for simplicity that the temporal structure of the residuals
ε̂(x, t) = Z(x, t) − µ̂(x, t) is white noise.

We decompose the residuals ε̂(x, t) = ν(x)H(x, t) + E(x, t), where H(x, t) is a mean zero,
variance one spatial process with covariance structure

Cov(H(x, t), H(y, t)) = ρθ (|f(x) − f(y)|) ,

and E(x, t)is a white noise process, uncorrelated with H(x, t). The function f is the deformation of
the geographic plane, and is fitted using a pair of thin-plate splines (Bookstein, 1989).

Technically we use a Gaussian-based Bayesian approach using MCMC, detailed in Damian et
al. (2001,2003). This has the advantage that we can draw samples from the deformations, and get
a good feeling for the uncertainty in the fit.

3.1.3 Example: Application to 8-hour maximum average daily ozone concentrations
from southern California

The analysis of 8-hour maximum average daily ozone concentrations from southern California for
the period 1987-94 was one of seven similar analyses of data from regions spanning most of the
continental United States. Ozone seasonal trends are similar nationwide and we hoped to be
able to use a single set of temporal trend basis functions for all regions. The computation of
trend components was based on data from 513 monitoring sites monitoring nearly throughout the
year across the country. A large fraction of the monitors in the U.S., especially in the north
and northeast, are in operation only over the primary ozone season from April through October.
Because of the lengthy time series available, and because we were not explicitly concerned with
the spatially varying temporal autocorrelation in the ozone data, we avoided this issue by basing
inference on the data obtained by subsampling every third daily observation, which results in series
that have little autocorrelation (about their trend).
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Temporal trend components. Analysis of the ozone concentration data was judged most appro-
priate on a square root scale. Figure 1 slows the four temporal basis functions computed from the
first four left singular vectors of the 2912 × 513 data matrix (considering only those sites sampling
essentially year-round). The first function clearly represents the dominant seasonal ozone cycle
with highest concentrations during the sunny summer months. The shape and amplitude of this
seasonal feature varies from year to year, another notable distinction with many seasonal trend
models which do not adapt to fluctuations in trend. The second trend component is necessary for
many sites which display a pair of ozone peaks, one in spring and another in later in the summer.
The third and fourth components serve mainly to adjust the exact shape and locations of the sea-
sonal peaks defined by the first two components. Approximately 67% of the variance in the entire
(scaled) 2912 × 513 data matrix is explained by the first four unsmoothed components.

Figure 2 illustrates trends for two monitoring sites in Los Angeles county. These were computed
as linear combinations of the four trend components illustrated in Figure 1. We note that there is
distinct variation in the shape of the seasonal trend even over this relatively small spatial region
with the first site, 060370002 (which was inoperative in early 1987 and from 1992 through 1994),
showing the dominant seasonal pattern and the second site, 060371902, showing two reasonably
distinct seasonal maxima. Figure 3 illustrates the prediction of the trends at these and two other
sites in Los Angeles county, all of which were left out of the spatial analysis for purposes of cross-
validation. Site 060371902 was selected as an example of the greatest error in the prediction of the
trend. The error is primarily in the intercept rather than the shape of the seasonal trend.

Spatial-deformation and illustration of validation predictions of actual observations. The coast-
line, complex topology, and typical weather patterns combine to effect a complex nonstationary
spatial correlation structure in the spatio-temporal residuals from the fitted temporal trends. Fig-
ure 4 depicts the posterior mean estimate of the spatial deformation computed to permit fitting
of stationary isotropic correlation models in the deformed coordinate system. The predominant
feature of compression along the coastline running NW-SE indicates that spatial correlation is
strongest parallel to the coast and weaker orthogonal to the coast. Figure 5 shows empirical spatial
correlations vs distance in the geographic and new deformed coordinate system. Spatial prediction
(kriging) of the trend coefficients combined with prediction of the spatio-temporal residuals pro-
duce the cross-validation predictions of the time series for the two LA county sites, as illustrated
in Figure 6.

3.2 Spectral analysis

3.2.1 A spectral representation

A stationary spatial-temporal process {Z(x, t) : x ∈ D ⊂ R
d, t ∈ T ⊂ R} has a spectral representa-

tion in terms of sine and cosine waves of different frequencies (ω, τ), where ω is d-dimensional spatial
frequency and τ is temporal frequency. If Z(x, t) is a stationary random field with spatial-temporal
covariance C(x, t), then we can represent the process in the form of the following Fourier-Stieltjes
integral:

Z(x, t) =
∫

Rd

∫
R

exp(iωTx + iτ t)dY (ω, τ). (47)
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Figure 20: First four singular vectors (dots) and smooth trend components derived from the 2912
x 513 matrix of square root transformed ozone concentrations.
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Figure 21: Fitted temporal trends for two monitoring sites in Los Angeles county.
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Figure 22: Predicted trend curves for four validation monitoring sites in Los Angeles county.
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Figure 23: Posterior mean spatial deformation representing nonstationary spatial covariance struc-
ture.
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Figure 24: Spatial correlations vs (a) distance in the geographic plane and (right) distance in the
deformed coordinate system (D-plane) of Figure 4. An estimated exponential spatial correlation
function is drawn on the D-plane scatter.
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Figure 25: Cross-validation predictions of daily (square root) ozone concentrations at two monitor-
ing sites in Los Angeles county.
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where Y is a random function that has uncorrelated increments with complex symmetry except for
the constraint, dY (ω, τ) = dY c(−ω,−τ), needed to ensure Z(x, t) is real-valued. Y c denotes the
conjugate of Y . Using the spectral representation of Z and proceeding formally,

C(x, t) =
∫

Rd

∫
R

exp(iωTx + iτ t)F (dω, dτ), (48)

where the function F is a positive finite measure and is called the spectral measure or spectrum
for Z. The spectral measure F is the mean square value of the process Y ,

E{|Y (ω, τ)|2} = F (ω, τ).

It is easy to see that for any finite positive measure F , the function given in (48) is positive definite.
If F has a density with respect to Lebesgue measure, it is the spectral density, f , which is the Fourier
transform of the spatial-temporal covariance function:

f(ω, τ) =
1

(2π)d+1

∫
Rd

∫
R

exp(−iωTx − iτ t)C(x, t)dxdt, (49)

and the corresponding covariance function is given by

C(x, t) =
∫

Rd

∫
R

exp(iωTx + iτ t)f(ω, τ)dωdτ. (50)

When f(ω, τ) = f (1)(ω)f (2)(τ), we obtain

C(x, t) =
∫

Rd

∫
R

exp(iωTx + iτ t)f (1)(ω)f (2)(τ)dωdτ

=
∫

Rd

exp(iωTx)f (1)(ω)dω
∫

R

exp(iτ t)f (2)(τ)dτ

= C(1)(x)C(2)(t),

which means the corresponding spatial-temporal covariance is separable.

3.2.2 A new class of nonseparable space-time covariances

We propose the following spatial-temporal spectral density that has a separable model as a partic-
ular case,

f(ω, τ) = γ(α2β2 + β2|ω|2 + α2τ2 + ε|ω|2τ2)−ν , (51)

where γ, α and β are positive, ν > d+1
2 and ε ∈ [0, 1]. The function in (51) is a valid spectral

density. First, f(ω, τ) > 0 everywhere. Second, f(ω, τ) ≤ γ(α2β2 + β2|ω|2 + α2τ2)−ν , and∫
Rd

∫
R

exp(iωTx + iτ t)γ(α2β2 + β2|ω|2 + α2τ2)−νdωdτ

=
π

d+1
2 γ

2ν−
d+1
2

−1Γ(ν)α2ν−dβ2ν−1

(
α

√
(
β

α
t)2 + |x|2

)ν− d+1
2

×

Kν− d+1
2

(
α

√
(
β

α
t)2 + |x|2

)
, (52)
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Therefore,
∫

Rd

∫
R

exp(iωTx + iτ t)f(ω, τ)dωdτ exists.

In the representation (51), the parameter α−1 explains the rate of decay of the spatial correla-
tion, β−1 explains the rate of decay for the temporal correlation, and γ is a scale parameter. The
parameter ν measures the degree of smoothness of the process Z. The parameter ε indicates the
interaction between the spatial and temporal components. Next, we discuss two particular case of
ε.

Two particular cases:
ε = 1
When ε = 1, the equation (51) can be written as

f(ω, τ) = γ(α2β2 + β2|ω|2 + α2τ2 + |ω|2τ2)−ν

= γ(α2 + |ω|2)−ν(β2 + τ2)−ν .

Therefore the corresponding spatial-temporal covariance is separable. Moreover, in the expression
of this covariance, both the spatial component and the temporal component are the Matérn type
covariances.When γ = α = β = d = 1 and ν = 3/2, a contour plot of corresponding separable
spatial-temporal covariance is given in Figure 8. From the plot, there are ridges along the lines
where spatial lag is 0 and temporal lag is 0.

ε = 0
When ε = 0,

f(ω, τ) = γ(α2β2 + β2|ω|2 + α2τ2)−ν . (53)

The function in (53) is an extension of the traditional Matérn spectral density. It treats time as an
additional component of space, but it does have a different rate of decay. In the spectral density
(53), the parameter α−1 explains the rate of decay of the spatial correlation. For the temporal
correlation, the rate of decay is explained by the parameter β−1. γ is a scale parameter. The
parameter ν measures the degree of smoothness of the process Z. The higher value of ν, the
smoother the process Z will be. The corresponding spatial-temporal covariance is give by (52),
which is a Matérn type covariance, we have

C(x, t) =
σ2

2ν−1Γ(ν)

(‖(x, ρt)‖
r

)
Kν

(‖(x, ρt)‖
r

)
, (54)

where σ2, r, ρ and ν are all positive. ‖ · ‖ denotes the Euclidean distance.In the representation
(54), the parameter r measures how the correlation decays with distance; generally this parameter
is called range. The parameter σ2 is the variance of the process Z. The parameter ν > 0 measures
the degree of smoothness of the process Z. The parameter ρ is a scale factor to take into account
the change of units between the spatial and temporal domains. Therefore, this parametric model
for C corresponds to a d+1 dimensional Matérn type covariance with an extra parameter ρ, which
can be explained as a conversion factor between the units in the space and time domains. When
γ = α = β = d = 1 and ν = 3/2, a contour plot of corresponding separable spatial-temporal
covariance is given in Figure 27. It has a very smooth surface.
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Figure 26: The contour plot for a separable spatial-temporal covariance.
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Figure 27: The contour plot for a nonseparable spatial-temporal covariance.
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When ε ∈ (0, 1) (Figure 10), we are not able to write down the exact expression of spatial-
temporal covariance, which correponds to the spectral density in (51). But we can calculate this
numerically, since

C(x, t) =
∫

Rd

∫
R

exp(iωTx + iτ t)f(ω, τ)dωdτ

=
∫

R

exp(iτ t)g(x, τ)dτ, (55)

where g(x, τ) =
∫

Rd exp(iωTx)f(ω, τ)dω. The function g(x, τ) is available from the integration,
therefore C(x, t) can be computed by numerically carrying out a one-dimensional Fourier transfor-
mation of g. This can be quickly approximated using fast Fourier transform. A separate transform
needs to be done for every value of (x, t) of interest, but this is feasible. The expression of g is
given by

g(x, τ) =
πd/2γ

2ν−
d
2
−1Γ(ν)

(β2 + ετ2)−ν
( |x|
θ(τ)

)ν− d
2

Kν− d
2
(θ(τ)|x|),

where θ(τ) =
√

α2(β2+τ2)
β2+ετ2 . When γ = α = β = d = 1 and ν = 3/2, contour plots of corresponding

separable spatial-temporal covariances with ε =0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 are given in Figure
28. The ridge is getting more obviously when ε is getting large, say close to 1. In fact, when ε is
close to 1, ε|ω|2τ2 is close to |ω|2τ2. Therefore the spectral density in (51) is turning close to a
separable form from a nonseparable form as ε→ 1.

In summary, the new class spectral density in (51) is nonseparable for 0 ≤ ε < 1, and separable
for ε = 1. Therefore, the parameter ε plays a role for separability. It controls the interaction
between the spatial component and the temporal component. Note that the degree of smoothness
is same for the spatial component and the temporal component. Therefore a more general class is
proposed to allow different degree of smoothness for space and time,

f(ω, τ) = γ
{
c1(a2

1 + |ω|2)α1 + c2(a2
2 + τ2)α2 + ε(a2

3 + |ω|2τ2)α3
}−ν

, (56)

where a1, a2, a3, α1, α2, α3 and c1, c2 are positive; ε ∈ [0, 1] and d
α1ν

+ 1
α2ν

< 2. This is a
valid spectral density. The spectral density in (51) is a special case of this more general class. If
α1 = α3 = 1 and d

ν + 1
α2ν

< 2 in (56), we have

∫
Rd

exp(iωTx)f(ω, τ)dω

=
πd/2γ

2ν−
d
2
−1Γ(ν)

(c1 + c3τ
2)−ν

( |x|
ρ(τ)

)ν− d
2

Kν− d
2
(ρ(τ)|x|),

(57)

where ρ(τ) =
(
c2(a2

2+τ2)α2+c1a2
1+c3a2

3
c1+c3τ2

)1/2
. So the corresponding spatial-temporal covariance C(x, t)

can be quickly approximated by using the fast Fourier transformation of (57).
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Figure 28: Contour plots for some nonseparable spatial-temporal covariances.
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3.2.3 An example in meteorology

In the analysis presented here we study and model the spatial temporal structure of wind fiels
using MM5 model output fields from July 21, 2002 for the full 24-h period. The complicated flow
patterns over the region during this time are evident in Figure 29. The arrows indicate the direction
from which the winds are coming, while the length of the stem indicates wind speed. An easterly
wind (winds from the east, southeast and northeast) tends to dominate over the majority of the
region for this time period. The 3AM (7-h forecast) plot clearly shows an area of confluence (an
area where the wind vectors tend to come together) over the Bay. At 9AM (13-h forecast) this
area of confluence has been replaced by an area of diffluence (an area where the wind vectors tend
to spread apart). Diffluence seems to persist over the majority of the Bay at noon (16-h forecast)
and for the rest of the period studied. There is little evidence in these plots to suggest that MM5
was capturing the sea breeze circulation, which observations show to be present.

As a first empirical attempt to deal with the nonstationarity inherent in these kinds of envi-
ronmental data, we divided the spatial domain into two broad categories: land and water. Five
subregions of nonstationarity were found and they are shown in Figure 30, these subregions were
identified using the test for nonstationary. This final regional arrangement of clusters appears rea-
sonable considering atmospheric and oceanic processes that are occurring in the boundary layer on
this day.

We model the nonstationary Z as a mixture of (independent) local stationary space-time
processes Zi for i = 1, . . . , k that explain the space-time dependence structure in the 5 subregions
of stationarity S1, . . . , S5,

Z(x, t) =
5∑
i=1

K(s − si)Zi(x, t), (58)

where si = (xi, ti) is the centroid of the ith subregion, and for i = 1, . . . , 5. Zi explains the spatial-
temporal structure of Z in a subregion of stationarity Si. The corresponding covariance function
for the process Z is

cov{Z(x1, t1), Z(x2, t2)} =
5∑
i=1

K(s1 − si)K(s2 − si)Ci(x1 − x2, t1 − t2) (59)

where s1 = (x1, t1), s2 = (x2, t2), and each Ci is a space-time covariance that explains the space-
time dependency in a subregion of stationarity Si.

The weight function in (59) is modeled as K(x − xi) = 1
h2

i
K0(x−xi

hi
), where the location xi is

the centroid of the i-th subregion. The bandwith hi is defined as half of the maximum distance for
the i-th subregion. The function K0 is modeled as K0(u) = 3

4(1 − u2
1)+ + 3

4(1 − u2
2)+, which is a

quadratic weight function for u = (u1, u2). We fit the parameters for the spatial-temporal covariance
of Z using a Bayesian framework. The priors for the sill parameter, spatial range parameter and
temporal range parameter are Inverse Gamma with infinite variance. The prior distribution for the
smoothness parameter is a uniform distribution with support (0, 2]. The support for the smoothness
parameter is a conservative interval based on our previous experience analyzing similar datasets.
The prior for ε gives all the mass to the values 0 and 1: p(ε = 0) = .5, p(ε = 1) = 1. The posterior
distributions for εi (Table 4) suggest the separability for each subregion except for subregion 4.
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Figure 29: Wind field maps, showing wind direction and speed over the Chesapeake Bay at 3am,
9am and noon on July 21, 2002.

65



−77.0 −76.5 −76.0 −75.5 −75.0

36
.0

36
.5

37
.0

37
.5

38
.0

38
.5

39
.0

Longitude

La
tit

ud
e

subregion 1

−77.0 −76.5 −76.0 −75.5 −75.0
36

.0
36

.5
37

.0
37

.5
38

.0
38

.5
39

.0

Longitude

La
tit

ud
e

subregion 2

−77.0 −76.5 −76.0 −75.5 −75.0

36
.0

36
.5

37
.0

37
.5

38
.0

38
.5

39
.0

Longitude

La
tit

ud
e

subregion 3

−77.0 −76.5 −76.0 −75.5 −75.0

36
.0

36
.5

37
.0

37
.5

38
.0

38
.5

39
.0

Longitude

La
tit

ud
e

subregion 4

−77.0 −76.5 −76.0 −75.5 −75.0

36
.0

36
.5

37
.0

37
.5

38
.0

38
.5

39
.0

Longitude

La
tit

ud
e

subregion 5

Figure 30: Subregions of stationarity.

P (εi = 0) P (εi = 1)
Subregion 1 7.62e-48 1
Subregion 2 1.03e-91 1
Subregion 3 3.76e-94 1
Subregion 4 1 0
Subregion 5 2.56e-150 1

Table 1: Table 4. The posterior distribution for εi.
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These seems to indicate that in subregion 4 we have a nonseparable covariance and in the rest of
the subregions we have separability.

3.2.4 Testing for separability

In this section we introduce a spectral analog of the assumption of separability.
Consider {Z(s; t) : s ∈ D ⊂ R

d; t ∈ Z} a spatial temporal zero-mean process observed at N
space-time coordinates (s1; t1), . . . , (sN ; tN ). We start by assuming that the covariance function is
stationary in space and time,

cov(Z(s1; t1), Z(s2; t2)) = C(h;u)

for h = s1 − s2, u = t1 − t2.
We can write the covariance C in terms of the spectral density g of the spatial temporal process

Z (Section 1),

C(h, u) =
∫ ∫

exp{ihTω + iuτ}g(ω; τ)dωdτ,

where

g(ω, τ) = (2π)−d−1
u=∞∑
u=−∞

∫
exp{−ihTω − iuτ}C(h;u)dh

= (2π)−d
∫

exp{−ihTω}f(h; τ)dh

(60)

for any fixed h, f(h; τ) is the cross-spectral density function of the time processes Y1(t) = Z(s; t)
and Y2(t) = Z(s + h; t), and we have,

f(h; τ) = (2π)−1
u=∞∑
u=−∞

exp{−iuτ}C(h, u). (61)

If C is a separable covariance then we can write

C(h, u) = C1(h)C2(u)

where C1 is a positive-definite function in R
d, and C2 is a positive-definite function in R. Thus,

f(h; τ) is the product of a function of h and a function of τ,

f(h; τ) = (2π)−1
u=∞∑
u=−∞

exp{−iuτ}C(h, u) = (2π)−1
u=∞∑
u=−∞

exp{−iuτ}C1(h)C2(u) = C1(h)κ(τ)
(62)

where κ is an integrable and positive function, and C1 for each fixed τ is a covariance function of
h and an integrable function of h. We can obtain a nonseparable covariance function by making
C1 depend on τ . Thus, we get

C(h, u) =
∫

exp{iuτ}C1(h; τ)κ(τ)dτ.
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Cressie and Huang (1999) use this spectral representation to generate parametric models of non-
separable spatio-temporal stationary covariance functions.

Thus, if Z is separable,

f(h; τ) = C1(h)κ(τ). (63)

In principle f could be a complex function, but when Z is separable and stationary f is real.
Testing for sparability
We propose a test for separability of spatial-temporal processes. The beauty of this method is

that the mechanics of the test can be reduced to those of a simple two-way ANOVA procedure. We
test for separability by studying if the coherence R is a function of τ.

We consider the standardized asymptotic distribution of the variance stabilizing transformation
of R, i.e.

φa,b(τ) = tanh−1(R̃a,b(τ)),

and we estimate it with
φ̂a,b(τ) = tanh−1(R̂a,b(τ)).

where the coherency is estimated by replacing f with f̂ab(ω) a tapered second-order periodogram
function proposed by Fuentes (2005b),

f̂ab(ω) =
∫ ∞

−∞

∫ ∞

−∞
gρ(a − s)gρ(b − s)I∗a+s,b+s(ω)ds, (64)

where

I∗ab(ω) = 2π/T
T−1∑
t=0

W (T )(ω − 2πt/T )Iab(2πt/T ), (65)

I is the second-order periodogram, and W and g are two filter functions. Thus, f̂ab(ω) can be
interpreted as an average of the total energy of the process contained within a band of frequencies
in the region of ω and a region in space in the neighborhood of a, and b. We evaluate φ̂(ai,bi)(τ),
at k pairs at pairs of locations {(ai,bi)}ki=1 and a set of frequencies τ1, τ2, . . . , τn that cover the
domain. We write

φ̂(ai,bi)(τj) = φ(ai,bi)(τj) + ε((ai,bi), τj).

Asymptotically E{ε((ai,bi), τj)} = 0 and Var{ε((ai,bi), τj)} = σ2 where σ2 is independent of
(ai,bi), and ωj .

Assuming the (ai,bi) and τj are spaced “sufficiently wide apart,” then the ε((ai,bi), τj) will be
approximately uncorrelated, this is based on the asymptotic properties of f̂(aibi)(τj) (see Fuentes
(2005b). We write

Uij = φ̂(ai,bi)(τj), (66)

mij = φ(ai,bi)(τj),
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and
εij = ε((ai,bi), τj).

Then, we have the model
Uij = mij + εij ,

that becomes the usual “two-factor analysis of variance” model, and can be rewritten:

H1 : Uij = µ+ αi + βj + εij

for i = 1, . . . , k and j = 1, . . . , n. The parameters {αi}, {βj} represent the main effects of the space
and frequency factors. Then, we test for separability by using the standard techniques to test the
model (βj = 0):

H0a : Uij = µ+ αi + εij

against the more general model H1.

3.2.5 An example in air quality
In this example we analyze the spatial temporal structure of a process Z, which is the hourly
averaged ozone fluxes (kg/hectare) in June 1996 (June 2-June 4), using the output of air quality
numerical models (Models-3) (see Figure 31). We have 72 observations over time. Before applying
our tests for stationarity and separability we need to remove the spatial-temporal trend.

In order to remove the spatial trend, we calculated at each location the ozone anomaly, that
is the corresponding ozone value minus the mean over time (using the 72 observations over time
at each location). We removed the temporal trend using a cosine and sine function with a period
of 24 hours. The diurnal cycle of the ozone anomalies appeared to be the same everywhere. We
implemented our test to the ozone anomalies (after removing this diurnal cycle).

The estimates, f̂ab(ω), were obtained using (64), the cross-spectral function proposed by Fuentes
(2005b), for the pair {a,b} in D, in which W (α) is given by (??) with a bandwidth of 2πB with
B = 1/12, and gρ(u) is of the form (??) with ρ = 5.5 units (1 unit = 36 km), m = BT . Thus,
in order to obtain approximately uncorrelated estimates, the frequencies ωj and pairs {(ai,bi)}ki=1

should be chosen so that the spacings between the ωj are at least π/6 and the distance between
any pairs (ai,bi) and (aj ,bj) for i �= j is at least 5.5 grid cells (198km).

The ωj were chosen as follows ωj = πj/17 with j = 1 (3) 16, corresponding to a uniform spacing
of 3π/17 (which just exceeds π/6). We evaluate f̂ab(ω) at the following frequencies, ω1 = π/17,
ω2 = 4π/17, ω3 = 7π/17, ω4 = 10π/17, ω5 = 13π/17, and ω6 = 16π/17. We consider six
pairs,{(ai,bi)}6

i=1, such that the distance between pairs is at least 216 km (which just exceeds
ρ) for all i, where ‖.‖ denotes the Euclidean distance. Figure 11 shows the locations of ai for
i = 1, . . . , 6, which correspond to the sites A,B, . . . , and F, respectively. The locations of bi for
i = 1, . . . , 6, are other six sites at the same latitude as A,B, . . . , and F but 72 km, 144 km, 180
km, 72 km, 144 km, and 180 km further east, respectively. Table 6 shows the the results of the test
for separability, using these 6 pairs.

Item Degrees of freedom Sum of squares F Value Pr(F)
Between spatial points 5 10.4784 6.1440 0.0007
Between frequencies 5 25.5483 14.9802 0.0000
Residuals 25 8.5273
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Table 6. Analysis of variance (all 6 sites).
The “between spatial locations” effect is highly significant (p-value < 0.01), confirming that

there is clear evidence of lack of separability. The coefficient of determination is .81.
In the next table we study separability in a smaller subregion (the eastern part of our domain)

using only pairs (a3,b3) and (a6,b6). Table 7 shows that the “between spatial locations” effect
is not significant, suggesting that then there is no evidence of lack of stationarity (in the eastern
part of our domain using pairs (a3,b3) and (a6,b6)). However, the “between frequencies” effect
is highly significant, confirming that the process is nonseparable. The coefficient of determination
is .97. Even in a smaller subregion the assumption of separability is still unrealistic (Table 2).
The distance between the two components in both pairs is the same, so we could use these two
pairs to test for stationarity. It appears that stationarity in that smaller subregion is a reasonable
assumption.

Item Degrees of freedom Sum of squares F Value Pr(F)
Between spatial points 1 0.0129 0.1872 0.6832
Between frequencies 5 11.1377 32.1995 0.0008
Residuals 5 0.3459

Table 7. Analysis of variance (using sites c and f).
Table 8 shows the |R̂ab(ω)|2 values at each one of the frequencies ωj for j = 1, . . . , 6 for the pairs

(a3,b3) and (a6,b6). |R|2, can be interpreted as a coefficient of correlation: values close to 1 indicate
high correlation between the two time series. Both pairs seem to have a very similar coherency
function, which supports the assumption of stationarity. However, the coherence is clearly changing
with frequency. Thus, it seems that locally it might reasonable to assume stationarity for ozone
fields, but separability seems to be unrealistic even for small geographic areas.

Pairs: ω1 ω2 ω3 ω4 ω5 ω6

(a3,b3) 0.769 0.648 0.891 0.960 0.994 0.999
(a6,b6) 0.931 0.660 0.840 0.978 0.994 0.998

Table 8. Coherence for pairs (a3,b3) and (a6,b6) at six frequencies.
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Figure 31: This graph shows the ozone deposition flux (kg/hectare) in a region in the Midwest.
The values in this graph are the output of the EPA regional scale air quality model (Models-3) on
June 2 at 12pm central time.
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